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Preface

The International Workshop on Complex Networks & their Applications was first
held in 2012. It was initially conceived as a forum to bring together researchers from
a wide variety of fields ranging from Computational Social Science, to Economic
Complexity, up to Bioinformatics to review current scientific work and formulate new
directions in network science. The tradition has continued with an annual single-track
meeting that has become one of the leading international events in the field. Fuelled
by the skills and expertise of participants from these diverse research fields, this
workshop allows for cross-fertilization between fundamental and applied research. It
offers a unique opportunity for reflection on the current state of the field, unanswered
but critical questions, and potential future directions.

This volume of proceedings provides an opportunity for readers to engage with
a selection of papers presented during the Fifth edition, hosted by the University
of Milan (Italy), from November 30 to December 02, 2016. Although, they do not
provide a fully comprehensive coverage of the field, the 65 papers selected by the
Scientific Committee reflect the interdisciplinary nature of the scientific areas covered
by the workshop. They have been organized in 11 sections reflecting multiple aspects
of complex network research:

Network models

Network measures

Community structure

Network dynamics

Diffusion, epidemics and spreading processes
Resilience and control

Network visualization

Social and political networks
Networks in finance and economics
Biological and ecological networks
Network analysis

A very encouraging response has been received by COMPLEX NETWORKS 2016
in terms of submissions. The 204 contributions that we received from 47 countries
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around the world reflect the great vitality and diversity of the complex network
community. All the submissions have been peer reviewed from at least 3 independent
reviewers from our strong international program committee in order to ensure high
quality of contributed material as well as adherence to the conference topics. After
the review process, 65 papers were selected to be included in the proceedings.

Each edition of the workshop represents a challenge that cannot be successfully
achieved without the deep involvement of numerous people and institutions. We
address sincere thanks to all of them for their support, and to the University of Milan
for making us so welcome.

We are very grateful to our keynote speakers for their plenary lectures covering
different areas of the conference. The talk of Guido Caldarelli (IMT Lucca - Italy)
focused on the origins of instability in financial networks. The presentation given by
Raissa D’Souza (U. C. Davis - USA) dealt with the steering and controlling systems
of interdependent networks. Renaud Lambiotte (University of Namur -Belgium)
gave a talk on “Burstiness and spreading on networks: models and predictions” and
Yamir Moreno (University of Zaragoza - Spain) presented the talk “On the structure
and dynamics of multilayer networks”. The talk given by Eiko Yoneki (University
of Cambridge - UK) was about “Efficient large-scale graph processing” and Ben
Y. Zhao (U. C. Santa-Barbara - USA) covered the link prediction issue from an
empirical perspective. Their support of the workshop is without a doubt one of the
reasons of the success of COMPLEX NETWORKS 2016.

Two speakers gave very illuminating tutorials that drew many conference partici-
pants. These talks, held on November 29, 2016 were accessible to a general audience
of graduate students. Ernesto Estrada (University of Strathclyde Glasgow - UK)
gave a lecture on “Consensus dynamics on networks. Theory and applications” and
Bruno Gongalves (New York University - USA) delivered a practical introduction to
machine learning (with Python).

We record our thanks to our fellow members of the Organizing Committee:
Chantal Cherifi (University of Lyon2 - France) and Antonio Scala (CNR - Italy), the
poster chairs, for arranging the poster session program and the editing of the book
of abstracts; Bruno Gongalves (New York University - USA), the publicity chair,
for his work in securing a substantial input of papers from both Asia and America
and in encouraging participation from those areas; and all the session chairs for their
outstanding participation. We would also like to record our appreciation for the work
of the Local Arrangement Committee. In particular, Carlo Piccardi (Politecnico di
Milano - Italy) and Fabio Della Rossa (Politecnico di Milano - Italy) in making all
the excellent logistical arrangements for the conference. We also acknowledge the
important contributions of the members of the Computer Science Department of the
University of Milan. In particular, the team of the NPTLab ( University of Milan)
led by Gian Paolo Rossi. We thank him for his unwavering support. Many thanks
to its junior members, Matteo Zignani and Christan Quadri for the incredible work
they have done in the organization and the editing of the proceeding. We extend our
thanks to Matteo Re and Giorgio Valentini, their efforts made a great contribution to
the success of the workshop.
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We are also indebted to our partners, Alessandro Fellegara and Alessandro Egro
along with their team (Tribe Communication) for their passion and patience in
designing the visual identity of the workshop. Our gratitude must also be extended to
our sponsors, Blogmeter, Celi and Shaman, for supporting the workshop.

We would also like to express our deepest appreciation to all those who have
helped us for the success of this meeting. Sincere thanks to the contributors, the
success of the technical program would not be possible without their creativity.
Finally, we would like to express our most sincere thanks to the Program Committee
members who have so generously volunteered their precious time to support the peer
review process.

We hope that this volume makes a useful contribution to issues surrounding the
fascinating world of complex networks and that you enjoy the papers as much as we
enjoyed organizing the conference and putting this collection of papers together.

Milan, Hocine Cherifi
November 2016 Sabrina Gaito
Walter Quattrociocchi

Alessandra Sala
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A Hypotheses-driven Bayesian Approach for
Understanding Edge Formation in Attributed
Multigraphs

Lisette Espin-Noboa,Florian Lemmerich, Markus Strohmaier and Philipp Singer

Abstract Understanding edge formation represents a key question in network analy-
sis. Various approaches have been postulated across disciplines ranging from network
growth models to statistical (regression) methods. In this work, we extend this ex-
isting arsenal of methods with a hypotheses-driven Bayesian approach that allows
to intuitively compare hypotheses about edge formation on attributed multigraphs.
We model the multiplicity of edges using a simple categorical model and propose to
express hypotheses as priors encoding our belief about parameters. Using Bayesian
model comparison techniques, we compare the relative plausibility of hypotheses
which might be motivated by previous theories about edge formation based on pop-
ularity or similarity. We demonstrate the utility of our approach on synthetic and
empirical data. This work is relevant for researchers interested in studying mecha-
nisms explaining edge formation in networks.

1 Introduction

Understanding edge formation in networks is a key interest of our research commu-
nity. For example, social scientists are frequently interested in studying relations
between entities within social networks, e.g., how social friendship ties form between
actors and explain them based on attributes such as a person’s gender, race, political
affiliation or age in the network [18]. Similarly, the complex networks community
suggests a set of generative network models aiming at explaining the formation of
edges focusing on the two core principles of popularity and similarity [15]. Thus,
a series of approaches to study edge formation have emerged including statistical
(regression) tools [10, 23] and model-based approaches [6, 15, 24] specifically estab-
lished in the physics and complex networks communities. Other disciplines such as
the computer sciences, biomedical sciences or political sciences use these tools to
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‘annbute/ncde‘ ‘ A ] B ] c ] D ‘
country || Ecuador |Germany| Austria | Austria
gender F M M M
position 1 2 2 3
academic 2015 2008 2011 2001
articles 3 37 30 115
citations 17 280 203 1918
(a) Multigraph  (b) Adjacency Matrix (c) Node Attributes

Fig. 1: Example: This example illustrates an unweighted attributed multigraph. (a)
Shows a multigraph where nodes represent academic researchers, and edges scientific
articles in which they have collaborated together. (b) Shows the adjacency matrix of
the graph, where every cell represents the total number of edges between two nodes.
(c) Decodes some attribute values per node. For instance, node D shows information
about an Austrian researcher who started his academic career in 2001.

answer empirical questions; e.g., co-authorship networks[12], wireless networks of
biomedical sensors [19], or community structures of political blogs [1].

Problem Illustration. For illustration, consider Fig. 1; nodes represent authors, and
(multiple) edges between them refer to co-authored scientific articles. Node attributes
provide additional information about the authors, e.g., their home country and gender.
An exemplary research question could be: “Can co-authorship be better explained
by a mechanism that assumes more collaborations between authors from the same
country or by a mechanism that assumes more collaborations between authors with
the same gender?”. These and similar questions motivate the main objective of this
work, which is to provide a Bayesian approach for understanding how edges emerge
in networks based on some characteristics of the nodes.

While several methods for tackling such questions have been proposed, they
come with certain limitations. For example, statistical regression methods based on
QAP [5] or mixed-effects models [20] do not scale to large-scale data and results
are difficult to interpret. For network growth models [15], it is necessary to find the
appropriate model for a given hypothesis about edge formation and thus, it is often
not trivial to intuitively compare competing hypotheses that sometimes might even
go beyond simple popularity and similarity mechanisms. Consequently, we want
to extend the methodological toolbox for studying edge formation in networks by
proposing a first step towards a hypotheses-driven generative Bayesian framework.

Approach and methods. We focus on understanding edge formation in node-
attributed multigraphs. We are interested in modeling and understanding the multi-
plicity of edges based on node attributes. Our approach follows a generative storyline.
First, we define the model that can characterize the edge formation at interest. We
focus on the simple categorical model, from which edges are independently drawn
from. Motivated by previous work on sequential data [21], the core idea of our
approach is to specify generative hypotheses about how edges emerge in a network.
These hypotheses might be motivated by previous theories such as popularity or
similarity [15]—e.g., for Fig. 1 we could hypothesize that authors are more likely
to collaborate with each other if they are from the same country. Technically, we
elicit these types of hypotheses as beliefs in parameters of the underlying categorical
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model and encode and integrate them as priors into the Bayesian framework. Using
Bayes factors with marginal likelihood estimations allows us to compare the relative
plausibility of expressed hypotheses as they are specifically sensitive to the priors.
The final output is a ranking of hypotheses based on their plausibility given the data.

Contributions. Our main contributions are: (i) We present a first step towards a
Bayesian approach for comparing generative hypotheses about edge formation in
networks. (ii) We provide simple categorical models based on local and global
scenarios allowing the comparison of hypotheses for multigraphs. (iii) We provide
guidelines for building hypotheses based on node attributes. (iv) We demonstrate
the applicability of our approach on synthetic and empirical data. (v) We make an
implementation of this approach openly available! on the Web.

2 Background

We start by introducing the underlying concepts of our approach.

Attributed Multigraphs. In this paper, we focus on multigraphs with attributed
nodes and unweighted edges without own identity. That means, each pair of nodes
can be connected by multiple indistinguishable edges, and there are features for the
individual nodes available.

We formally define this as: Let G = (V,E, F) be an unweighted attributed multi-
graph with V = (v1,...,v,) being a list of nodes, E = {(v;,v;)} € V x V a multiset of
either directed or undirected edges, and a set of feature vectors F = (f1,..., f). Each
feature vector f; = (f;[1], ..., fi[c])T maps a node v; to ¢ (numeric or categorical) at-
tribute values. The graph structure is captured by an adjacency matrix My, = (m;;),
where m;; is the multiplicity of edge (v;,v;) in E (i.e., number of edges between
nodes v; and v;). By definition, the total number of multiedges is [ = |E| = }.;;m;;.

Fig. 1a shows an example unweighted attributed multigraph: nodes represent
authors, and undirected edges represent co-authorship in scientific articles. The
adjacency matrix of this graph—counting for multiplicity of edges—is shown in Fig.
1b. Feature vectors (node attributes) are described in Fig. 1c. Thus, for this particular
case, we account for n = 4 nodes, / = 44 multiedges, and ¢ = 6 attributes.

Bayesian Hypothesis Testing. Our approach compares hypotheses on edge forma-

tion based on techniques from Bayesian hypothesis testing [11, 21]. The elementary

Bayes’ theorem states for parameters 6, given data D and a hypothesis H that:
likelihood prior

posterior [P A
~——~ P(D|0,H)P(0|H

P(D|H)
marginal likelihood
As observed data D, we use the adjacency matrix M, which encodes edges counts. 6
refers to the model parameters, which in our scenario correspond to the probabilities
of individual edges. H denotes a hypothesis under investigation. The likelihood

"'https://github.com/lisette—-espin/JANUS
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Fig. 2: Multigraph models: This figure shows two ways of modeling the undirected
multigraph shown in Fig. 1. That is, (a) global or graph-based model models the
whole graph as a single distribution. (b) Local or neighbour-based model models
each node as a separate distribution.

describes, how likely we observe data D given parameters 6 and a hypothesis H. The
prior is the distribution of parameters we believe in before seeing the data; in other
words, the prior encodes our hypothesis H. The posterior represents an adjusted
distribution of parameters after we observe D. Finally, the marginal likelihood (also
called evidence) represents the probability of the data D given a hypothesis H.

In our approach, we exploit the sensitivity of the marginal likelihood on the
prior to compare and rank different hypotheses: more plausible hypotheses imply
higher evidence for data D. Formally, Bayes Factors can be employed for comparing
two hypotheses. These are computed as the ratio between the respective marginal
likelihood score. The strength of a Bayes factor can be judged using available
interpretation tables [7]. While in many cases determining the marginal likelihood
is computationally challenging and requires approximate solutions, we can rely on
exact and fast-to-compute solutions in the models employed in this paper.

3 Approach

In this section, we describe the main steps towards a hypotheses-driven Bayesian
approach for understanding edge formation in unweighted attributed multigraphs. To
that end, we propose intuitive models for edge formation (Section 3.1), a flexible
toolbox to formally specify belief in the model parameters (Section 3.2), a way of
computing proper (Dirichlet) priors from these beliefs (Section 3.2), computation
of the marginal likelihood in this scenario (Section 3.3), and guidelines on how to
interpret the results (Section 3.4). We subsequently discuss these issues one-by-one.

3.1 Generative Edge Formation Models

We propose two variations of our approach, which employ two different types of
generative edge formation models in multigraphs.

Global model. First, we utilize a simple global model, in which a fixed number of
graph edges are randomly and independently drawn from the set of all potential edges
in the graph G by sampling with replacement. Each edge (v;,v;) is sampled from
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Fig. 3: Prior belief: This figure illustrates the three main phases of prior elicitation.
That is, (a) a matrix representation of belief By, where authors are more likely to
collaborate with each other if they are from the same country. (b) B; normalized
row-wise using the local model interpretation. (c) Prior elicitation for k = 4; i.e.,
(X,‘j = % X K+ 1.

a categorical distribution with parameters 6,1 <i<n,1 < j<n,Vij:Y,;:0;j =
1: (vi,v;) ~ Categorical(6;;). This means that each edge is associated with one
probability 8;; of being drawn next. Fig. 2a shows the maximum likelihood global
model for the network shown in Fig. 1. Since this is an undirected graph, inverse
edges can be ignored resulting in n(n + 1) /2 potential edges/parameters.

Local models. As an alternative, we can also focus on a local level. Here, we model
to which other node a specific node v will connect given that any new edge starting
from v is formed. We implement this by using a set of n separate models for the outgo-
ing edges of the ego-networks (i.e., the 1-hop neighborhood) of each of the n nodes.
The ego-network model for node v; is built by drawing randomly and independently
a number of nodes v; by sampling with replacement and adding an edge from v; to
this node. Each node v; is sampled from a categorical distribution with parameters
0;j,1 <i<n,1<j<nVi:Y;0;=1:v;~ Categorical(8;;). The parameters 6;;
can be written as a matrix; the value in cell (i, j) specifies the probability that a new
formed edge with source node v; will have the destination node v;. Thus, all values
within one row always sum up to one. Local models can be applied for undirected
and directed graphs (cf. also discussion in Section 6). In the directed case, we model
only the outgoing edges of the ego-network. Fig. 2b depicts the maximum likelihood
local models for our introductory example .

3.2 Hypothesis Elicitation

The main idea of our approach is to encode our beliefs in edge formation as Bayesian
priors over the model parameters. As a common choice, we employ Dirichlet distri-
butions as the conjugate priors of the categorical distribution. Thus, we assume that
the model parameters 6 are drawn from a Dirichlet distribution with hyperparameters
o: 6 ~ Dir(a). Similar to the model parameters themselves, the Dirichlet prior (or
multiple priors for the local models) can be specified in a matrix. We will choose the
parameters ¢ in such a way that they reflect a specific belief about edge formation.
For that purpose, we first specify matrices that formalize these beliefs, then we
compute the Dirichlet parameters o from these beliefs.



8 Lisette Espin-Noboa,Florian Lemmerich, Markus Strohmaier and Philipp Singer

Constructing Belief Matrices. We specify hypotheses about edge formation as
belief matrices B = b;;. These are n x n matrices, in which each cell b;; € IR represents
a belief of having an edge from node v; to node v;. To express a belief that an edge
occurs more often (compared to other edges) we set b;; to a higher value. In general,
users have a large freedom to generate belief matrices. However, typical construction
principles are to assume that nodes with specific attributes are more popular and thus
edges connecting these attributes receive higher multiplicity, or to assume that nodes
that are similar with respect to one or more attributes are more likely to form an edge,
cf. [15]. Ideally, the elicitation of belief matrices is based on existing theories.

For example, based on the information shown in Fig. 1, one could “believe” that
two authors collaborate more frequently together if: (1) they both are from the same
country, (2) they share the same gender, (3) they have high positions, or (4) they are
popular in terms of number of articles and citations. We capture each of these beliefs
in one matrix. One implementation of the matrices for our example beliefs could be:

e By (same country): b;; := 0.9 if fi[country] = fj[country] and 0.1 otherwise
e B; (same gender): b;; := 0.9 if fi[gender] = fj[gender] and 0.1 otherwise

e B3 (hierarchy): b;; := fi[position]- f;|position]

o B, (popularity): b;; := filarticles| + fjlarticles| + fi[citations] + fj[citations]

Fig. 3a shows the matrix representation of belief By, and Fig. 3b its respective
row-wise normalization for the local model case. While belief matrices are identically
structured for local and global models, the ratio between parameters in different rows
is crucial for the global model, but irrelevant for local ones.

Eliciting a Dirichlet prior. In order to obtain the hyperparameters o of a prior
Dirichlet distribution we utilize the pseudo-count interpretation of the parameters
o;; of the Dirichlet distribution, i.e., a value of @;; can be interpreted as o;; — 1
previous observations of the respective event for o;; > 1. We distribute pseudo-
counts proportionally to a belief matrix. Consequently, the hyperparameters can be

expressed as: o;; = % x K+ 1, where K is the concentration parameter of the prior.
The normalization constant Z is computed as the sum of all entries of the belief
matrix in the global model, and as the respective row sum in the local case. We
suggest to set Kk = n x k, k = {0, 1,...,10}. A high value of x expresses a strong
belief in the prior parameters. A similar alternative method to obtain Dirichlet priors
is the trial roulette method [21]. For the global model variation, all & values are
parameters for the same Dirichlet distribution, whereas in the local model variation,

each row parametrizes a separate Dirichlet distribution.

3.3 Computation of the Marginal Likelihood

For comparing the relative plausibility of hypotheses we use the marginal likelihood.
This is the aggregated likelihood over all possible values of the parameters 6 weighted
by the Dirichlet prior. For our set of local models we can calculate them as:
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Recall, ;; encodes our prior belief connecting nodes v; and v; in G, and m;; are
the actual edge counts. Since we evaluate only a single model in the global case, the
product over rows i of the adjacency matrix can be removed, and we obtain:

CEi X 06g) o T (o +mij) 3
I(Xi, Xy oij+mij) I' (o) ©

Equation (3) holds for directed networks. In the undirected case, indices j go
from i to n accounting for only half of the matrix including the diagonal. For a
detailed derivation of the marginal likelihood given a Dirichlet-Categorical model
see [22, 25]. For both models we focus on the log-marginal likelihoods in practice to
avoid underflows.

P(D|H) =
i=1j=1

Bayes Factor. Formally, we compare the relative plausibility of hypotheses by using
so-called Bayes factors [7], which simply are the ratios of the marginal likelihoods
for two hypotheses H; and H,. If it is positive, the first hypothesis is judged as more
plausible. The strength of the Bayes factor can be checked in an interpretation table
provided by Kass and Raftery [7].

3.4 Application of the Method and Interpretation of Results

We now showcase an example application of our approach featuring the network
shown in Fig. 1, and demonstrate how results can be interpreted. For that purpose
and due to space limitations, we focus on the local models variant.

Hypotheses. We compare four hypotheses (represented as belief matrices) By, B,
B3, and By elaborated in Section 3.2. Additionally, we use the uniform hypothesis
as a baseline. It assumes that all edges are equally likely, i.e., b;; = 1 for all i, j.
Hypotheses that are not more plausible than the uniform cannot be assumed to
capture relevant underlying mechanisms of edge formation. We also use the data
hypothesis as an upper bound for comparison, which employs the observed adjacency
matrix as belief: b;; = m;;.

Calculation and visualization. For each hypothesis H and every x, we can elicit
the Dirichlet priors (cf. Section 3.2), determine the aggregated marginal likelihood
(cf. Section 3.3), and compare the plausibility of hypotheses compared to the uni-
form hypothesis at the same k by calculating the logarithm of the Bayes factor as
log(P(D|H)) — log(P(D|Hyniform)). We suggest two ways of visualizing the results,
i.e., ploting the marginal likelihood values (Fig. 4a) or showing the Bayes factors
(Fig. 4b) on the y-axis. In both cases, the x-axis refers to the concentration parameter
k. While the visualization showing directly the marginal likelihoods carries more
information, visualizing Bayes factors makes it easier to spot smaller differences
between the hypotheses.

Interpretation. Every line in both figures represents a hypothesis. In Fig. 4a, higher
evidence values mean higher plausibility. Similarly, in Fig. 4b positive Bayes factors
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Fig. 4: Ranking of hypotheses for the introductory example. Rankings can be
visualized using (a) the marginal likelihood or evidence (y-axis), or (b) Bayes factors
(y-axis) by setting the uniform hypothesis as a baseline to compare with; higher values
refer to higher plausibility. The x-axis depicts the concentration parameter k. For this
example, authors from the multigraph shown in Fig. 1 appear to prefer to collaborate
more often with researchers of the same country rather than due to popularity (i.e.,
number of articles and citations). Note that all hypotheses outperform the uniform,
meaning that they all represent reasonable explanations of edge formation for the
given graph.

mean that for a given k, the hypothesis is judged to be more plausible than the
uniform baseline hypothesis; here, the relative Bayes factors also provide a ranking.
If evidences or Bayes factors are increasing with k, we can interpret this as further
evidence for the plausibility of expressed hypothesis as this means that the more we
believe in it, the higher the Bayesian approach judges its plausibility. As a result for
our example, we see that the hypothesis believing that two authors are more likely
to collaborate if they are from the same country is the most plausible one (after the
data hypothesis). In this example, all hypotheses appear to be more plausible than
the baseline, but this is not necessarily the case in all applications.

4 Experiments

We demonstrate the utility of our approach on both synthetic and empirical networks.
Due to space limitations, we only showcase the local model results.

4.1 Synthetic Attributed Multigraph

We start with experiments on a synthetic attributed multigraph. Here, we control the
underlying mechanisms of how edges in the network emerge and thus, expect these
also to be good hypotheses for our approach.

Network. The network contains 100 nodes where each node is assigned one of
two colors with uniform probability. For each node, we then randomly drew 200
undirected edges where each edge connects randomly with probability p = 0.8 to a
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Fig. 5: Ranking of hypotheses for synthetic network. In (a), we show the adjacency
matrix of the 2-color random multigraph with a node correlation of 80% for nodes
of the same color and 20% otherwise. One can see homophily based on more
connections between nodes of the same color; the diagonal is zero as there are no self-
connections. In (b), we show the ranking of hypotheses based on Bayes factors when
compared to the uniform hypothesis. As expected, the homophily hypothesis explains
the edge formation best (positive Bayes factor), and the heterophily and selfloop
hypotheses show negative Bayes factors—i.e., they provide no good explanations for
edge formation.

different node of the same color, and with p = (.2 to a node of the opposite color.
The adjacency matrix of this graph is visualized in Fig. 5a.

Hypotheses. In addition to the uniform baseline hypothesis, we construct two intu-
itive hypotheses based on the node color that express belief in possible edge formation
mechanics. First, the homophily hypothesis assumes that nodes of the same color
are more likely to have more edges between them. Therefore, we arbitrary set belief
values b;; to 80 when nodes v; and v; are of the same color, and 20 otherwise. Second,
the heterophily hypothesis expresses the opposite behavior; i.e., b;; = 80 if the color
of nodes v; and v; are different, and 20 otherwise. An additional selfloop hypothesis
only believes in self-connections (i.e., diagonal of adjacency matrix).

Results. Fig. 5b shows the ranking of hypotheses based on their Bayes factors com-
pared to the uniform hypothesis. Clearly, the homophily hypothesis is judged as the
most plausible. This is expected and corroborates the fact that network connections
are biased towards nodes of the same color. The heterophily and selfloop hypotheses
show negative Bayes factors; thus, they are not good hypotheses about edge formation
in this network. Due to the fact that the multigraph lacks of selfloops, the selfloop
hypothesis decreases very quickly with increasing strength of belief k.

4.2 Empirical Attributed Multigraph

Here, we focus on a real-world contact network based on wearable sensors.
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Fig. 6: Ranking of hypotheses for Kenya contact network. (a) Shows the adja-
cency matrix of the network with node ordering according to household membership.
Darker cells indicate more contacts. (b) Displays the ranking of hypotheses based
on Bayes factors, using the uniform hypothesis as baseline. The same household
hypothesis (people are more likely to contact people from the same household) ranks
highest. While the similar age hypothesis also provide positive Bayes Factors, the
same and different gender hypotheses are less plausible than the baseline (uniform
edge formation). Results are consistent for all k.

Network. We study a network? capturing interactions of 5 households in rural Kenya
between April 24 and May 12, 2012 [9]. The undirected unweighted multigraph
contains 75 nodes (persons) and 32 643 multiedges (contacts) which we aim to
explain. For each node, we know information such as gender and age (encoded
into 5 age intervals). Interactions exist within and across households. Fig. 6a shows
the adjacency matrix (i.e., number of contacts between two people) of the network.
Household membership of nodes (rows/columns) is shown accordingly.

Hypotheses. We investigate edge formation by comparing—next to the uniform
baseline hypothesis—four hypotheses based on node attributes as prior beliefs. (i)
The similar age hypothesis expresses the belief that people of similar age are more
likely to interact with each other. Entries b;; of the belief matrix B are set to the
inverse age distance between members: ik (i1) The same household

1+abs(f; [a;e] —filage
hypothesis believes that people are more likely to interact with people from the same
household. We arbitrarily set b;; to 80 if person v; and person v; belong to the same
household, and 20 otherwise. (iii) With the same gender hypothesis we hypothesize
that the number of same-gender interactions is higher than the different-gender
interactions. Therefore, every entry b;; of B is set to 80 if persons v; and v; are of the
same gender, and 20 otherwise. Finally, (iv) the different gender hypothesis believes
that it is more likely to find different-gender than same-gender interactions; b;; is set
to 80 if person v; has the opposite gender of person v;, and 20 otherwise.

Results. The results shown in Fig. 6b indicate that the same household hypothesis
explains the data the best, since it has been ranked first and it is more plausible than
the uniform. The similar age hypothesis also indicates plausibility due to positive

http://www.sociopatterns.org/datasets/kenyan-households—contact
-network/
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Bayes factors. Both the same and different gender hypotheses show negative Bayes
factors when compared to the uniform hypothesis suggesting that they are not good
explanations of edge formation in this network. This gives us a better understanding
of potential mechanisms producing underlying edges. People prefer to contact people
from the same household and similar age, but not based on gender preferences.
Additional experiments could further refine these hypotheses (e.g., combining them).

5 Related Work

We provide a broad overview of research on modeling and understanding edge for-
mation in networks; i.e., edge formation models and hypothesis testing on networks.

Edge formation models. A variety of models explaining underlying mechanisms of
network formation have been proposed. Here, we focus on models explaining linkage
between dyads beyond structure by incorporating node attribute information. Promi-
nently, the stochastic blockmodel [6] aims at producing and explaining communities
by accounting for node correlation based on attributes. The attributed graph [16]
models network structure and node attributes by learning the attribute correlations in
the observed network. Furthermore, the multiplicative attributed graph [8] takes into
account attribute information from nodes to model network structure. This model
defines the probability of an edge as the product of individual attribute link formation
affinities. Exponential random graph models [17] (also called the p* class of models)
represent graph distributions with an exponential linear model that uses feature-
structure counts such as reciprocity, k-stars and k-paths. In this line of research, p/
models [4] consider expansiveness (sender) and popularity (receiver) as fixed effects
associated with unique nodes in the network [3], in contrast to the p2 models [17]
which account for random effects and assume dyadic independence conditionally to
node-level attributes. While many of these works focus on binary relationships, [27]
proposes an unsupervised model to estimate continuous-valued relationship strength
for links from interaction activity and user similarity in social networks.

Hypothesis testing on networks. Previous works have implemented different tech-
niques to test hypotheses about network structure. For instance, the work in [13]
proposes an algorithm to determine whether two observed networks are significantly
different. Another branch of research has specifically focused on dyadic relationships
utilizing regression methods accounting for interdependencies in network data. Here,
we find the state-of-the-art Multiple Regression Quadratic Assignment Procedure
(MRQAP) [10] and its predecessor QAP [5] which permute nodes in such a way
that the network structure is kept intact; this allows to test for significance of effects.
Mixed-effects models [20] add random effects to the models allowing for variation to
mitigate non-independence between responses (edges) from the same subject (nodes)
[26]. Based on the quasi essential graph the work in [14] proposes to compare two
graphs (i.e., Bayesian networks) by testing and comparing multiple hypotheses on
their edges. Recently, the generalized hypergeometric ensembles [2] have been pro-
posed as a framework for model selection and statistical hypothesis testing of finite,
directed and weighted networks that allow to encode several topological patterns
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such as block models where homophily plays an important role in linkage decision.
In contrast to our work, neither of these approaches is based on Bayesian hypothesis
testing, which avoids some fundamental issues of classic frequentist statistics.

6 Discussion

Next, we discuss some aspects and open questions related to the proposed approach.

Inconsistency of local model. For directed networks, the local ego-network models
can assemble a full graph model by defining a probability distribution for the degrees
of the source nodes of edges. For undirected networks, this is not directly possible
as e.g., the ego-network model for v4 generated an edge from v4 to vg, but the
ego-network model for node v did not generate any edge to v4. Note that this does
not affect our comparison of hypotheses as we characterize the network.

Sparse data-connections. Most real networks exhibit small world properties such
as high clustering coefficient and fat-tailed degree distributions meaning that the
adjacency matrices are sparse. While comparison still relatively judges the plausi-
bility, our hypotheses do not approximate the data curve as shown in Fig. 6b. As
an alternative, one might want to limit our beliefs to only those edges that exist in
the network, i.e., we would then only build hypotheses on how edge multiplicity
varies between edges. Ultimately, our models also warrant extensions to adhere to the
degree sequence in the network, e.g., in the direction of multivariate hypergeometric
distributions as recently proposed in [2].

Other limitations and future work. The main intent of this work is the introduction
of a hypotheses-driven Bayesian approach for understanding edge formation in
networks. To that end, we showcased this approach on simple categorical models
that warrant extensions, e.g., by incorporating appropriate models for other types of
networks such as weighted or temporal networks. We can further investigate how to
build good hypotheses by leveraging all node attributes, and infer subnetworks that
fit best each of the given hypotheses. Moreover, there can be alternatives for non-
attributed networks. For instance, one could use other networks (same nodes, different
connections) to verify whether edges from a specific network can be explained by the
mechanisms of other networks. In the future, we also plan an extensive comparison
to other methods such as MRQAP, mixed-effects models and p* models.

7 Conclusions

In this paper, we have presented a Bayesian framework that facilitates the understand-
ing of edge formation in attributed multigraphs. The main idea is based on expressing
hypotheses as beliefs in parameters (i.e., multiplicity of edges), incorporate them
as priors, and utilize Bayes factors for comparing their plausibility. We proposed
simple local and global Dirichlet-categorical models and showcased their utility on
synthetic and empirical data. For illustration purposes our examples are based on
small networks. We tested our approach with larger networks obtaining identical
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results. In future, our concepts can be extended to further models such as models
adhering to fixed degree sequences. We hope that our work contributes new ideas to
the research line of understanding edge formation in complex networks.
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Generating Scaled Replicas of Real-World
Complex Networks

Christian L. Staudt, Michael Hamann, Ilya Safro, Alexander Gutfraind and Henning
Meyerhenke

Abstract Research on generative models plays a central role in the emerging field
of network science, studying how statistical patterns found in real networks can be
generated by formal rules. During the last two decades, a variety of models has been
proposed with an ultimate goal of achieving comprehensive realism for the generated
networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore
how models can be fitted to an original network to produce a structurally similar
replica, and (c) aim for producing much larger networks than the original exemplar. In
a comparative experimental study, we find ReCoN often superior to many other state-
of-the-art network generation methods. Our design yields a scalable and effective tool
for replicating a given network while preserving important properties at both micro-
and macroscopic scales and (optionally) scaling the replica by orders of magnitude
in size. We recommend ReCoN as a general practical method for creating realistic
test data for the engineering of computational methods on networks, verification,
and simulation studies. We provide scalable open-source implementations of most
studied methods, including ReCoN.

1 Introduction

Context. When engineering algorithms, the ability to create good synthetic test data
sets is valuable to estimate effectiveness and scalability of the proposed methods. A
shortage of real data for this purpose can for example arise if they are proprietary,
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sensitive, or unavailable in different scales. In the context of developing network
analysis algorithms, realistic synthetic graphs allow us to produce experimental
results that are representative for what can be observed for real data. Among the main
use cases are obfuscation (replacing restricted real data with similar synthetic data),
compression (storing only a generator and its parameters instead of large graphs), as
well as extrapolation and sampling (generating data at larger or smaller scales).
Problem definition. We envision two usage scenarios: Given an original (or real)
network O = (V,E) (n, = |V|, and m, = |E|) that cannot be freely shared, we would
like to be able to create a synthetic network R (with n, nodes) that matches the
original in essential structural properties, so that computational results obtained from
processing this network are representative for what the original network would yield.
We refer to R as a replica. We assume that whoever creates the replica has access to O
and can pass it to a model fitting algorithm which uses it to parametrize a generative
model.

More importantly, in addition to producing scale-1 replicas (where n, = n,), in
the second scenario we want to use the generative model for extrapolation: We want
to parametrize it so that it produces a scaled replica R* that has n, = x - n, nodes,
where x is called the scaling factor. The structural properties of R* should be such
that they resemble a later growth stage of the original (also see Sec. 2). This should
enable users of the replica to extrapolate the behavior of their methods when the
network data is significantly scaled.

Finally, with respect to performance, we would like the generator algorithm and
implementation as well as the fitting scheme to be efficient enough to produce large
data sets (on the order of several millions of nodes and edges) quickly in practice.
State of the art. Many generative models for complex networks exist. We point the
interested reader to a survey [12] for a more comprehensive overview. A widely used
model intended for model fitting uses exponential random graph models (ERGM), cf.
e. g. [25]. Unfortunately, ERGM are so expensive that graphs with tens of thousands
of nodes are already considered big for these models [3].

Other generative models admit fast generators and are thus in our focus. Among
those models are RMAT [6], BTER [16], and Hyperbolic Unit Disk Graphs
(HUDG) [17]. Initially, they can fit only few properties of the original network
by design, though. A previous fitting scheme by Leskovec et al. [20] for RMAT
graphs is quite time-consuming already for medium-sized networks [28, 29].

Editing models create a synthetic network by editing the original network. The
MUSKETEER generator [14] implements a multiscale editing model and is effective
for obfuscation purposes. However, its current implementation [13] is not fast enough
to generate sufficiently scaled replicas of large graphs.

Outline and contribution. In this paper we develop and evaluate a sufficiently fast
generator that focuses on creating realistic scaled replicas of complex networks.

We point out in Section 2 which criteria we consider important for calling a
(scaled) replica realistic. In particular we conceptualize realism in two ways: (i)
matching an original graph in a set of important structural properties, and (ii) match-
ing the running time behavior of various graph algorithms.
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Our new generator ReCoN, short for Replication of Complex Networks and
described in Section 3, uses and extends ideas of LFR, a generator used for bench-
marking community detection algorithms. Using the original degrees and a found
community structure we are able to capture a much-more detailed signature of the
network than a parametrization of the LFR generator. In Section 4 we discuss the
generative models that we use for comparison (among them RMAT, HUDG, and
BTER) and develop model fitting schemes for them.

Our comparative experimental study in Section 5 indicates that ReCoN performs
overall quite well and usually better than other generators in terms of realism. We
can also conclude that the ReCoN implementation is fast, as it is capable of creating
realistic scaled replicas on the scale of 108 edges in minutes. The ReCoN code is
publicly available in the open-source network analysis package NetworKit [31].

2 Realistic Replicas

We consider a generative model realistic if there is high structural similarity between
the synthetic graphs produced and relevant real-world networks. It is neither our
goal nor generally desirable to obtain an exact correspondence between original and
replica. First, this would exclude the use case of obfuscation. Secondly, obtaining
an isomorphic graph is rarely required for generalizable experiments. Note that we
consider a single “realism score” for each model inappropriately reductionist. Rather,
we quantify diverse aspects of realism in our experimental evaluation and leave it to
the reader to decide about their relative importance.

For 1-scale replicas (with the same size as the original), we measure the similarity
in terms of a set of commonly used metrics: Sparsity (number of edges vs number of
nodes); degree distribution (more precisely its Gini coefficient); maximum degree
as a proxy for the connectedness of hub nodes; average local clustering coefficient
to measure the local presence of triangles; diameter to monitor the small-world
effect; number of connected components and number of communities as additional
non-local features. These metrics cover both local and global properties and are
deemed important characteristics of networks [23].

How can we extend the notion above regarding realism to scaled replicas of a
network? To answer this question, let us look at the scaling behavior of a set of 100
Facebook social networks [32]. These networks were collected at an early stage of
the Facebook online social networking service in which networks were still separated
by universities. Fig. 1 plots basic structural measures of these Facebook networks
against the number of nodes 7, as well as a regression line and confidence intervals
(shaded area) to emphasize the trend. While linear regression may not always seem
completely appropriate for these data, the general trend is still captured.

We can observe from Fig. 1 a growth of the number of edges m that is linear in
n, an increase in the skew of the node degree distribution as measured by the Gini
coefficient, a growing maximum node degree, a slightly falling average local cluster-
ing coefficient, a nearly constant small diameter of the largest connected component,
and a slightly growing number of connected components (which can be explained
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Fig. 1: Scaling behavior of 100 Facebook networks; from left to right and top to
bottom: number of edges, maximum degree, Gini coefficient of degree distribution,
average local clustering coefficient, diameter, number of components, number of
communities found by PLM

by some small connected components that exist in addition to a giant component).
We detect communities using PLM (Parallel Louvain Method), a modularity-based
community detection heuristic [30], and report the number of communities minus
the number of these small connected components. It can be observed that the number
of non-trivial communities grows slightly.

While we do not propose that these scaling laws are universal, the trends repre-
sented here are commonly observed [4, 5, 27]. Thus, we use them to define desired
scaling properties for the remainder of the study as follows: m grows linearly with n;
the diameter does not change significantly, preserving the “small world property”’;
the shape of the degree distribution remains skewed; the maximum node degree in-
creases; the number of connected components may grow; the number of communities
increases slightly.

Recall that one use case for our generator is testing of graph and network analysis
algorithms. Since the running time is an essential feature in such tests, we also
consider a realistic replication of running times important. To this end, we select
a set of graph algorithms that (i) compute important features of networks and are
thus frequently used in network analysis tasks and that (ii) cover a variety of patterns
of computation and data access, each of which may interact differently with the
graph structure. The set consists of algorithms for connected components (essentially
breadth-first search), PageRank (via power iteration), betweenness approximation
(according to Geisberger et al. [11]), community detection (PLM, [30]), core decom-
position (according to [9]), triangle counting (according to [15]), and spanning forest
(essentially Kruskal’s algorithm without edge weights).
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3 The Generation Algorithm ReCoN

We introduce ReCoN, a generator for replicating and scaling complex networks. Its
input is a graph and a community structure on it. For fitting a given graph without
given community structure, we use PLM [30] in order to detect a community structure
first. The basic idea of ReCoN is to randomize the edges inside communities and
the edges between communities while keeping the node degrees. This happens
separately such that each community keeps as many edges as it had before. For
scaling a graph, we first create as many disjoint copies of the graph as desired and
then apply the aforementioned steps. During the randomization of the edges between
the communities the copies usually become connected with each other.

The idea of randomizing graphs inside and between communities is inspired
by the LFR generator, a benchmark graph generator for community detection al-
gorithms [19]. There the basic building blocks are also a random subgraph per
community and a global graph. However, in the LFR generator the degrees and
communities are not given but generated using a power law degree distribution and
a power law community size distribution with nodes assigned to communities at
random, while ReCoN uses the given graph as input for them.

For randomizing graphs while preserving the degree sequence we use random edge
switches where two edges {u,v}, {y,z} chosen uniformly at random are changed
into {u,z}, {y,v} if the resulting graph is still simple, i.e. does not contain any
duplicate edges or self-loops. Similar to the edge switching implementation provided
by [33] we use 10 times the number of edges as the number of random edge switches.
Previously performed experiments (e. g. [22]) have shown that this is enough to
expect the resulting graph to be drawn uniformly at random from all graphs with the
given degree sequence.

For an original graph O = (V, E) with n, = |V| nodes and a desired scaling factor x,
ReCoN executes the following steps:

1. Detect a community structure € = {C},...,C;} on O using PLM.

2. Create H as the disjoint union of x copies of O. The community structure is
also copied such that the new community structure D = {Dj,...,Dy.;} consists
of x -k communities, i.e. each copy of O gets its own copy of the community
structure that is aligned with the structure of the copied graph.

3. For each community D;, 1 <i < x-k, randomize the edges of the subgraph H|[D;]
that is induced by the community D; while keeping the degree distribution using
random edge switches.

4. Randomize the remaining edges, i.e. all edges in H that are not part of one of
the subgraphs H[D;] using random edge switches. Note that afterwards some
edges that were not in one of the H[D;] can now be inside a community. In order
to avoid this, rewiring steps are performed by executing edge switches of such
forbidden edges with random partners. A similar step is also used in the LFR
generator where it was observed that in practice only few rewiring steps are
necessary [18].

Note that it is not necessary to start with the original graph in step 3 and 4.
Using any graph with the same degree sequence is enough as the result is random
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anyway. Therefore, it is enough to know a community structure (as opposed to
the whole original graph) and for each node the internal and external degree, i.e.
how many neighbors it has inside and outside its community, respectively. For our
implementation we choose this alternative. Further, we execute step 3 in parallel for
all communities as the subgraphs are disjoint.

In addition to replicating important properties with high fidelity, the randomization
in step 3 and 4 naturally produces random variance among the set of replicas.

4 Fitting Generative Models to Input Graphs

Parametrized generative models require fitting schemes for learning parameters from
the original network. Because, usually, such schemes are not unique, exploring them
would be important future work. For this study, we have chosen one scheme per
model, parameters of which are summarized in Table 1 in the full version of this
paper [28]. Below we discuss a fitting scheme for power law degree distributions,
and briefly describe the generative models that are compared with ReCoN.

Fitting power law degree distribution (PLD). We apply our custom power law
fitting scheme. A practical replication of a network requires preserving the original
average (otherwise, the density will be changed) as well as minimum and maximum
degrees (applications can be sensitive to such fundamental properties as degree-1
nodes and the distribution of hubs). In general, it is assumed (and implemented in
many algorithms [8]) that PLD only holds starting with a minimum degree and that
for smaller degrees, the distribution might be different. As the LFR generator only
generates a plain PLD, we cannot apply this assumption. Therefore, we fit the PLD
exponent such that, with the given minimum and maximum degree, the average
degree of the real network is expected when a degree sequence is sampled from
this PLD. Using binary search in the range of [—6, —1], we repeatedly calculate the
expected average degree until the power law exponent is accurate up to an error of
1073,

Erds-Rnyi, Barabasi-Albert, Chung-Lu and ESMC. Erds—Rnyi random graphs
(ER) [24] are fundamental and an important baseline with the edge probability
parameter that we set to produce the same edge-to-node ratio as in O. The Barabasi—
Albert model (BA) [2] implements a preferential attachment process by which a PLD
emerges, which has been claimed to be a typical feature of real complex networks.
In BA, we set the number of edges coming with each new node to fit the original
edge-to-node ratio. The Chung-Lu (CL) model [1] recreates a given degree sequence
in expectation. The Edge-Switching Markov Chain Generator (ESMC) generates a
graph that is randomly drawn from all graphs with exactly the given degree sequence
(see e.g. [22], [26]). In both CL and ESMC we use the original degree sequence. To
generate larger networks, x copies of this sequence are concatenated, multiplying the
number of nodes by x while keeping the relative frequency of each degree.

RMAT. The Recursive Matrix (RMAT) model [7] was proposed to recreate various
properties of complex networks, including an optional power-law degree distribution,
the small-world property and self-similarity. The RMAT model can only generate
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graphs with 2 nodes, where s is an integer scaling parameter. In order to target a
fixed number of nodes n,, we calculate s so that 2% > n, and delete 2° — n,, random
nodes. The choice of other parameters as well as the running time of fitting are
discussed in [28].

Hyperbolic Unit Disk Graphs (HUDG). The random hyperbolic graph model em-
beds nodes into hyperbolic geometry and connects close nodes with higher proba-
bility [17]. The unit-disk variant HUDG we use in this paper connects only nodes
whose distance is below a certain threshold. We are focussing on the unit-disk variant
to be able to use a very fast generator for this model [21]. The model has been shown
to replicate some properties observed in real networks, such as a power-law degree
distribution. This method receives as parameters the desired number of nodes, the
average degree of the original network and a power law exponent which is fitted as
described above. As the given power law exponent must be larger than 2, we supply
at least an exponent of 2.1.

BTER. This method receives a degree distribution and the desired clustering co-
efficient per degree, i.e., for each degree to be realized the number of occurrences
and the average clustering coefficient per degree. For scaled replicas we scale the
occurrences of all degrees by the scaling factor. This leads to the target number of
nodes while also preserving the general shape of the degree distribution. In order to
retain the distribution of the clustering coefficients, we leave them unchanged while
scaling the network.

LFR. LFR was designed as a benchmark graph generator for community detection
algorithms [19]. Apart from the number of nodes it requires parameters for power law
distributions of the node degrees and the community sizes, and a mixing parameter
that determines the ratio between intra- and inter-cluster edges. We detect communi-
ties using PLM [30] and fit the parameters for the two power law distributions as
described above using the original degree sequence and the found community sizes.
The mixing parameter is set to the ratio between intra- and inter-cluster edges of the
found communities. The details are described in [28].

5 Computational Experiments

Our implementations of ReCoN and the various fitting methods are based on Net-
worKit [31], a tool suite for scalable network analysis. It also contains many of
the generators we use for comparison and provides a large set of graph algorithms
we use for our experiments. NetworKit combines C++ kernels with an interactive
Python shell to achieve both high performance and interactivity, a concept we use
for our implementations as well. All implementations are freely available as part
of the package at https://networkit.iti.kit.edu. This also includes a
faster and parallel implementation of the LFR generator (compared to the original
implementation [10]).

Our experimental platform is a shared-memory server with 256 GB RAM and
2x8 Intel(R) Xeon(R) E5-2680 cores at 2.7 GHz, using the GCC 4.8 compiler and
the openSUSE 13.1 OS. More technical details are available in [28].
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Fig. 2: Scaling behavior of the different generators on the fb-Caltech36 network.
From left to right and top to bottom: number of edges, max. degree, Gini coefficient
of the degree distribution, average local clustering coefficient, diameter, number of
components, number of communities.

As described in Section 2, we are interested in how well the different generators

replicate certain structural features of the original networks as well as the running
times of various graph algorithms. The results are described subsequently.
Scaling behavior of the generators. The following experiments consider the scaling
behavior of generative models. Given the parametrization discussed before, we look
at the evolution of structural features with growing scale factor x up to x = 32. We
consider the same basic scalar features as for the real networks in Sec. 2 and, due to
space constraints, point to [29] for more results.

In Figure 2, we show the results of the scaling experiments for the fb—-Caltech36
network. The number of edges of the replicas is increased almost linearly by all gen-
erators to ~ 5-10° edges which approximately corresponds to 32 times the edges of
the original network. Therefore, all generators seem to keep the average degree of the
original network, which is expected as it is a parameter of all considered generators.
Surprisingly, the maximum degree strongly increases up to 10 or 15 thousand with
HUDG and BA generators, respectively. The original maximum degree is 248, so
that the new value is even significantly higher than the scaled maximum degree (i. e.
248 - 32). Actually, from the scaling study in Sec. 2, we could expect an increase,
but rather in a lower range, so the degree distribution of BA and HUDG generators
are not realistic. Concerning the Gini coefficient, one can clearly see that ER does
not generate a skewed degree distribution at all. All generators that get the exact
degree sequence as input keep the Gini coefficient constant, which is expected and
also relatively realistic from our scaling study.

The original average local clustering coefficient of 0.43 is almost exactly repro-
duced by BTER in which it is an input parameter. The HUDG method increases it



Generating Scaled Replicas of Real-World Complex Networks 25

100

107 model T + T
B original
I Erdos Renyi
BN Barabasi Albert
BN RMAT
BN Chung Lu
106 I ESMC ﬁ +%
BN Hyperbolic Unit Dis|

[ BTER
[ LFR
[ ReCoN

Edges per Second

Connected C g (ap)  Community Detection ~ Core Decomposition  Triangle Counting Spanning Forest
algorithm

Fig. 3: Running time replication of a set of network analysis algorithms. Running
times are in edges per second, i.e., higher is faster.

to 0.8, most others obtain very small values. Our new ReCoN generator is less far
off with 0.25 and a slightly decreasing clustering coefficient; the latter is actually
realistic as we saw in Sec. 2. LFR is able to generate a clustering coefficient above 0.2
initially. Other generators produce much lower clustering coefficients. The original
diameter of 6 is almost exactly kept by ReCoN, all other generators except BTER
produce networks with slightly lower diameters, while BTER generates networks
whose diameter is almost twice bigger. All generators show a slight increase of the
diameter when the networks are larger, which is consistent with our scaling study.
While most generators produce networks with just a single connected component,
CL and BTER generate a large number, RMAT and ReCoN a moderate number
of connected components. In the case of CL, BTER and RMAT, this is probably
due to a large number of degree-0 nodes. The original network consists of a giant
component and 3 small components; ReCoN scales them linearly, which is due to its
parametrization. The original network is split into eight non-trivial communities, that
number should increase slowly according to Sec. 2. Only in the networks generated
by BTER, ReCoN and LFR, PLM can find a significant and increasing amount of
communities. While PLM finds over 100 non-trivial communities in the network
generated by BTER, there are fewer communities detectable in the networks gener-
ated by ReCoN and even less in the ones generated by LFR. Overall, ReCoN is the
only generator that keeps the degree distribution, and produces a realistic clustering
coefficient and a small diameter while keeping the graph connected and preserving
a moderate number of communities. All other generators are either unable to keep
the diameter or the connectivity or the number of communities. It is part of future
work to investigate whether the full hyperbolic random graph model can alleviate the
weaknesses of the unit-disk case.

Replicating running times of graph algorithms. Synthetic graphs are frequently
used in algorithm engineering to estimate the running time of an algorithm assuming
that this time will be similar on real networks. We examine if this is indeed the case
with the generative models we consider. Using the previously described generators
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and fitting schemes, we generate replicas of 100 Facebook networks and test a variety
of graph algorithms (see Sec. 2) on both the original and replica sets.

Our experiments demonstrate (see Fig. 3) that the running times on the replica

sets often do not match those on the original set. The gray segments of the box plots
represent the distribution of running times measured on a set of original networks.
Ideally, the distribution on the synthetic networks would be identical. The difference
is statistically nontrivial, though. Small variance between the models exists for
connected components and spanning forest computations, since their running time is
nearly constant per edge. Other algorithms exemplify how much running time can
depend on network structure, especially community detection, core decomposition,
triangle counting and PageRank. In general, the running time measurements obtained
on ReCoN match the originals closely in most cases. An exception is community
detection, where PLM seems to profit from ReCoN’s explicit model of communities.
BTER shows close matches, too.
Generator running times. In Fig. 4, we show the running times of parameter fitting
and generating a replica for all methods. Processing speed is given in the number
of edges per second. The entire set of Facebook networks was used to produce the
measurements, so generated replicas range from about 15000 to 1.5 million edges.
For all models, generating the graph takes up the vast majority of time. BTER’s
MATLAB-based implementation is slowest, while the ER and HUDG generators
are the fastest. Our implementations of LFR and ReCoN are not among the fastest
generators, but fast enough to produce millions of edges in minutes.

6 Conclusion

We have presented a new generator, ReCoN, for replicating and scaling existing
networks. In an extensive experimental evaluation (not all results could be shown due
to space constraints, see [28, 29] for more results) we have shown that ReCoN is
capable of generating networks which are (i) similar to the original network in terms
of important structural measures and (ii) lead to similar running times of many graph
and network analysis algorithms. Using ReCoN it is possible to realistically replicate
an existing network, and to scale the synthetic version by orders of magnitude, e. g., in
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order to test algorithms on larger data sets where they are not available. Furthermore,
it allows to create anonymized copies of such networks that can be distributed freely
and allow to conduct representative experiments on them. While other generators
sometimes perform better concerning certain criteria, none of the other generators is
capable of approximately reproducing such a wide range of properties and running
times.
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Modeling of Data Communication Networks
using Dynamic Complex Networks and its
Performance Studies

Suchi Kumari and Anurag Singh

Abstract To study the underlying organizing principles of various complex systems,
designing an efficient graph-based model for data representation, is a fundamental
aspect. As the topological structure of the network changes over time, it is a challeng-
ing task to design a communication system having ability to respond to randomly
changing traffic. We are interested to find out the suitable and fair traffic flow rates
to each system for getting optimal system utility using dynamic complex network
model. In this context, we design and simulate a growth model of the data commu-
nication network based on the dynamics of in-flowing links which is motivated by
the concept that newly added node will connect to the most influential nodes already
present in the system. The connectivity distribution of the evolved communication
networks follows power law form, free from network scale. We analyze Kelly’s
optimization framework for a rate allocation problem in communication networks
at different time instants, and optimal rates are obtained with the consideration of
arbitrary communication delays.

Key words: Complex Networks, Dynamic Networks model, Communication Pro-
cesses, System Utility

1 Introduction

Systems such as social, telecommunication, computer, biological, citation, etc. can
be modeled as a graph considering distinct elements represented by nodes and
there is a connection (links) between them. The graph has nontrivial topological
properties, connections between elements are neither purely regular nor purely
random. These systems are very large, can be modeled in the form of a network,
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helps us to understand the behavior of the system, called complex networks. Complex
networks are currently being studied across many fields of science systems in nature.
In complex networks [2, 11, 15, 16], links often exhibit various features: they can be
directed, have different weights assigned to it, be active only at certain times. The
demographic features of random graphs using the probabilistic approach in network
structure analysis was developed by Erdos and Renyi (ER), they investigated random
network model [6].

Watts and Strogatz (WS) have proposed a model, which generates complex net-
work having small world properties [22]

The more complex network model, Scale-free model was proposed by Barabasi-
Albert ([1]). The model is defined in two steps:

e Expansion: Starting with a small number (n) of nodes, at each instant of time a
new node appears with a(< ng) links which are connected to the existing nodes
in the system.

e Preferential connection: The II probability that a newly added node will be
attached to node i only when the value of influential parameter (k;) of that node
is maximal.

Ljkj
After time ¢, the network will contain total n = ¢ 4+ ng nodes and at links. Network
evolves into a scale invariant case and hence the scaling exponent is independent of a

total number of links a.
Limitations of BA model are as follows:

I (k;)

e Both invariant, expansion and preferential connections are compulsory.

e It is assumed that new connection is established only when new nodes are added
to the system. But, in real life, connections are made continually.

e In some systems, re-association or rewiring of the existing links can happen, and
they are also following preferential connection, but if reattachment dominates
over expansion, then this will destroy the behavior, i.e., the power-law scaling in
the system.

To make the network dynamic, an important ingredient of the dynamics is a preferen-
tial connection of links (outflowing/inflowing). Tadic [20] has focused on outflowing
links and shown that both the outflowing and inflowing links follow a heavy-tailed
distribution with distinct exponents. Momentary alteration of the outflowing links
inside the networks effect on both the outflowing and inflowing links. After estab-
lishing a correlation between the outflowing and inflowing links, it is shown that
the local structure of the network is qualitatively different compared to the case
without an update. The expansion, as well as update, are taking place at unique time
scale, a new node n(= 1) appears in the network (expansion), and a number X ()
of new links are scattered. There is an increasing interest in investigating not only
the process dynamics on networks [18, 19] but also the dynamics of networks [7].
There is a need to extend the basic network concept to include time relations between
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nodes arose, leading to many models for Time-Varying Graphs (TVGs) [5, 10, 21].
Although the nodes are placed in the space randomly, network structure depends on
the distribution of links.

The structure of connections has an immediate impact on the accessibility of partic-
ular node, and it is the backbone for the stability of the network. If the number of
connected components increases, then there must be at least one path between each
pair of the node. Social networks are one of the examples of dynamic network where,
people are represented by nodes and if two people are connected then, there will be a
connection between them. Contacts are not static, it is temporal and depends on the
state(active/inactive) of nodes. Some activity parameter is used to generate temporal
links and an adaptive network is formed by incorporating memory effect to know
about past connections. In [3], reciprocal action of individual activity and network
structure are shown. State of the node determines the dynamic activity of human
interaction and states are also decided by the connection between nodes.

Another example is communication networks, which can respond to randomly chang-
ing traffic flow rates by reassigning traffic routes and by reallocating resources. As
expansion and updates, both are happening at unique time scale, so the design and
control of such kind of network is a challenging task. Topology is changing at each
time-stamp. Due to change in topology, the performance of the network is also
affected [12]. The exponent is independent of a total number of links a.

Modern communication networks are faced with multiple challenges at different
layers and modeling their rate control behavior [9, 13, 14, 17] with volatile and
dynamic connectivity setting is a prominent issue. Real life network settings are ex-
tremely volatile, and still communication takes place albeit with degraded quality and
possible setback in performance. There is a new kind of thinking to understand the
underlying reasons for volatile spatiotemporal behavior and how one can re-engineer
them for optimal performance for this change.

Rather than closing our eyes to these kinds of hard technical difficulties, a frame-

work is proposed to model arbitrarily changing directed networks in both space and
time with the help of proposed mathematical models in [1, 20]. It is shown that the
degree distribution of the networks follows the power law and hence scale free in
nature. We analyze Kellys optimization framework for a rate allocation problem in
communication networks at different time instants, and optimal rates are obtained
considering user’s willing to pay and network cost.
Section 2 states about mathematical modeling of the network, Section 3 provides a
real life mobile communication network examples with arbitrary link changes by
maintaining certain set of rules and followed by algorithmic steps, Section 4 presents
a numerical example illustrating the algorithm and Section 5 describes the conclusion
and explains the future directions of this work.

2 Mathematical model and related work

In this section we give a brief description about rate allocation problem. We con-
template a network with a set E of links and a set of R users. Let C, be the capacity
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of the link, where, e € E. For each user k € R, a route r; has been assigned for a
particular time instant #; € T, where ¢; | 1 <i < T contains a nonempty subset of E. A
zero-one matrix A of the size E X R x t is defined where, Ay ., = 1, if e is in the route
of user k at time ¢, otherwise zero. When the user k is assigned a rate x; , then utility
of user k at rate x, is given as U, (xx,) is increasing, strictly concave function of
Xy over the range x;, > 0. Aggregate utility is calculated by summing up all utilities
of user k at rate x; , and is denoted as Y ;g ;e U, (xx ). Rate allocation problem can
be formulated as the following optimization problem.

SYSTEM(U,,A,,C;)

maximize Z U s (x1r) (1)
keRteT
Al'x, <Cyandx, >0
where, n = (1,2,....,7), T is the total number of time instants. A, is the matrix
formed in the time interval #,,_| to t,,. The constraint shown above tells us that the flow
through a link can not exceed the capacity of particular link [8]. For handling large
scale of the system, it is inconvenient to allocate each user an optimal rate. Hence,
Kelly has divided this problem into two simpler problems named as user’s optimal
problem and network’s optimal problem [9]. Let each user k is demanded a price per
unit flow as A;. A user chooses an amount to pay at per unit time is P (¢) according
to the incurred cost with the user. Hence, user receives a flow, x;(¢) = P,(t) /A« then
user’s optimal price will be

User(Ur(t), (1)),
maximize U (x; (1)) — pr(2), 2)
pr>0
On the other hand, network wants to maximize weighted log function of py(t).
Therefore, network utility function can be written as
NETWORK (A;,Cy, py),

maximize Z Pe(t)log(xi (1)), 3)
keR,teT
Al'x, <C/and x, > 0.

The values of Ay, P, and x; are considered variable with time. Each user in the
network, k € R initially computes the price per unit flow by using the Eqn. (4) and
it is willing to pay, P, (¢). It adjusts its rate based on the feedback provided by the
links in the network. Each user attempts to make equilibrium by its willingness to
pay the total price for the complete duration. Finally, one can always find out unique
stable value of the price per unit flow A} , rate x; and willingness to pay and P}
and corresponding convergence vectors will be A* = A,k € R, P* = P,k € R and
x*=x;,k€R.

For each user, k is given price per unit flow as A; and the amount for which user is
willing to pay, P, (¢) at time 7. Hence, the rate assigned to user k is x¢(f) = P() / Ak
Utility of each user k at a particular time instant is assumed by strictly concave
function of users rate at that time instant. Suppose that each user adopts a rate based
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flow control. At each time instant each link e € E charges a price per unit flow
of Ue(t) = ge(Xi:ecr Xk(t)) where g.(e) is an increasing function of the total flow
through it and g.(y) is

ge(y) = Ce-(}’/ce)w

where, ¢, is constant and assumed one, C, is the capacity of resource e € E. The
defined price function arises when resources are modeled as M /M /1 queue. M /M /1
queue is a queue having some length with the single server. Processes are arriving
with certain rate and then service is provided to that process by the server. Suppose
processes are arriving at rate A and y is the service rate. Hence, p = A/, where
p is the average proportion of time when the server is occupied or busy. C, is the
service rate and packet will receive a mark when there is already @ packets in the
queue. Now consider the following system of differential equation

ka(t) _ Gk(Pk(t) *)Ck(l‘) Z ue([)) (4)

dt ecE

Each user firstly computes it’s willingness to pay as P;(¢) then it adjusts its rate
based on the feedback provided by the links in the network and trying to balance its
willing to pay and total price. Eqn. (4) consists of two components: a steady increase
in the rate proportional to F,(¢) and steady decrease in the rate proportional to the
feedback provided by the network.

3 Proposed work

Like the Internet, communication networks use a specific set of rules to connect
the components and directed links are used to access data. In the communication
network, degree distribution of both out-flowing and in-flowing links follow a heavy
tail distribution with separate exponent values. In the proposed model, we have given
preference for in-flowing link because the newly created link is attached to the node
which has highest in-flowing link probability. Set of rules which are used in the
formation of dynamic networks, yield that the distributions of both out-flowing and
in-flowing links are interdependent. Another important feature of the model is that
the connection between pairs of nodes is not fixed in time, but it may change on the
time scale of the network’s expansion(updates of links).

Here, a communication network is formed with scale-free property by modifying
the BA model [4] and model [20]. The modified directed network is formed by
maintaining the following rules.

1. Directed nature of linking.

2. Expansion and update are done at unique time scale. At each time unit 7, a new
node n(= 1) is added to the network (expansion) and total number X () of new
connections are established and allocated to the nodes. Newly created links are
divided into two groups: added link and updated link. Distribution of the links is
done using following rules specified below.
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e Enter the value of fraction 3, ¥, such that § < 1and 0.5 <y < 1.

e A fraction fg(t) = BX(t) of new links are out-flowing links from the new
appeared node n =t and added with the nodes existing in the network at
(t — 1) based on priority, here 8 is a fraction with § < 1.

e Another remaining fraction f(;_g)(¢) = (1 — )X () are the updated (re-
moved and rewired) links within existing nodes excluding the newly added
nodes.

Updated links may have two types:
— A fraction f,(¢) = yfi(¢)links are rewired with the value of fraction 7,
0.5 <y < 1. It helps to maintain the growing nature of the network.
— Fraction fy;,(t) = (1 —7)f1(t) are removed from the network.
e The parameter § is the ratio of updated and added links in the model and

is given by 6 = ;(')—8 = % , which is independent of the added number of

links X (¢) and known as correlation parameter.
3. We can define two functions preferential update and preferential attachment.

While talking about communication network, the concept of preferential linking
driven by the demand of the node for the flowing data into the network. In addition to
this, preference for the update is given to only a few nodes, rather than updating all
nodes at each time instant. Moreover, some of the nodes want to update out-flowing
links more frequently than others. Apart from the newly appeared node, larger update
probability is given to most active nodes at time ¢, i.e., an out-flowing link from the
node k < n appears according to preferential attachment. Removal of links are done
randomly but the rearrangement of links done based on preferential attachment.

Algorithmic steps are given for expansion and updation of network.

Attributes of links contain /inkid, named, delay and capacity. We have to send
packets from multiple sources to multiple destinations based on shortest path. Shortest
path is measured in terms of hop count. Multiple users can send data from specific
source (S) to destination (D) based on shortest path and these S-D sets are generated
according to user’s choice. If number of users increases, then the congestion level
will increase according to the selection of paths.

Initially, shortest path for user is found and after that optimal data rate of the user is
calculated by using these steps:
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Algorithm 1 Network Evolution

1: Input: A small number (my) for seed network , m(<
my) for distribution, 8,y and timer.
Output: Evaluated network.
while T < timer do
Add a node at each time instant.
for m: 1 to fg(t) do
Select a node of higher probability to attach with.
end for
for n:1to f,,(r) do
Select an arbitrary source and link it to the node having higher inflowing
link probability.
10: end for
11: for p: 1to fy;,(¢) do
12: Randomly select v a link to remove.
13: end for
14: end while

R A S o

Algorithm 2 Finding shortest path and optimal rate for each user

1: for i := 1 to numPair do
2: Find shortest path between source and destination
3: for j := 1 to numofNode do
4: Calculate frequency of occurring of active node during path formation
5: rate(j) = Frequency(j) iapm.tiv N
[frequency(j)
6: end for
7: end for
8: for r =1 to numofPair do
9: Update feedback for each element of S-D pair
10: ratePath(r) = minRate(elementofPath);
11: A(r) = rand(1,10);
12: Wpay(r) = ratePath(r) * (m);
13: meul(r) = meu;
14: end for
15: Use the value of ratePath, A, Wpay and Meul to find out the rate of convergence of each user.

Evolution of the network is done at a unique time instant. Here we have taken
initial size of the network of (100 + m) nodes i.e., fp = 100+ m units and 67 = 100,
hence ;1] =t;+ Ot and the series will look like T = (fo,1;,12, .....tr) and the value
is, T = (1004 m, 200 + m,300 + m, ..., 1007 +m). Each user firstly computes and
shows a willingness to pay as P() then it adjusts its rate based on the feedback
provided by the links in the network and trying to balance it is willing to pay the total
price. Eqn. (4) consists of two components: a steady increase in the rate proportional
to P(¢) and steady decrease in the rate proportional to the feedback provided by the
network. Initial values of willingness to pay for the user, feedback of the network
and the rate of the resources are provided to the solver for finding out the optimal
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rate of each user. At each time instant user increases its willingness to pay but due to
congestion in the network rate and becomes stable after some time.

4 Simulation and results

In most of the real world networks, the degree of the majority of nodes has low value,
but there exist few hub nodes, having a high degree. Some social networks are found
to have degree distributions that approximately follow a heavy-tailed distribution:
P(k) ~ k=%, where 2 < a0 < 3, known as scale-free networks. In a scale-free network,
numerous nodes with few links coexist with a few hub nodes, having connected with
thousands or even millions of links. To make all the values for large k visible use of
alog-log plot is needed. We can either use logarithmic axes, with powers of 10 or we
can plot logp; in function of logk. Here, logarithmic axes, with powers of 10 is taken
for plotting the probability distribution of node degrees over the whole network and
the degree distribution shows power law behavior. The value of § can be obtained
from 6 as f = ﬁ There are four possible cases of the value of the &, depending
on updated and newly added link in the network.

In Fig. 1, it is shown that evolved network follows power law degree distribution
when network has different values of nodes along with correlation parameter J.

1. § =0(B =1) i.e, only expansion is happening no update (rearrangement and
removal). The degree distribution of the network having N = 10000 nodes and
scaling exponent ¢t = 2.664, is shown in Fig. 1(d).

2. 8 < 1(B >0.5), more number of new links are getting added than updated. The
degree distribution of the networks having N = 10000 nodes and the values of 3
= (0.6 (expansion), ¥ = 0.5(rearrangement) and & = 2.455, shown in Fig. 1 (b).

3. § > 1(B < 0.5), more number of links are updated than added. Degree distri-
bution of the networks having N = 10000, 8 = 0.25,7 = 0.7 and o = 2.065 is
shown in Fig. 1(c).

4. & =1, when both the value of updated and added links are same, degree distribu-
tion of the networks with N = 10000, 8 = 0.5,y = 0.5 and o = 2.486 is shown
in Fig. 1(a).

From the graph shown in Fig. 1, it is analyzed that, by increasing the parameter
B in the range (0, 1), corresponds to decrease of the correlation parameter 6 in the
interval (eo,0), the slope of the distributions increases.

The network is formed using the algorithm 1. Evolved network is formed by
putting the values of parameters as: size of the seed network mo = 5, Number of
links which is distributed at each time instant m(< myg), B, v and timer. User’s routes
for sending packets are varying according to time. At each time instant, a new node
appears with m links and expansion as well as re-arrangements are done. As the
network becomes larger and larger, many paths are available for sending packets for
each user between desired source and destination. All routes are equally weighted
hence, users can select any of these routes for sending packets.

Each user can send data along one of the shortest paths to the destination with a
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Fig. 1: Degree distribution of the network when number of nodes are and average ratio
of updated and newly added links are (a) N = 10000, 6 = 1, (b) N = 10000, 6 =
0.67, (¢) N = 10000, 6 =3 and (d) N = 10000, 6 =0

maximum flow rate of individual links. Multiple users need to share the resources
hence, data sending rate got reduced, and it can no more send data with a maximum
rate. User’s rate depends on two parameters; it’s own willingness to pay and network’s
feedback. Using rate control theorem given in (4), an optimal data sending rate of
each user is obtained. In Fig. 2, User1’s and User2’s data sending rates are shown
at different time instants. Instead of, increased network size, optimal rates are not
increasing. User rates depend on the demand of particular resources coming in the
shortest route. If demand is high, then data sending rate will be less.

Multiple users want to establish connections between a distinct pair of nodes and
hence, a shortest possible communication path is chosen. There may exist a multiple
number of shortest routes having the same number of hop count, but betweenness



38 Suchi Kumari and Anurag Singh

2.33
g 2.09

Data sending rate(in Mbps)
1.6

1000 2000
Time instants

Fig. 2: Conservation of data sending rates of Userl and User2 at different time
instants

centrality of all shortest paths would not be same. Hence, data flow rate of the paths
having high betweenness value will be less. Optimal rates are also dependent on
betweenness. User’s optimal rates along with their betweenness values are shown in
Table 1. User’s optimal rates are also shown in figure 3.

Table 1: User’s optimal rate through the shortest routes having different betweenness
values(maximum and minimum), when number of nodes N = 100

Source |Destination | Betweenness | Betweenness Optimal Rates Optimal Rates
(Minimum) | (Maximum) |(Minimum Betweenness)|(Maximum Betweenness)
Userl 7 38 0.1931 0.1966 6.316335 7.737758
User2 | 77 96 0.0906 0.5877 3.383048 4.446214
User3 21 37 0.0616 0.3066 6.489473 9.356067
User4 | 68 79 0.0856 0.3872 4.409398 5.202014
User5 13 36 0.0751 0.4118 7.057041 8.913657
User6 | 20 47 0.0185 0.1467 5.134327 6.963006
User7 | 36 62 0.0608 0.1006 5.519844 6.575628
User8 | 24 65 0.085 0.3955 3.780126 7.232818
User9 | 40 6 0.0762 0.2017 6.978428 12.434885
Userl0| 18 75 0.1483 0.3413 5.832557 7.118301
Userll| 24 85 0.0818 0.3847 4.081002 8.247708
Userl2| 39 2 0.2144 0.3314 9.000121 11.311826
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Fig. 3: User’s optimal rate through the shortest routes having different betweenness
values(maximum and minimum), when number of nodes N = 100

5 Conclusions and Future directions

In this paper, a model is proposed to represent complex dynamic systems in the form
of complex networks and their representation is also given by using mathematical
expression. The proposed model is simple, flexible and efficient for the representation
and modeling of dynamically changing networks. At each time instance, a new node
appears with few links, either for expansion or update based on the value of fractions
B and 7. Expansion and update (removal and rewiring) of links are done based on
the preferential basis (most influential nodes). Network changes at each time instant
and it grows according to the value of time. Various experiments are performed for
finding out the topological structure of the evolved network and the rate control
behavior is also studied. At each time slot, user’s route changes and hence data
sending rates also change accordingly. Rate control theorem proposed by Kelly [9],
formulated for static network, is used for obtaining optimal user data sending rates
to maximize the system utility.

In this paper User’s willingness to pay is taken as constant value and it is proportional
to the initial capacity(maximum) of that User. It can vary dynamically according to
the rate assigned to the User. We have not considered the role of delays while solving
System utility. User’s routes are selected by considering shortedness, betweenness
centrality and initial capacity of users are taken according to their in-degree. It can
be extended by considering different objective functions by using parameters such as
reputation, influence etc.
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Testing for the signature of policy in online
communities

Alberto Cottica, Guy Melancon and Benjamin Renoust

Abstract Most successful online communities employ professionals, sometimes
called “community managers”, for a variety of tasks including onboarding new
participants, mediating conflict, and policing unwanted behaviour. We interpret the
activity of community managers as network design: they take action oriented at
shaping the network of interactions in a way conducive to their community’s goals.
It follows that, if such action is successful, we should be able to detect its signature
in the network itself. Growing networks where links are allocated by a preferential
attachment mechanism are known to converge to networks displaying a power
law degree distribution. Our main hypothesis is that managed online communities
would deviate from the power law form; such deviation constitutes the signature of
successful community management. Our secondary hypothesis is that said deviation
happens in a predictable way, once community management practices are accounted
for. We investigate the issue using empirical data on three small online communities
and a computer model that simulates a widely used community management activity
called onboarding. We find that the model produces in-degree distributions that
systematically deviate from power law behavior for low-values of the in-degree; we
then explore the implications and possible applications of the finding.

Alberto Cottica (e-mail: alberto@cottica.net)X
University of Alicante, Alicante, Spain & Edgeryders, Brussels, Belgium

Guy Melancon (e-mail: Guy .MelanconQu-bordeaux. fr)<
University of Bordeaux, LaBRI CNRS UMR 5800, Bordeaux, France

Benjamin Renoust (e-mail: renoust@nii.ac. jp)X<
National Institute of Informatics & JFLI CNRS UMI 3527, Tokyo, Japan

This project has received funding from the European Union’s |
Horizon 2020 research and innovation programme under grant
agreement no 688670.

Eurapean
Commission

© Springer International Publishing AG 2017 41
H. Cherifi et al. (eds.), Complex Networks & Their Applications V,

Studies in Computational Intelligence 693,

DOI 10.1007/978-3-319-50901-3_4


alberto@cottica.net
Guy.Melancon@u-bordeaux.fr
renoust@nii.ac.jp

42 A. Cottica, G. Melangon and B. Renoust

1 Introduction

Organizations running online communities typically employ community managers,
tasked with encouraging participation and resolving conflict [18]. Only a small
number of the participants (one or two members in the smaller communities) will
recognize some central command, and carry out its directives. We shall henceforth
call such directives policies. Putting in place policies for online communities is costly,
in terms of recruitment, training, and software tools. This raises the question of what
benefits organizations running online communities expect from policies; and why
they choose certain policies, and not others.

Online communities can be modeled as social networks of interactions across
participants, and organizations can be modeled as economic agents maximizing
some objective function (e.g. profit, welfare). Hence the topology of the interaction
network affects the ability for participants to contribute to the maximization of the
target variable. For example, Facebook is constantly rewiring the interaction network
across its users to ensure better targeted and more effective advertising, therefore
enhancing their revenue [21].

Such organizations choose their policies such as community managers could take
action to change the network towards maximizing their objective function.

All this implies that the decision to deploy a particular policy on an online
community is a network design exercise. An organisation decides to employ a
community manager to shape the interaction network of its community in a way that
helps ist own ultimate goals. And yet, interaction networks in online communities
cannot really be designed; they are the result of many independent decisions, made
by individuals who do not respond to the organization’s command structure. An
online community management policy is then best understood as an attempt to
“influence” emergent social dynamics; to use a more synthetic expression, it can be
best understood as the attempt to design for emergence. Its paradoxical nature is at
the heart of its appeal.

We are interested in detecting the mathematical signature of specific policies in
the network topology. We consider a simple policy called onboarding [18, 19]. As a
new participant becomes active (e.g. by posting her first post), community managers
are instructed to leave her a comment that contains (a) positive feedback and (b)
suggestions to engage with other participants that she might share interests with.

We model online conversations as social networks, and look for the effect of
onboarding on the topology of those networks. We proceed as follows:

1. We initially examine data from three small online communities. Only two of
them deploy a policy of onboarding. We observe that, indeed, the shape of the
degree distribution of these two differs from that of the third.

2. We propose an experiment protocol to determine whether onboarding policies
can explain the differences observed between the degree distributions of the first
two online communities and that of the third one.

3. Based on the generalized model [10] we simulate the growth of online commu-
nities. Variants to the model cover the relevant cases: the absence of onboarding
policies and their presence, with varying degrees of effectiveness.
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4. We run the experiment protocol against the degree distributions generated by the
computer model, and discuss its results.

Section 2 briefly examines the two strands of literature that we mostly draw upon.
Section 3 presents some data from real-world online communities; it then proceeds
to describe our main experiment, a computer simulation of interaction in online
communities with and without onboarding. Section 4 presents the experiment’s
results. Section 5 discusses them.

2 Related work

Collective intelligence [15] scholars confirmed importance of online community
management practices, indeed, they have tried to systematize it [9] and produce
technological innovation to support it [8, 20]. These tools are meant to facilitate and
encourage participation to online communities, to make it easier for individuals to
extract knowledge from them. Studying human communities is a traditional focus
of network science [5, 6], for which easily available datasets of online communities
make an ideal ground for structural analysis: friendship in Facebook [16, 17], follow-
ing/retweet/mentions for Twitter [11, 12, 13], or vote and comments in discussions
[11,14,22,23].

Starting in the 2000s, online communities became the object of another line of
enquiry, stemming from network science. Network representation of relationships
across groups of humans has yielded considerable insights in social sciences since
the work of the sociometrists in the 1930s, and continues to do so; phenomena
like effective spread of information, innovation adoption, and brokerage have all
been addressed in a network perspective [5, 6]. As new datasets encoding human
interaction became available, many online communities came to be represented as
social networks. This was the case for social networking sites, like Facebook [16, 17];
microblogging platform like Twitter [11, 12, 13]; news-sharing services like Digg
[11]; collaborative editing projects like Wikipedia [14]; discussion forums like the
Java forum [23]; and bug reporting services for software developers like Bugzilla
[22]. Generally, such networks represent participants as nodes. Edges represent a
relationship or interaction. The nature of interaction varies across online communities:
one edge can stand for friendship for Facebook; follower-followed relationship,
retweet or mention in Twitter; vote or comment in Digg and the Java forum; talk in
Wikipedia; comment in Bugzilla.

In contrast to collective intelligence scholars, network scientists typically do not
address the issue of community management, and treat social networks drawn from
online interaction as fully emergent. In this paper, we employ a network approach to
investigate the issue of whether the work of community managers leaves a footprint
detectable by quantitative analysis. To our knowledge, no other work attempted this
investigation. In particular, we exploit a result from the theory of evolving networks,
from seminal work by Barabdsi and Albert [2] showing that the assumption of growth
and preferential attachment, when taken together, result in a network whose degree
distribution converges to a power law ( [1, 3]). The model was later generalized in
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various ways and tested across a broad range of networks, including social networks
[10].

We use this generalization as a baseline state. The degree distribution of the
interaction network in an online community follows a power law by default. The
action of online community managers, as they attempt to further the goals of the
organisation that runs the online community, will result in its degree distribution
deviating from the baseline power law in predictable ways. Such deviation can be
interpreted as the signature that the policy is working well.

The most important difficulty with this method is the absence of a counterfactual:
if a policy is enacted in the online community, the baseline degree distribution
corresponding to the absence of the policy is not observable, and viceversa. This
rules out a direct proof that the policy “works”. Hence our choice to combine
empirical data and computer simulations.

3 Materials and methods

In this section we introduce the empirical data, the experiment protocol and the
simulation model we use in the experiment.

3.1 Empirical data

We examine data from three real-world online communities: InnovatoriPA is a com-
munity of (mostly) Italian civil servants discussing how to introduce and foster
innovation in the public sector. It does not employ any special onboarding or modera-
tion policy. Edgeryders is a community of (mostly) European citizens, discussing
public policy issues from the perspective of grassroot activism and social innovation.
It adopts the onboarding of new members policy. Matera 2019 is a community of
(mostly) citizens of the Italian city of Matera and the surrounding region, discussing
the city’s policies. It also adopts the onboarding policy.

The communities are modeled as interaction networks (summarized in Table 1) in
which nodes are users and edges represent directed comments from A to B, weighted
by the number of comments written. A glance at their respective visualizations
(Figure 1) suggests that the networks of the three communities have very different
topologies. Innovatori PA displays more obviously visible hubs than the other two.

We fitted power laws in-degree distributions of these three online communities,
as of early December 2014. Next, we tested the hypothesis that degree distributions
follow a power law, as predicted by [10]. To do so, we first fitted power functions
to the entire support of each in-degree distribution!. We next fitted power functions
to the right tail of each in-degree distribution, i.e. for any degree k(n) > kyn, Where

! We emphasize in-degree, as opposed to out-degree, because directedness is implicit in the idea of
preferential attachment, and because the in-degree distribution is the one to follow a power law in
online conversation networks ([10]).
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Innovatori PA Edgeryders Matera2019
Policy “no special policy”| “onboard new users”| “onboard new users”
In existence since December 2008 October 2011 March 2013
Accounts created 10,815 2,419 512
Active participants (nodes) 619 596 198
Number of edges (weighted) 1,241 4,073 883
Average distance 3.77 2.34 2.51
Maximum degree 155 238 46
Average degree 2.033 6.798 4.454
Goodness-of-fit for £ > 1
exponent 1.611 1.477 1.606
p-value 0.21 0.00 (reject) 0.00 (reject)
Goodness-of-fit for k > ki,
Kinin 2 5 6
exponent 1.834 2.250 2.817
p-value 0.76 0.45 0.94

Table 1: Comparing interaction networks of the three online communities and testing
for goodness-of-fit of power functions to degree distributions. "Exponent” refers to
the power law’s scaling parameter. ”p-value” to the result of the test that the degree
distribution of the community was generated by a power law with that exponent.

Fig. 1: Interaction networks of three small online communities. Innovatori PA (left)
does not have an onboarding policy in place, whereas the two others do (Edgeryders:
center, Matera: right).
kmin 1s the in-degree that minimizes the Kolmogorov-Smirnov distance (hereafter
denoted as D) between the fitted function and the data with in-degree k > kiy,.
Finally, we ran goodness-of-fit (hereafter GoF') tests for each in-degree distribu-
tion and for fitted power functions. The method we followed throughout the paper
is borrowed from Clauset et al [7]. The null hypothesis tested is that the observed
distribution is generated by a power function with exponent ¢&t. We compare the D
statistic of the observed distribution with those of a large number of synthetic datasets
drawn by the fitted power function. Such comparison is summarized in a p-value, that
indicates the probability of the D statistic to exceed the observed value conditional to
the null hypothesis being true. p-values close to 1 indicate that the power function
is a good fit for the data: the null hypothesis is not rejected. p-values close to zero
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indicate that the power function is a bad fit for the data, and reject the null hypothesis.
The rejection value is set, conservatively, at 0.1. Results are summarized in Table 1.
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Fig. 2: (log - log) Probability density function from the degree distributions of: (a)
the Innovatori PA network without onboarding policy in place versus (b) a simulated
network with preferential attachment and no onboarding. (c) The Edgeryders network
with onboarding and preferential attachment versus (d) a simulated network with

preferential attachment and fully effective onboarding (vi = v, =1). |
As we consider the interval k > 1, we find that the in-degree distribution of the

Innovatori PA network — the unmoderated one — is consistent with the expected
behavior of an evolving network with preferential attachment. We cannot reject the
null hypothesis that it was generated by a power law. For other two communities,
both with onboarding policies, the null hypothesis is strongly rejected. On the other
hand, when we consider only the tail of the degree distributions, i.e. k > ky;p, all
three communities display a behavior that is consistent of a setting with preferential
attachment.

These results are consistent with the objectives of the onboarding policy, consisting
in helping newcomers find their way around a community that they don’t know yet.
A successfully onboarded new user will generally have some extra interaction with
existing active members. All things being equal, we can expect extra edges to appear
in the network, and interfere with the in-degree distribution that would appear in the
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absence of onboarding — explaining the non-power law distribution of Edgeryders
and Matera2019. Extra edges target mostly low connectivity nodes: onboarding
targets newcomers, and focuses on helping them through the first few successful
interactions. Highly active (therefore highly connected) members do not need to be
onboarded. This may explain why all three communities display power law behavior
in the upper tail of their in-degree distributions, regardless of onboarding.

3.2 Experiment protocol

The difference observed between the two communities with onboarding policies
and the one without might be caused not by the policy itself, but by some other
unobserved variable. To explore the policy’s effects, we generate and compare
computer simulations of interaction networks in online communities that are identical
except for the presence and effectiveness of onboarding policies.

Communities are assumed to grow over time, with new participants joining them
in sequence. At each point in time, new edges appear; their probability of targeting an
existing node grows linearly with that node’s in-degree. Additionally, communities
might have or not have onboarding policies. See section 3.3 below for a specification
of onboarding in the model.

We generated 100 communities with no onboarding policy (control group), 100
communities for each couple of v; and v; in {0.0,0.2,0.4,0.6,0.8,1.0} (treatment
group), and computed their in-degree distribution. Next, we tested two hypotheses
for the 3700 networks generated.

o Hypothesis 1. The in-degree distribution of C is generated by P for any k > 1.
e Hypothesis 2. The in-degree distribution of C is generated by P for any k > k.

Where C is the synthetic network; k(s) is the in-degree of a node s; ky;, is the
in-degree that minimizes the Kolmogorov-Smirnov distance D between the fitted
function and the data over k > k,;,; and P is the best-fit power-law model for the in-
degree distribution of C. We expect non-rejection of both hypotheses for the control
group; and rejection of Hypothesis 1, but not of Hypothesis 2, in case of effective
onboarding (high vy) in the treatment group.

3.3 Simulation

We simulated the growth of network in an online community with and without
onboarding following preferential attachment [2] in the generalized model [10].
Without onboarding: A network is initialized with two reciprocally connected
nodes. At each step a new node (new user) is introduced, and m new edges (comments)
are also created, with a uniformly random picked source. The probability that the
new edge points to a node s is proportional to k(s) + A; where k(s) is the in-degree
of node s and Ay is a parameter representing additional attractiveness of the node.
With onboarding: Network initialization and growth are as in the case of no on-
boarding. Additionally, an edge targeting the newly created node is added at each step.
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This edge represents the action of the community manager, addressing a welcome
message to the newcomer. At this point of each step, with probability v; € [0,1], a
new edge is added with source as the new node (the newcomer becomes active). The
edge’s target is chosen by preferential attachment, as described previously?. Next
(still in the same step), with probability v, € [0, 1], another edge is added with a
uniformly picked source and the newcomer node as target. This represent the online
community acknowledging the newcomer by addressing her a comment.

We call v| onboarding effectiveness. It is the probability of the newcomer to react
to the community manager’s onboarding activity. We call v, community responsive-
ness. It is the probability for the new participant to have attracted the attention of
other participants and engage in a conversation. We set network size to 2000 nodes;
m = 1; and A; = 1 for all nodes, in the tradition of [2] and [10].

4 Results
4.1 Goodness-of-fit of the power-law model

For each network evolved we computed two best-fit power-law models, one for k > 1
and the other for k > k;,;, where k,,;, is the in-degree the minimizes D between the
fitted function and the data over k > k,,,;,. On each of these models, we ran a GoF
test as in section 3.1, results are reported in Table 2.

We first examine the case in which k > 1. We conclude that onboarding seems to
have some effect on the goodness-of-fit of the generated data to their respective best-
fit power-law models. When onboarding is introduced, fewer degree distributions, out
of our 100 runs, are power law-shaped; also, the average p-values returned by GoF
tests are lower than those of the control group. Running #-tests of the null hypothesis
that the average p-value in the control group is equal to the average p-values in the
treatment group results in a strong rejection for any combination of v; and v;.

We now turn to the question of the role played by v; and v, within the treatment
group. Figure 3 (a, b) shows the cumulated density functions of the p-values in the
control and treatment groups as V| and Vv, vary. Increasing onboarding effectiveness
V1 pushes average p-values of the GoF tests down, making it less likely that Hypoth-
esis 1 would be rejected. Increasing community responsiveness Vv, seems not to play
any role at all. This is somewhat surprising. Recall that we modeled onboarding as
the command-and-control creation of an extra edge at each step, targeting newcomers
to the online community. This has a strong negative effect on the p-value returned by
the GoF test (compare any p-value in Table 2 with the p-value of the control group
with no onboarding). When a responsive community adds a second edge, however,
there is no additional effect on the p-value. This result is confirmed by regression
analysis (not shown here).

2 The source of the new edge is irrelevant to the model’s results, since we only study in-degree. We
specify it in the text to help exposition, since the expected result of onboarding is the activation of
newcomers.
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Table 2: Average p-values (number of rejections) for GoF tests of power-law models
to in-degree distributions of interaction networks in online communities. Control
group communities have no onboarding (control group). Power-law models are
estimated over all nodes with degree k > 1

Control group: 0.262688 (23)
v, =0.0 v, =0.2 V) = 0.4 V) = 0.6 v, =0.8 =1
vi=0.0 0.0593(83) 0.0601(81) 0.0520 (83) 0.0479 (88)  0.0551(82) 0.0514 (85)
vi=02 0.0629(78) 0.0797 (73)  0.0852(70)  0.0834 (73)  0.0834 (73)  0.0796 (70)
vi =04 0.1047 (66) 0.0970 (65) 0.0986 (61)  0.0831 (69)  0.0829 (76)  0.1157 (56)
vi=0.6 0.0964 (59) 0.0855(67) 0.1021 (63) 0.1269 (51)  0.0906 (70)  0.0797 (71)
vi=08 0.1326(55) 0.1152(60) 0.1036 (66)  0.1091 (61)  0.1188 (60)  0.1228 (61)
vi=1 0.1009 (65)  0.1207 (62)  0.1326 (54)  0.1164 (60)  0.1230 (54)  0.1205 (57)

When k > ki, the effect of introducing onboarding on the GoF disappears. Over
99% of the networks in the treatment group give rise to distributions that turn out
to be a good fit for a power-law model when k,,;, is chosen so as to minimize D
between the degree distributions themselves and their best-fit power-law models. We
conclude that Hypothesis 2 cannot be rejected, regardless of whether onboarding is
present or not.

4.2 Lower bounds

We find a limited, albeit statistically significant, effect of onboarding on the value of
kmin, the value of k that minimizes D between the data generated by the computer
simulation and the best-fit power-law model. Figure 3(c,d) shows that over 60% of
the in-degree distributions from interaction networks in the control group, vis-a-vis
only 30 to 40% of those in the treatment group, fit a power-law model best for
kmin < 3. Within the treatment group, some variability is associated to the increase
of vi, whereas v, does not seem to play a significant role. Regression analysis (not
shown here) shows that, once we control for the presence of onboarding, neither
parameter is significant.

4.3 Exponents

Introducing onboarding to an online community has a positive and significant effect
on the value of the exponent of the best-fit power-law model for the in-degree
distribution of its interaction network. This is consistent with previous studies ([10]).
This result holds when the best-fit power-law models is computed over k > kyin,
where k,,;, is the value of k that minimizes D between the simulated in-degree
distribution and its best-fit power-law model. When it is computed over the whole
support of the in-degree distribution (k > 1), it also holds, except for vi = 1. Table 3
illustrate the average value of the scaling parameter o, and the p-value of a ¢-test on
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Fig. 3: (a,b): CDF of p-values returned by GoF tests to the (best-fit) power-law
models for in-degree distributions of the interaction networks in the control and
treatment groups. 20% of the networks evolved without onboarding (dark blue) have
degree distributions that test negatively for H1. When onboarding is introduced, it
rises to between 50 and 90%. (a,c) the treatment group interaction networks have
been grouped according to the value taken by v;. (b,d) they have been grouped
according to the value taken by v,. (c,d) CDF of the average value of k;, that
minimizes D between the in-degree distribution of each interaction network and its
best-fit power-law model.

the null hypothesis that such value is the same as the corresponding statistics in the
control group, against the alternative hypothesis that the former is greater than the
latter.

5 Discussion and conclusion

We started this work in the hope of discovering a simple statistical test that could
be used to assess the presence and effectiveness of online community management
policies, onboarding among them. Enacting onboarding on an online community
leads to a strong rejection of a power-law behaviour hypothesis on its degree dis-
tribution. So, indeed, we can test for the presence of onboarding by looking at the
degree distribution itself, which is much simpler than analysing the network’s whole
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Table 3: Average values of the power-law model’s exponent ¢ in the control group
and in the treatment group by values of v; and v,, computed over the whole support
k > 1 (top) and k > ki, (bottom). The number in parenthesis is the p-value associated
to a t-test that o (treatment) = o (control); they were omitted for k > ki, as they
are all smaller than 0.001.

k > 1 Control group: 1.752
V= 0.0 V) = 0.2 V) = 0.4 Vo= 0.6 Vo= 0.8 =1
vi=0.0 1.89(0.000 1.89(0.00) 1.89(0.00) 1.89(0.00) 1.89(0.00) 1.89 (0.00)
vi=02 1.85(0.00) 1.85(0.00) 1.85(0.00) 1.85(0.00) 1.85(0.00) 1.85(0.00)
vi=04 1.82(0.000 1.82(0.00) 1.82(0.00) 1.82(0.00) 1.82(0.00) 1.82(0.00)
vi=0.6 1.79(0.00) 1.79(0.00) 1.79(0.00) 1.79 (0.00) 1.79 (0.00) 1.79 (0.00)
vi=08 1.77(0.00) 1.77(0.00) 1.77 (0.00) 1.77 (0.00) 1.77 (0.00)  1.77 (0.00)
vi=1 1.75(0.21)  1.75(0.20) 1.75(0.26) 1.75(0.43) 1.75(0.24) 1.75(0.19)
k > kyin Control group: 2.419

v, =0.0 vy =0.2 v =04 v, =0.6 v, =0.8 =1
vi=0.0 2985 2.989 2.868 3.000 3.004 3.015
vi=0.2 2855 2.852 2.868 2.834 2.821 2.854
vi=04 2746 2.727 2.735 2.725 2.739 2.749
vi=0.6 2.661 2.655 2.632 2.650 2.656 2.623
vi=08 2562 2.602 2.571 2.553 2.554 2.553
vi=1 2.496 2.527 2.518 2.514 2.514 2.499

topology. However, we did not find a monotonic relationship between onboarding’s
effectiveness and the distance of the resulting degree distribution from a pure power-
law form. So, our simple test cannot tell the analyst how effective these policies
are.

Our models incorporates two forces: preferential attachment and onboarding. The
former is meant to represent the (emergent) rich-get-richer effect observed in many
real-world social networks; the latter is meant to represent the (command-and-control)
onboarding action of moderators and community managers. The former’s effect is
known to lead to the emergence of an in-degree distribution that approximates a
power-law model. The latter’s effect is more subtle, because it is in turn composed of
two other effects. One consists in the direct action of the moderator, which always
targets the newcomer; the other results of the consequences of a well-executed
onboarding policy.

The direct action of the moderators creates edges pointing to nodes not selected
by preferential attachment: this is definitional of onboarding, and of other online
community management activities. What (non-moderator) participants in the online
community do as a result of moderator activity is not as clear cut. In our simulation
model, fully successful onboarding results in extra edges, some of which point to
nodes selected by preferential attachment, others to nodes selected otherwise.

Also, onboarding only targets newcomers. As many online community manage-
ment policies, it concerns weakly connected participants in the community: mod-
erators have no need to engage with very active, strongly connected participants,
who clearly need no help in getting a conversation going. By engaging weakly con-
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nected participants, moderators hope to help some shy newcomers turn into active
community members. Once this process is under way, moderators have no reason
to continue to engage with the same individuals. In terms of our model, this means
that newcomers, after having being onboarded, are going to receive new edges by
preferential attachment only. It is therefore reasonable to expect that the degree dis-
tributions generated by our model display a heavy tail, with the frequency of highly
connected nodes following a reasonable approximation of a power law. The overall
result of onboarding, then, is an in-degree distribution with power-law behavior for
high values of in-degree k and non-power law behavior for low (close to 1) values of
k. This is indeed what we observe.

Non-preferential attachment selection of edge targets leads to a poorer fit of power-
law models to the in-degree distributions where onboarding is present. This effect
takes three forms. The first one is that, fitting a power-law model to the network’s in-
degree distribution and then running goodness-of-fit tests return a lower p-value than
the p-value returned by the same test when onboarding is absent. The second effect
is that the value of k that minimizes D between the best-fit power-law model and
the observed data tends to be higher than without onboarding. The third one is that
the scaling parameter of the best-fit power law tends to be higher with onboarding:
onboarding makes the allocation of incoming edges more equal.

Our specification of the model accounts for an apparent paradox: the deviation of
the observed networks’ degree distributions from power-law behavior is greater when
onboarding is ineffective than when it is effective. Ineffective onboarding only adds
edges directly created by moderators, none of which are allocated across existing
nodes by preferential attachment. As onboarding gets more effective, even more
edges are added; some are allocated by preferential attachment, and drive the degree
distribution back towards a pure power-law behavior. This paradoxical response may
explain why our community responsiveness parameter vV, does not appear to impact
the shape of the in-degree distribution.

5.1 Future work

Modeling online community management means accounting for the interplay of
bottom-up forces (like preferential attachment) with top-down ones (like onboarding
policies). This weaving of emergence and design is precisely what we wish to
investigate. There are three obvious directions in which we plan to expand the present
model. The most obvious one is a systematic exploration of the parameter space,
with the goal of assessing our results’ robustness with respect to model specification.

A second direction for further research would be to attempt to make the model
into a more realistic description of a real-world online community. Such an attempt
would draw attention onto how some real-world phenomena, when incorporated in
the model, influence its results. It would also carry the advantage of allowing online
community management professional to more easily interact with the model and
critique it. Several issues that could be investigated in this vein come to mind. For
example, we could relax the assumption that the additional attractiveness parameter
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Ay is identical for all nodes, allowing for different nodes in the network to attract in-
coming edges at different rates (a phenomenon known as multiscaling [4]). Secondly,
we could introduce a relationship between out-degree and in-degree: this would
reflect the fact that, in an online community, reaching out to others (which translates
in increasing one’s own out-degree in the interaction network) is a good way to get
noticed and attract incoming comments (which translates in an increase in one’s
in-degree). Finally, we could work with other community management policies.

A third direction for further research would attempt to gauge the influence of
onboarding and other community management policies on network topology by
indicators other than the shape of its degree distribution, such as the presence of
subcommunities.

Additionally, we wish to obtain and analyse more empirical data from real-world
online communities with and without onboarding policies.
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A Temporal-Causal Network Model for the
Relation Between Religion and Human Empathy

Laila van Ments, Peter Roelofsma and Jan Treur

Abstract Religion has been extensively studied from many different perspectives.
The current study aims at integrating a number of these perspectives into one compu-
tational network model. By first developing a conceptual temporal-causal network
model based on literature, and then formalizing this model into a numerical network
model, simulations can be done for almost any kind of religious person, showing
different behaviours for persons with different religious backgrounds and characters.
The focus was mainly on the influence of religion on human empathy and disempathy,
a topic very relevant today.

1 Introduction

Religion is a topic that every person has an opinion about, whether that opinion is
positive or negative. While some people blame religion for war and terrorism, others
believe that religion is the only bright spot in a world full of bad. Does religion cause
individuals to be more empathic, enabling them to be aware of the others feelings,
needs and wants? Or, is religion a cause for human disempathy, making persons
indifferent or even hostile for their fellow human? A clear answer has not yet been
found, even though a lot of research has been done on the topic; e.g., [19, 21, 27, 37].
Questioning the influence of religion on human behaviour may not deserve a yes
or a no type of answer, but rather an answer that involves more aspects, like ones
character, culture, and of course different kinds of religions. In some way, all aspects
and influences indicated above come together and originate in the brain. A lot of
research has been done on how human behaviour is generated in the brain, also
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concerning religious topics. So, if these processes in the brain related to religion can
be represented, this could help to get an answer to the question.

A method that can be used to represent real-world processes concerning human
beings is Network-Oriented Modelling. By this method, mechanisms that are based
on neurological mechanisms are represented in a network model using different states
and connections between them, as described in [33, 34]. This Network-Oriented
Modelling method can be used to simulate behaviour of individuals with different
religious backgrounds, characters and cultures. In this paper, first, in Section 2 a brief
literature overview on the existing research related to the topic is discussed. Then, in
Section 3 the conceptual representation of the network model with its various parts
is discussed, and it is indicated how a numerical formalization of this model was
obtained. In Section 4 a relevant scenario simulated using the model is discussed;
Section 5 is a discussion.

2 Literature Overview

There are two important approaches that are used to explain the origins of religion and
religion-based behaviour. First, there is the evolutionarist approach [2, 7] that tries to
explain the origin and different aspects of religion from an evolutionary perspective.
Secondly, there is the neurotheologist approach [4, 8, 25] that tries to find the origins
of religion in the brain and explain religious behaviour on the basis of neurological
processes. Further scientific and philosophical developments from both different
perspectives around cognition, neuroscience and conscious thinking will most likely
generate useful insights into religion [37]. Therefore, an approach that combines
these different aspects into one model would give the most promising answer to
our question. Such a kind of multidisciplinary model is indicated in two articles
by Kapogiannis et al. [18, 19], proposing an integrative cognitive neuroscience
framework for understanding the cognitive and neural foundations of religions.
Among others using MRI analysis, they define three dimensions that together form
an individuals religious belief. The first one is Gods perceived level of involvement,
the second Gods perceived level of emotion, and finally the doctrinal and experiential
religious knowledge of an individual. Kapogiannis et al., considered these dimensions
as nodes of a network and examined the causal flow within and between such
networks, together forming the individuals religious belief. Also some other studies
on religion have been combining knowledge from multiple disciplines, like [26, 38],
although the distinction between the different perspectives on religion was still kept.

Besides the above described approaches to religion, many experiments have been
done to examine behaviour of religious persons. As explored by [21], religion can
foster implicit self-regulation among religious individuals, unconsciously changing
their actions and regulating their emotions. Also, religious individuals that prayed for
people that angered them showed less aggression towards those people afterwards,
indicating that religious behaviour can change peoples emotions [6]. Furthermore, a
study of Schjoedt et al. [29] found that praying towards God activates brain regions
that are responsible for active interpersonal interactions and enable people to generate
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an internal representation about the other, in this case God. This proves that praying
individuals consider God a real meaningful person, rather than a fictive or abstract
entity. This idea of internally representing God as a person is also discussed in [26].

Regarding this theory of God as a real meaningful person, an interesting idea
can be developed as follows. As described in [22, 31, 32], a person can develop
an empathic understanding of others through mirroring and internal simulation
mechanisms, and these mechanisms also influence the individual beliefs and actions
of that person. As a result, the aforementioned internal representation that individuals
generate when they communicate with God, as a real meaningful person, can also
generate an empathic understanding of God as perceived by the individual. This
way, the individual mirrors the (internally represented) beliefs, actions and emotions
of their perceived God. The combination of these mechanisms enables the image
that an individual has of God to influence his own beliefs, actions and emotions,
in a way similar to how an individual is influenced by other humans. The image
that an individual has of God (e.g. the God-image which will be described more
extensively later on), and how this image has impact on the individual, can involve
many aspects. One example is studied by Granqvist et al. [14], who examined the
God-image as an attachment figure in theistic religions, defining the relationship
with God as an attachment relationship. Granqvist et al. examine the influence of a
persons attachment style to the persons relationship to God. Another example that
was studied is the impact of the character that an individuals God-image has. For
example, an individual whose God-image is based on an authoritarian figure (like
God is great, or God strikes down in anger) act in more antisocial, disempathic
ways, and believers whose attachment relationship with God is a loving one (God is
love) are acting in a more social, empathic manner [11, 17, 24]. Finally, there is an
influence of the level of judgmentalism in a persons God image on the willingness
to volunteer both in internal and external communities [23]. However, as described
above, the influence of religion on human empathy and dis-empathy does not emerge
from one single input, but from the combination of the individuals character and
his God-image, which are both (partly) formed by the individuals experiences and
knowledge.

3 The Temporal-Causal Network Model

In this section, it is presented how a neurologically inspired network model can
be made that simulates the influence of religion on an individuals (dis)empathic
behaviour and emotions towards others. The model was developed according to the
Network-Oriented Modelling approach based on temporal-causal networks described
in [33, 34] and adopts elements of previously developed network models for joint
decision making processes [32] and action ownership [30]. It is based on different
theories on religion and human behaviour from literature which will be explained
below. Combining these elements, an integrative computational model was created
that focuses on the influence of religion on (dis)empathic behaviour and emotions
towards others. First, Sections 3.1, 3.2, and 3.3 present how theories and literature
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were used to construct the model, leading to a conceptual representation of the
network model depicted in Fig. 1. Then, Section 3.4 explains how a numerical
representation was obtained from this conceptual representation.

3.1 Mirror Neurons and Internal Simulation

Mirror neurons enable sensory input, for example an observed action or body state
of another person, to directly affect a persons own preparation state. In the current
model, this is modelled by direct links from the sensory representation states of the
emotions and actions of the God-image to the preparation states for emotions and
behaviour of the Self. This gives the preparation state a similar function as a mirror
neuron has: become active after observing the action or emotion. This mirror neuron
function of preparation states makes that the actions and emotions of the God-image
affect the corresponding behaviour, emotion and prayer states of the Self, leading to
the actions and emotions of the God-image to influence the behaviour, emotions and
prayers of the Self. The mirror neuron function enables to influence the individuals
own preparation states. Then, due to activation of the preparation states, the actions
or emotions are internally simulated in a process as described by William James [16]
and Antonio Damasio [9, 10]; this involves the following process. A world state wsy,
a situation W in the world, occurs representing another persons action or emotion
expression X.

The person develops a sensory state ssy of this world state, and then a sensory
representation state srsy of it. Now by its mirror neuron function the preparation
state psy for bodily changes for the same action or emotion X occurs. Depending
on the context, this is expressed or executed, indicated by state esy. Execution of an
action is modelled by an action execution loop and the process involving expression
of an emotion by a body loop. In the model, the body loop is modelled by the link
from an individuals execution state of a body state expressing an emotion to the
individuals sensory representation of that body state. The feeling for the emotion
is based on this sensory representation of the body state. However, the process is
extended by adding a possibility by internal simulation without executing an actual
action (as-if body loop). This process, is incorporated in the model by a (predictive)
loop from the preparation state for an action or emotion to the sensory representation
for its effect, enabling direct emotion formation without behaviour execution.

3.2 Action Ownership States of God and Self

Whether an individual performs certain behaviour or expresses emotions that were
mirrored (e.g., from the God-image) depends on the context. This context is rep-
resented by action ownership states for which a model was introduced in [30]. An
ownership state is an indication to what extent an individual attributes an action or
emotion to himself, or to what extent the individual deems someone else responsible.
This ownership state for an action (which can also apply to an emotional response)
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can lead to a go or no-go decision for behaviour or emotion expression. There are
four different ownership states in the model; see Table 1.

Table 1: Ownership states for God and Self for actions and emotions.

God-ownership state Self-ownership state
action O8God a;ei,bi OSSel fciveisbi
emotion 05God b,e; OSSel f bie;

Here 05seif,c; ¢;,b; 18 the Self-ownership state for behaviour ¢; with predicted effect
e; and related feeling b;. It is influenced by the sensory representation state S¥SGod,q;
of God performing action a;, the sensory representation of e; and the feeling state for
b;. In turn, it influences both the preparation state ps,, for that behaviour ¢; and the
execution state es,, for that behaviour. Furthermore, God-ownership 0sGod,q;,¢; »; fOr
action g; is influenced by the sensory representation states srSGod.q; and S7SGod,image;
of the God-image. In turn, by mirroring it affects the preparation state ps,, for the
related behaviour of Self and the execution state es., for that behaviour. Moreover,
Self-ownership 0sse; ¢ 5, ; Of emotional response b; related to e; is influenced by the
sensory representation srsgoq.p; of the emotion within the God-image and the persons
sensory representation srs,; of the predicted effect e;. In turn, 0sse; s 4, ., influences
the preparation state psp,, of the emotion and the execution state esj, (expression)
of the emotion b;. Finally, God-ownership state 05Goq,5;,¢; Of emotional response
b; related to ¢; is influenced by the sensory representation states srSgoq,»; Of Gods
emotion and $7SGod image; Of the God-image. In turn, it affects the preparation state
psq; for the related emotion d; and the execution state es,, for that emotion. With
the distinction between the ownership of God over behaviour and emotions that the
individual expresses, the level of involvement and authority of God that an individual
experiences is represented, as brought forward in [18]. An individual with a very
low Self-ownership and a high God-ownership can show behaviour different from an
individual with a high Self-ownership and a low God ownership.

3.3 The God-image

The notion of the God-image has received a lot of attention in the scientific world
in the past years, studying the influence of this phenomenon, and, more specifically
its influence on human behaviour towards others [17, 23, 24]. Different kinds of
God-images have proved to influence human behaviour towards others in different
ways. For example, where an authoritarian, punishing and controlling God-image is
correlated to aggressive, disempathic behaviour, a forgiving, helping God-images
correlates to prosocial, empathic behaviour [17, 23]. Furthermore, the belief in Godly
omnipresence and omnipotence also influences human prosociality: individuals
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with a moralistic, all knowing God-image showed more prosocial behaviour than
individuals with a non-moral or non-all-knowing God-image [24].

Besides the studies on the influence of the God-image on human behaviour
towards others, this process can also be described from the mentalizing perspective,
as introduced by Schaap-Jonker [26]. Mentalizing is the capacity of thinking about
thinking and feeling. It provides awareness that ones own and others behaviour is
driven by mental states, and gives the ability to selectively activate internal states
that fit the individuals particular. Also, mentalizing generates a subjective experience
of agency, this way supporting a sense of identity [1, 3, 12, 26]. Mentalizing also
bears some resemblance to the process of internal simulation as described in [32],
where an individual internally simulates mind states to predict effects in the external
world or other persons. Mentalizing can occur both consciously or unconsciously,
concern the self or others, and is both cognitive and affective [12]. This creates many
possibilities in the interactions of the individual towards the God-image.

To enable a God-image to influence an individuals behaviour as explained above,
the individual first has to have a God-image. The God-image refers to the personal
God of the individual. As discussed in [18, 19, 27], this God-image consists of both
an emotional part and a cognitive part, and both parts are dynamically interrelated.
The emotional part is unconsciously developed, highly influenced by parents and
significant others. The cognitive part of the God-image consists of the knowledge
an individual has about God, like the doctrinal information the individual received
in religious study, at school, or at church. The emotional and the cognitive part that
form the God-image can be traced back to different parts in the brain as studied by
[18, 19, 27]. The emotional part involves the amygdala, basal ganglia, the ventrome-
dial prefrontal cortex, the lateral temporal cortex, the dorsal anterior cingulated
cor-tex and the orbitofrontal cortex. These parts of the brain are involved in assigning
emotional significance to behaviour and events and to controlling cognition and
emotion. On the other hand, the cognitive part involves the lateral prefrontal cortex,
the medial prefrontal cortex, the lateral parietal cortex, the medial parietal cortex and
the medial temporal lobe, all brain circuits that are responsible for the processing of
more complex linguistic and symbolic input. This combination of brain processes
results in the formation of the personal God-image of the individual; each personal
God-image differs based on the individuals personal character, experiences and
knowledge, which will be discussed more extensively below.

To summarize, both the doctrinal knowledge that an individual receives about God,
and the individuals character, upbringing and so forth, create a personal, internal God-
image that the individual perceives as a real person, and with whom the individual
interacts. In the computation model, the God-image is represented by the following
process. The generation of the God-image happens through the links between the
external input (World states) to the sensor states, and in the links from the sensor states
to the sensory representations of the God-image. Then, the God-image influences
the behaviour and emotions of the individual through the links from the sensory
representations of the God-image to the ownership states, goal fulfilment state, and
the preparation states.
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As described above, the individual imagines God as a person with intentions and
mind states [29]. In the developed model, the God-image (including images of Gods
actions and emotions) is constructed by three different kinds of input, namely input
about Gods emotions (mind states), actions that God performs (or intentions), and
about the God image in general. This input can come from many sources, for example
religious texts or education from parents, or from prayer. The generation of the God-
image from the input is modelled by the links from the world states to the sensor states
(including the sensor state of the prayer, representing hearing of a prayer of someone
else or of oneself), and from the sensor states to the sensory representation states
of the (general) God-image, God actions and God emotions. Furthermore, while
an individuals own prayer can influence the God-image via an external connection,
the individuals prayer can also influence that individuals God-image via an internal
connection, based on links from the preparation state for the prayer to the sensory
representations states for actions and emotions of the God-image and the general
God-image; e.g. if an individual prays to make God happy, the emotion of his God-
image might become happier (depending on the individuals beliefs). Part of the
God-image is represented by the (adaptive) connection weights within the God-
image model, partly representing the individuals characteristics, and which may be
influenced by the external input as well through Hebbian learning. These parts result
in a personal God-image consisting of the individuals sensory representation of the
God-image, the individuals sensory representation of Gods actions, the individuals
sensory representation of Gods emotions, and the weights of the connections between
these three states. The conceptual representation of the model is graphically depicted
in Fig. 1. In this representation, circles represent states and arrows represent processes.
The dotted arrows represent Hebbian learning connections, which will be explained
below. The processes that are internal are depicted inside the green box, external
processes are outside the box, and the interaction between the two on the boundary.

The subscript i represents the difference between empathetic and disempathic
behaviour and emotion. An overview of the connections (the arrows) and their
weights that were defined for the model, can be found in Appendix E in [36].

3.4 From Conceptual to Numerical Representation of the Model

This section describes the process of numerical formalization of the model presented
in Sections 3.1 to 3.3. This formalization was used to implement the model in
Python in order to perform simulations. According to the adopted Network-Oriented
Modelling approach, a graphical conceptual representation displays nodes for states
and arrows for connections indicating causal impacts from one state to another, and
includes some additional labels for states and connections, so that it becomes a
labeled graph:

e connection weights @x y for each connection from state X to state Y
e combination functions ¢y (...) to aggregate multiple impacts for each state ¥
o speed factors 1y for speed of change for each state Y
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God image
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Fig. 1: Graphical conceptual representation of the temporal-causal network model;
here subscript i denotes either empathy (1) or disempathy (2).

To choose combination functions, a number of standard options is available; e.g.,
[33, 34]. The conceptual representation of a temporal-causal network model can be
transformed in a systematic or even automated manner into the following numerical
representation of the model [33, 34]; here the variable ¢ indicates a time point; it
varies over the real numbers. Based on a combination function and the connection
weights

aggimpacty(t) = cy(®x, y,...,0x,y(t)) ey
is the aggregated impact of the network on Y at z. This is used to provide the following
difference and differential equation for each state Y:

Y(t+Ar) =Y(t)+nylaggimpacty (t) — Y (¢)|At
=Y(t)+nyley(@x,y,...,0x, (1) =Y (1) At (2)
dY (t)/dt = n{aggimpacty (1) =Y (1)] = ncy (@x, v, .., Ox,y (1)) =Y ()] (3)
These numerical representations (2) and (3) can be used for mathematical and compu-
tational analysis and simulation. In the model presented here, for all states for the com-

bination function the advanced logistic sum combination function alogistics (.. .)
is used [33, 34]:
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cy(V1,..., Vi) = alogistics :(Vi,..., Vi)

_ ( 7 1 _ 1 ) @)
14+ e oWVit..+Vi—1) 1+ €07
Here o is a steepness parameter and T a threshold parameter. The advanced logistic
sum combination function (4) has the property that activation levels 0 are mapped
to 0 and it keeps values below 1. When the value of the right hand side expression
given above is < 0, the value 0 is assigned to alogistics :(V1,...,Vi).

In cases of adaptive networks in which some or all of the connection weights wy y
are dynamic, for a numerical representations dynamic connection weights also get a
time argument: @y y (¢). To model their dynamics, the dynamic connection weights
are described by a difference or differential equation for Hebbian learning, which also
can be based on a combination function and speed factor as above; for more details,
see [33, 34]. In the current network model learning mechanism were included for the
connection strengths of the adaptive connections from $75God image; 10 S7SGod ;> from
STSGod image; 1O SYSGod b;» TTOM STSGog a; tO STSGod b;» aNd from s75Goq b, tO SFSGod a;5
see the dotted lines in Figure. 1. This learning mechanism is based on the Hebbian
learning principle introduced by Donald Hebb [15]. Different interpretations of
Hebbian learning exist, either based on causality-based learning [20] or simultaneity-
based learning; e.g., [5, 13, 35]. In this model, the latter simultaneitybased learning
approach is used. This approach is based on the principle that strengthening of a
connection between neurons over time may take place when both nodes are often
active simultaneously: neurons that fire together, wire together [28]. In the model,
the weight wy r of an adaptive connection from state X to state Y is updated after
time step At using a learning rate ny > 0 and extinction {y > 0 and the activation
levels X () and X (¢) of the states X and Y. This is modelled as follows (see also [13],
p- 406):

Wy y (l‘ + Al) = O)X‘y(t) + [T[HX(I)Y(Z‘)(I —Oxy (l)) — CH‘UX,Y (l‘)]AI (@)
The weight wy y has a maximal strength of 1; the factor 1 — wyx y () keeps wx y
below 1.

4 Simulation Scenario: a Person with Fundamentalist Tendencies

As discussed, the computational model was implemented in Python in order to
perform simulations and study the influence of religion on human empathy and
disempathy. Simulations have focused on six possible scenarios based on literature.
All of them can be found in Appendix D in [36]. In the current section, for the sake of
space limitations, only one of them is discussed. For each scenario, relevant parameter
values are chosen in order to simulate the behaviour described in literature and to
test the influence on empathic or disempathic behaviour. For most of the states in the
implemented model two instances are used: the empathic (indicated with subscript
1 in the figures) and the disempathic instance (indicated with subscript 2 in the
figures). Through adapting the connections relating to those two instances, the degree
of empathy of disempathy of the God-image or individual can be varied. For each
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scenario At was chosen 0.25, the total number of time steps 500, and the speed factor
of all states 0.17. The extinction and learning rates for the adaptive connections
are all 0.5. A certain combination of parameters within a person could lead to
fundamentalist tendencies. If a person has both an anxious attachment relationship
with the God image, a disempathic God-image, and a lot of divinity and disempathic
related external influence about God, this could form behaviour that is considered
fundamentalist.

This scenario aims at simulating this fundamentalist behaviour by making the
disempathic connection weights in the model higher than the empathic ones (1.0
versus 0.1), making the connections for the God ownership states higher than the
Self-ownership states (God-ownership for empathic behaviour become 0.8, for dis-
empathic behaviour 0.3, Self-ownership 0.1) and strong links from a disempathic
God-image to the preparation states (1.0) and from preparation states to execution
states (1.0). The results can be found in Fig. 2.

2 =

— W God magel — S5 God imagel

- WsGodmagez 55 God imaged
WS a1 S5 a1

WS o2 S5 42

Sensory representations and HEbbish connections
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Fig. 2: Simulation scenario for a person with fundamentalist tendencies, meaning that
connection strengths to the Self-ownership are very low while the God-ownership is
high, there is low, connection strengths to the effect prediction is low and the person
has a disempathic God-image. The person strongly executes disempathic behaviour,
no empathic behaviour, and develops no Self-ownership.

Main differences with a scenario with a person with a disempathic God-image are
as follows: the fundamentalist person does not, or barely, develop Self-ownership
of its actions; the fundamentalist person does have a lower activation level of the
prediction of the effects of his actions: srs.;. The disempathic behaviour of the
fundamentalist person reaches the same activation level, but reaches this level faster
than the person with just a disempathic God-image.
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5 Discussion and Conclusion

In this paper the influence of religion on human empathy and disempathy was studied.
First of all, an extensive literature study was done regarding all the processes are
related to religion and human behaviour, specifically towards others. The relevant
theory was then used to design a conceptual representation of a temporal-causal
network model that captures the process of how religion influences human behaviour,
for example the religion-related external input that an individual receives, the way this
external input is then processes and generates a personal God-image, and how this
God-image influences the individuals behaviour and emotions. The behaviour and
emotions of both the God-image and the individual were distinguished in empathic
and disempathic. Although (informally expressed) theories exist and are referred
in the different sections above, a formalised computational model for them was
never designed, as far as the authors know; so, comparison with other computational
models is difficult.

The developed conceptual representation was then formalized into the numerical
representation and this was implemented in Python. With this implemented network
model, scenarios based on relevant literature were addressed to simulate the influence
of religion on human empathy and disempathy, in order to answer the question asked
in the beginning. For example, scenarios were simulated for a person with an empathic
or disempathic God-image, persons with atheist or fundamentalist tendencies, or
persons with Autism Spectrum Disorders. It was shown how a person mirrors the
empathy or disempathy in the actions and emotions of the God-image, depending on
the situation of a person. First of all, it was shown how external (religious) influences
have impact on an individuals God-image. Input regarding a disempathic God created
a disempathic God-image, while input regarding an empathic God gen-erated an
empathic God-image. Furthermore, the God-image strongly influenced the empathic
or disempathic behaviour and emotions of the religious individual. An em-pathic
God-image led to empathic actions and emotions, while a disempathic God-image
led to disempathic actions and emotions. However, there were more aspects that
influenced this. For example, the ownership and mirroring process: persons with a
very low Self-ownership can show more fundamentalist tendencies.

Although the simulations and the model in general show some interesting results,
it is difficult to provide a final answer on what the influence of religion on human
empathy and disempathy is. While the model does represent important aspects of the
domain, and is a good basis for an answer, there are still many things to improve. For
example, the model only reflected the influence of the God-image on the behaviour of
the individual, not that of other persons or more specific non-addressed characteristics
of the person itself. Therefore, the process of literature study, developing a conceptual
model, formalizing it and simulating is an iterative one, where adaptations can be
made all the time in order to match the real world situation as much as possible while
preserving the abstractness that is required of a computational model.
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Network-Oriented Modeling and Analysis of
Dynamics Based on Adaptive Temporal-Causal
Networks

Jan Treur

Abstract This paper discusses how Network-Oriented Modelling based on adaptive
temporal-causal networks can be used to model and analyse dynamics and adaptiv-
ity of vari-ous processes. Adaptive temporal-causal network models incorporate a
dynamic perspective on causal relations in which the states in the network change
over time due to the causal relations, and these causal relations themselves also
change over time. It is discussed how modelling and analysis of the dynamics of the
behaviour of these network models can be performed.

1 Introduction

Network-Oriented Modelling has been proposed as a modeling perspective suitable
for processes that are highly dynamic, circular and interactive; e.g., [26, 27]. In
different application areas this modelling perspective has been proposed in different
forms: in the context of modelling organisations and social systems (e.g., [3, 7, 20]),
of modelling metabolic processes (e.g., [4]), and of modelling electromagnetic
systems (e.g., [8, 9, 23]. To address dynamics well, Network-Oriented Modeling
based on adaptive temporal-causal networks has been developed [25, 26, 27]. This
approach incorporates a continuous (real) time dimension. Adaptive temporal-causal
network models are dynamic in two ways: their states change over time based on
the caual relations in the network, but these causal relations may also change over
time. As in such networks often many interrelating cycles occur, their emerging
behaviour patterns are not always easy to predict or analyse. This may make it hard
to evaluate whether observed outcomes of simulations are plausible or might be due
to implementation errors.

However, some specific types of properties can also be analysed by calculations in
a mathematical manner, without performing simulations; e.g., [2, 17, 18, 19, 21, 22].
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Such properties that are found in an analytic mathematical manner can be used for
verification of the model by checking them for the values observed in simulation
experiments. If one of these properties is not fulfilled (and the mathematical analysis
was done in a correct manner), then there will be some error in the implementation
of the model. In this paper methods to analyse such properties of temporal-causal
network models will be described. They will be illustrated for two types of adaptive
temporal-causal network models: one based on Hebbian learning (Section 3), and
one based on the homophily principle for dynamic connection weights in adaptive
networks modelling social interaction (Section 4).

2 Network-Oriented Modeling by Temporal-Causal Networks

The Network-Oriented Modeling approach based on temporal-causal networks de-
scribed in more detail in [25, 26] is a generic and declarative dynamic modeling
approach based on networks of causal relations. Dynamics is addressed by incorpo-
rating a continuous time dimension. This temporal dimension enables modelling by
networks that inherently contain cycles, such as networks modeling mental or brain
processes, or social interaction processes, and also enables to address the timing of
the processes in a differentiated manner. The modeling perspective can incorporate
ingredients from different modeling approaches, for example, ingredients that are
sometimes used in neural network models, and ingredients that are sometimes used
in probabilistic or possibilistic modeling. It is more generic than such methods in
the sense that a much wider variety of modeling elements are provided, enabling
the modeling of many types of dynamical systems, as described in [25, 26]. The
Network-Oriented Modeling approach is supported by a few modeling environments
(in Matlab, or in Pyhon, for example) that can be used to model conceptually in a
declarative manner, without the need of programming.

Temporal-causal network models can be represented at two levels: by a conceptual
representation and by a numerical representation. A conceptual representation of
a temporal-causal network model can have a (labeled) graphical form (or a matrix
form), as shown in the examples presented below. In the first place it involves
representing in a declarative manner states and connections between them. The
connections represent (causal) impacts of states on each other, as assumed to hold
for the application domain addressed. Each state X is assumed to have an (activation)
level that varies over time, indicated in the numerical representation by a real number
X (t). In reality not all causal relations are equally strong, so some notion of strength
of a connection from a state X to a state Y is used: a connection weight @y y. Based
on this, in a numerical representation the impact of state X on state Y at time ¢ is
defined by @y yX (¢), where X (¢) is the activation level of state X at 7. Note that
also a connection from a state Y to itself is allowed. The weight @y y of such a
connection can, for example, be used to model persistence of state Y. Furthermore,
when more than one causal relation affects a given state Y, these causal effects have
to be combined. To this end, some way to aggregate multiple causal impacts on a
state is used; this is done by a combination function cy(...) that uses the impacts
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®yx, yX;(t) from states Xj,...,X; on Y as input and provides one aggregated impact
value out of them. Moreover, not every state has the same extent of flexibility in
responding to impact; some states respond fast, and other states may be more rigid
and may respond more slowly. Therefore, a speed factor )y of a state Y is used for
timing of effectuation of causal impacts.

Combination functions can have different forms. The applicability of a specific
combination rule may depend much on the type of application addressed, and even
on the type of states within an application. Therefore, for the Network-Oriented
Modeling approach based on temporal-causal networks a number of standard combi-
nation functions are available as options and a number of relevant properties of such
combination functions have been identified; e.g., see [25], Table 10, or [26], Chapter
2, Table 2.10. Some of these standard combination functions are scaled sum, product,
complementary product, max, min, and simple and advanced logistic sum functions.
These options cover elements from different existing approaches, varying from ap-
proaches considered for reasoning with uncertainty, probability, possibility or vague-
ness, to approaches based on neural networks; e.g. [1, 5, 6, 10, 12, 14, 15, 16, 29].
In addition, there is still the option to specify any other (non-standard) combination
function.

The above three concepts (connection weight, combination function, speed factor)
can be considered as parameters representing characteristics in a network model. In
a non-adaptive network model these parameters are fixed over time. But to model
processes by adaptive networks, not only the state levels, but also these parameters
can change over time. For example, the connection weights can change over time to
model evolving connections in network models. For modeling processes as adaptive
networks, some of the parameters (such as connection weights) are handled in a
similar manner as states. For more detailed explanation, see below in Section 3.

A conceptual representation of a temporal-causal network model can be trans-
formed in a systematic and automated manner into a numerical representation of
the model, as described in [25, 26], thus obtaining the following difference and
differential equation for all states Y:

Y(t+At) =Y (t) +nyley (@x, yXi(7), ..., 0x, yXi (1)) = Y (1)] At (1

dy (t)/dt = nyley (@x, yXi (1), ..., 0x, yXi(t)) =Y (t)] 2
The modeling approach enables to take into account theories and findings from any
domain from, for example, biological, psychological, neurological or social sciences,
as such theories and findings are often formulated in terms of causal relations. This
applies, among others, to mental processes based on complex brain processes, which,
for example, often involve dynamics based on interrelating and adaptive cycles. But
equally well it applies to social interaction processes and their adaptive dynamics.
This enables to address complex adaptive phenomena such as the integration of
emotions within all kinds of cognitive processes, of internal simulation and mirroring
of mental processes of others, and dynamic social interaction patterns, as shown in
[26] by a large number of example models.
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3 Modelling Mental Processes by Adaptive Networks

Mental processes can be modeled by temporal-causal networks in an adaptive manner:
characteristics represented by network parameters can change over time as well.
These parameters that can change are modeled in the same way as states. This will
be illustrated here for one specific case: the way in which connection strengths can
change based on Hebbian learning. In Section 4 a similar type of adaptivity will be
illustrated for adaptive network models for evolving social interactions.

Hebbian learning [13], is based on the principle that strengthening of a connection
between neurons over time may take place when both states are often active simulta-
neously (neurons that fire together, wire together); see also Fig. 1. The principle itself
goes back to Hebb [13], but see also, e.g., [11]. In the example model considered here
it is assumed that the strength @y, x> of the connection from state X to state X is
adapted using the following Hebbian learning rule, taking into account a maximal
connection strength 1, a learning rate ) > 0 and a persistence factor J in the interval
[0,1], and activation levels X (¢) and X, (z) (assumed between 0 and 1) of the two
states involved:

dax, x, (1) /dt = 1 [X (1)X2(1) (1 — @x, x, (1)) — (1 — ) oy, x,(7)] (©)
da)xhxz(tJrAt) = a)Xl-,Xz(t) Jr""[Xl (t)XZ(t)(l - thXz(t)) - (1 7“)(’))(17}(2 (t)]At
4

Such Hebbian learning rules can be found, for example, in (Gerstner and Kistler,

Fig. 1: Graphical concep-
tual representation of an
adaptive network for Heb-
bian learning.

2002, p. 406). It will be discussed how this can be modeled by considering the
connection weight @y, x, as a state Qy, x, that changes over time, represented by an
extra node in the network. As a first step this node for the state 2y, x, representing
o, x, is added and connected; see Fig. 2 for a conceptual representation. This state
is affected by both X; and X, due to the learning, so connections from these states
to Qx, x, are incorporated. Moreover a connection from Qy, x, to X> is used to
represent the effect of the connection strength on X, and a connection from Qy, x,
to itself for persistence. The weights of all these connections are assumed 1; see Fig.
2. As a next step it is explored what combination functions are needed for Qy, x, and
X2 in this new situation depicted in Fig. 2.

First, the combination function for the state Qy, x, is identified, to aggregate
the impacts of X; and X, , and Qy, x, on Qy, x,. The difference equation for the
connection weight wy, x, shown in (4) above can be rewritten into:



Network-Oriented Modeling and Analysis of Dynamics 73

Fig. 2: Graphical concep-
tual representation for the
Hebbian learning princi-
ple with state Q, x, rep-
resenting a dynamic con-
nection weight wy, x,.

Qx,.x, (1 + A1) = Qx, x, (1) + DX ()Xo (1) (1= Qx, x, (1)) — (1= 1) Qx, x, (1)] At
=Qx, x, () +nXi ()X (1) (1 — Qx, x, (t)) + u&y, X2( )— Qx, x, (1)]At
&)
On the other hand, according to the temporal-causal network approach using a
combination function oy, x, (...) for state Qx, x, (see equation (1)) it holds:

Q3,1+ A1) = .3, (1) + Ny, [€ay, x, (K1), Xa(1), 2x, 1, (1)) — 2x, x, (1)] A1

(6)
So, the speed factor N Qx,x, €40 be assumed 7, and it follows from equations (5) and
(6) that the combination function Cay, x, (V1,Va, W) for the new state Qy, x, satisfies

Cox, x, (X1(1),X2(1), 2x, x,) = X1 (1)X2(1) (1 = x,.x, (1)) + B, x, (1) (7)
Therefore the combination function for Qy, x, in the description in Fig. 2 is:
Cay, x, Vi(),Va(t),W) =ViVa(1=W)+uW =VV, —V\VLW + uWw (8)
Next consider state X». Suppose the original situation depicted in Fig. 1 is described
by the combination function cx,(Vi,V») for X, which is applied to the impacts
ox, x,(1)X1(r) and @y, x,X3(r) from X; and X3 on X, to obtain (based on (1) above)
the difference equation for X,
Xo (1 + A1) = Xo (1) + Ny, [ex, (x, x, (1) X1, Ox, x,X3(1)) = Xa(1)]Ar - (9)
In the new situation depicted in Fig. 2 the weight wy, x, is represented by a
state Qx, x, with activation values Qy, x, (t) the same as the connection weight
values wy, x, (¢) in the old situation for each 7 : Qy, x, (t) = wx, x, (t). Now there
are not two but three states with impact on X;, namely X; , X3 and Qy, x,. This
requires a new combination function c}*(z (V1,Vo,W) for X, with three arguments,
which is applied to the impacts X (f), @x;, x,X3(t) and Qy, x,(f) on X>, obtaining
cx, (Xa(1), @x; x,X3(t), 2, x, (¢)) used in the difference equation for X»

Xo(t+ A1) = Xo(1) + N, [ex, (X2 (1), Ox; x,X3(1), x, x, (1)) = X2 ()] A (10)
This impact ¢k, (X2 (1), @x, x,X3(1), 2x, x, (¢)) is equal to cx, (@x, x, (1) X2 (1), @x; x,X3(1))
in the previous model representation depicted in Fig. 1: ¢k, (X2 (1), @x; x,X3(t), Qx, x, () =
cx, (0, x, (1)Xa(1), @x, x,X3(1)). So, recalling that Qx, x, (1) = wx, x, (¢) forall 7, the
new combination function can be defined as c}z (Vi,V2,W) = ¢x,(WV1,V5). For ex-
ample, if cx, (V1,V2) is the sum function V; +V,, then c)*(z(Vl Vo, W) =WV +V,
which is a combination of a product and a sum function.
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4 Modelling Evolving Social Interactions by Adaptive Networks

Next an adaptive temporal-causal network model is discussed to model evolving
social interactions based on the homophily principle. According to this principle,
also indicated as birds of a feather flock together, connections are strengthened if
the connected states are similar. For example, when two persons both like the same
type of music, movies, drinks, and parties, they may strengthen their connection. For
the current model the dynamic connection weights @y, x, from state X4 of person A
to state Xp of person B are assumed to change over time based on the principle that
the closer the activation levels of the states of the interacting persons, the stronger
the mutual connections between the persons will become, and the higher the differ-
ence between the activation levels, the weaker they will become. For a conceptual
representation, see Fig. 3. Similar to the case of Hebbian learning in Section 3,

(N,
QgD

Fig. 3: Graphical conceptual repre- Oxp-1p OV
sentation of an adaptive temporal- é B :
causal network model for the ho- Yo TTT’O\
mophily principle. UU ‘

Oy, x, is represented by state Qy, x, and the weights of the connections involving
Qx, x, are assumed 1: the weights of the connections from X4 and Xp to Qx, x,, and
from Qy, x, to Xp and to itself. According to the temporal-causal network approach,
the homophily principle may be formalised using the following general format of
equations (1) and (2) above and a combination function ¢4 g(V1,V2, W) that still has
to be determined:
Qyx, x5 (t+AL) = Qx, x5 (1) + nQXAXB[ch L [ Xa(t), Xp(1), Qx, x5 (1)) — Qx, x, (1)) At
1D
d'QXmXB (t)/dt = n.QX Xp [C-QXA Xp (XA (t) XB(I) 'QXA XB (t)) - 'QXA XB (t)] (12)
Note that the connection weight Qx, x, increases whencg, ()gA( ), Xp(1),Qx, x5(1)) >
Qx, x,(t), decreases when €Oy, x, (Xa(t),Xp(t), 2x, x5 (1)) < Qx, x,(t) and stays the
same when cq,, (XA( ) XB( ) QXA XB( )) 'QXA XB (t)

Examples ofA such combination functions can be obtained when a threshold value
Tay, x, 15 assumed such that the connection weight Qx, x, becomes stronger when
|Xa(r) — Xp(2)| < TOx, (levels of X4 and X3 close to each other) and weaker when
|Xa(t) — Xp(2)] > Ty, (levels of X4 and Xp not so close to each other). The
following is an example which is linear in X, (¢) and Xp(¢):

cQXA,XB (XA(t)aXb(t>79XAsXB (t)) = QXA:XB (t) + ’Y(TQXA,XB - |XA(I) _XB<I)|) (13)
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The factor & can be made dependent on Q, x, (), to keep values of Qx, x,(7)
within the [0, 1] interval: o = Qx, x, (t)(1 — Qx, x,(¢)). This makes the combination
function

€y, (V1 V2, W) = WHW(1=W)(Tgy o, — VI —V2]) (14)
where Vi, V; refer to X4, Xp and W to Qx, x,,. Thus the following is obtained:
Qx, x5 (E+A1) = Qx, x5 (1) Ny [ x5 () (1= 2y x5 (1)) (T2, 5, — [Xa2)

—Xp(1))))Ar ()
A€,y (1)t =My 1O 3, (1)(1 — Dy, () (T, — X (1) — X ()]
(16)

The combination function for X can be found in the same way as in Section 3 for
X>.

5 Mathematical Analysis of Temporal-Causal Network Models

In this section it is discussed how some types of dynamic properties of adaptive
temporal-causal network models can be analysed mathematically, in particular, sta-
tionary points and monotonicity. A stationary point of a state occurs at some point
in time if for this time point no change occurs: the graph is horizontal at that point.
Stationary points are usually maxima or minima (peaks or dips) but sometimes also
other stationary points may occur. An equilibrium occurs when for all states no
change occurs. From the difference or differential equations describing the dynamics
for a model it can be analysed when stationary points or equilibria occur. Moreover,
it can be found when a certain state is increasing or decreasing, when a state is not in
a stationary point or equilibrium. First a definition for these notions.

Definition (stationary point, increase, decrease, and equilibrium)

e astate Y has a stationary point att if dY (t)/dt =0
e astate Y is increasing at t if dY (¢) /dt > 0
e astate Y is decreasing at t if dY (¢) /dt < 0

The model is in equilibrium a t if every state Y of the model has a stationary
point at ¢. This equilibrium is attracting when for any state Y, all values of Y in
some neighbourhood of the equilibrium value increase when the value is below the
equilibrium value and decrease when the value is above the equilibrium value.

A question that can be addressed is whether observations based on one or more
simulation experiments are in agreement with a mathematical analysis. If it is found
out that the observations are in agreement with the mathematical analysis, then this
provides some extent of evidence that the implemented model is correct. If they turn
out not to be in agreement with the mathematical analysis, then this indicates that
probably there is something wrong, and further inspection and correction has to be
initiated. Considering the differential equation (2) for a temporal-causal network
model, more specific criteria can be found:

dY(l‘)/dl‘ = ny[Cy(O)thX] (t), ceey a)xbek(t)) — Y(I)] (17)
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where X1,...,X; are the states with connections to Y. For example, it can be con-
cluded that

dy(t)/dt >0 cy(@x, yXi(1),...,0x, yXi(t)) > Y(t) (18)
In this manner the following criteria can be found.

Criteria for increase, decrease, stationary point and equilibrium
Let Y be a state and X, ..., X the states connected toward Y. Then the following
hold

Y has a stationary point at ¢ & Cy(a)xl yXi(t),...,0x,yXe(t)) =Y(t)
Y is increasing at ¢ cy(@x, yXi(1),...,0x, yXk(t)) > Y (1)

Y is decreasing at ¢ & cY((o yXi(t),...,0x, yXi (1)) <Y (1)

The model is in equilibrium att & cy(@x, yXi(1),...,0x, yXi(t)) =Y (1)

for every state Y

Note that these criteria can immediately be found from a conceptual representation
of a temporal-causal network model, as long as the referred combination function is
known. Using the above criteria no further numerical representation is needed of the
difference or differential equations, for example. From these criteria more insight can
be obtained about the behavior of the network model, in particular which stationary
points are possible for a state in the model, and which equilibria are possible for
the whole model. Sometimes the stationary point equation can be rewritten into an
equation of the form Y (¢) = ... such that ¥ (¢) does not occur in the right hand side.
In Sections 6 and 7 examples of this are shown.

The criteria can also be used to verify (the implementation of) the model based
on inspection of stationary points or equilibria, in two different manners A. and B.
Note that in a given simulation the stationary points that are identified are usually
approximately stationary; how closely they are approximated depends on different
aspects, for example on the step size, or on how long the simulation is done.

A. Verification by checking stationary points through substitution of the values
from a simulation in the criterion

1. Generate a simulation

2. Consider any state Y with a stationary point at any time point # and states
Xi,..., X affecting it

3. Substitute the values Y (¢) and X (¢),...,X;(¢) in the criterion
cy (0x, yXi1(2),..., 0x, y Xi (1)) = Y (1)

4. If the equation holds (for example, with an accuracy < 10%), then this test
succeeds, otherwise it fails

5. If this test fails, then it has to be explored were the error can be found

Note that this method A. works without having to solve the equations, only substitu-
tion takes place; therefore it works for any choice of combination function. Moreover,
note that the method also works when the values of the states fluctuate, for example
according to a recurring pattern (a limit cycle). In such cases for each state there
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are maxima (peaks) and minima (dips) which also are stationary points to which the
method can be applied; here it is important to choose a small step size as each station-
ary point occurs at one time point only. There is still another method B. possible that
can be applied sometimes; it is based on solving the equations for the stationary point
values by symbolic rewriting. This can provide explicit expressions for stationary
point values in terms of the parameters of the model. Such expressions can be used to
predict equilibrium values for specific simulations, based on the choice of parameter
values. For more details, see [26], Chapter 12, or [28]. This method B. provides more,
but a major drawback is that it cannot be applied in all situations; this depends on the
chosen combination functions; e.g., for logistic functions it does not work.

6 Mathematical Analysis for Hebbian Learning

It can be analysed from the network model from Section 3 when a Hebbian adapta-
tion process has a stationary point and when it increases or decreases. Recall equation

®):

cay,x, Vi.V2. W) =ViVa(1 = W) + pW (19)
where Vi, V, refer to X;(¢), X»(¢) and W to Qy, x,(f). According to the criteria in
Section 5 a stationary point of Qy, x, (t) occurs if and only if:

Cayx, x, (X1 (), Xa(1), 2x, x, (1)) = 2x, %, (1) (20)
which for this case is equivalent to the following three rewritten forms

X (t)XZ(t)(l - QX] X2 (t)) +“'QX| Xo (t) = 'QXI Xo (t)
Xi(1)X2 (1) — X1 (1) X2 (1) Qx, x, (1) — (1 — 1) Qx, x, (1) =0

Xi(1)Xa (1) = (X1 (1)X2 (1) + (1 = 1)) Qx, x, (¢) 1)
Note that for g = 1 (fully persistent) this reduces to
X1(t)X2(t) = X1 (1) X2(2) 2x, x,(2) (22)
and for g < 1 it can be rewritten into
X (1)X2(2
2y, (1) = %) (23)

1 —p+X()X2()
Thus two cases are found:
Stationary points for Qx, x, (r) when p = 1 (fully persistent, no extinction)
When g = 1 a stationary point occurs for Qy, x, if and only if

Xi(t) =0or X5(r) = 0 and Qy, x, (¢) has any value

or Qx, x,(t) = 1 and X;(r) and X, () have any values
Stationary points for Qx, x,(r) when u < 1 (not fully persistent, some extinc-
tion)
For u < 1 a stationary point occurs for Qy, x, if and only if Qx, x, =
In particular for g < 1 a stationary point occurs if and only if

X ()X (1)
1—p+X ()X (1)

(a) 'QXI,Xz(t) = W and both X](t) > O andXQ(t) > O
(b) Qx, x,(t) =0and X;(r) =0o0r X»(r) =0
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Note that the above conditions show that when both X;(¢) > 0 and X(¢) > 0, a
positive stationary point value is found, which is 1 for g = 1, and W
for u < 1 which is nonzero and < 1. So without extinction the value 1 is possible,
but extinction always makes it < 1. In fact the maximal value of this occurs when
both X (f) = 1 and X, () = 1, in which case the stationary point value is ﬁ It turns
out that this is the maximal value a stationary point can have, and this value is < 1
when p < 1. For example, for g = 0.95, and X; (z) = 1 and X»(¢) = 1, the positive
stationary point value for Q, x, () is about 0.95. Another example is g = 0.8,
and X;(t) = 1 and X»(¢) = 1, in which case the stationary point value is 0.83. In
further analysis of the criteria for increase and decrease it turns out that for given
(positive) values of X (f) and X»(¢) the value of Qy, x, (f) increases when it is under
the positive stationary point value and it decreases when it is above this value (the
value is attracting):

Increasing Qy, x, when X; () > 0 and X,(¢) > 0:

1
d-QXl X (l)/dl‘ >0& QXl X> ([)

<
I+ (1—p)/ (X (1)Xa(1))
Decreasing Qy, x, when X; (t) > 0 and X,(¢) > 0:

1

>

I+ (1= )/ (X1 (1)Xa(1))
For comparison to example simulation patterns showing the behaviours analysed
above, see [26], Chapter 12.

d-QXI X> (l)/dt <0< .QX1 X> ([)

7 Mathematical Analysis for the Homophily Principle

In Section 4 it was shown how the homophily principle for evolving social interaction
may be modeled using a combination function (see equation (14))

cay, x, V1,V W) =W+ W(L=W)(Toy, . — VI = V2|) (24)
In this section it is analysed which stationary points can occur for Qx, x, (¢), accord-
ing to the approach described in Section 5. For this case the criterion from Section 5
for a stationary point is:

oy, x, (Xa(1),Xp(1), Qx, x5 (1)) = Qx, x5 (1) &

Qx, x5 (1) (1 = Qx, x5 (1)) (T, — 1Xa(t) = XB(1)]) =0 (25)
Clearly for Qx, x,(t) = 0 or Qx, x,(¢) = 1 one of the left hand side factors in this
condition is 0. In contrast, when 0 < Qy, x,(¢) < 1 the right hand factor should be 0:
Tay, y — Xa(0) ~Xp(0)] =05 [Xa() ~ Xs(1)| = Tay, . (26)
So, in principle there are three types of stationary points for Qy, x,(f).
Stationary points for Qy, x, (¢)
Qx, x5 (1) = 0 0or Qx, x, () = L or [Xa(t) — Xp(t)| = Tay, x, and Ox, x; (¢) has any
value
Similarly the following can be found.
Increasing Qx, x, (1)
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dQx, x,(1)/dt >0 (Tay, , —Xa(t) = Xp(1)]) > 0 [Xa(r) = Xp(1)| < Toy, x,

Decreasing Qy, x, (¢)

dQux, x5 (1)/dt <0 (Tay, y, — Xa(t) = Xp(1)]) <0 & [Xa(t) = Xp(1)] < Tay, y,

This shows that for cases that [X4(r) — Xp(t)| < Tqy, 4, the connection keeps on
becoming stronger until Qy, x,(t) approaches 1. Similarly for cases that | X4 (¢) —
Xp(t)| > Tay, 5, the connection keeps on becomes weaker until Qx, x, (¢) approaches
0. This implies that Qx, x,(t) = 0 and Qy, x,(t) = 1 can both become attracting,
but under different circumstances concerning the values of X4 (¢) and Xp(¢). In [26],
Chapter 11, Section 11.7 for such an adaptive network model an example simulation
is shown where indeed the connection weights all converge to 0 or 1, and during this
process clusters are formed of persons with equal levels of their state; see also [24].

8 Discussion

The Network-Oriented Modelling approach based on adaptive temporal-causal net-
works as described here (see also [25, 26]), provides a dynamic modelling approach
that enables a modeller to design high level conceptual model representations in
the form of cyclic graphs (or connection matrices). These conceptual representa-
tions can be systematically transformed in an automated manner into executable
numerical representations that can be used to perform simulation experiments. The
modelling approach makes it easy to take into account on the one hand theories and
findings from any domain from, for example, biological, psychological, neurological
or social sciences, as such theories and findings are often formulated in terms of
causal relations. This applies, among others, to mental processes based on complex
brain networks, which, for example, often involve dynamics based on interrelating
and adaptive cycles, but equally well it applies to the adaptive dynamics of social
interactions. This enables to address complex adaptive phenomena within all kinds
of integrated cognitive, affective and social processes. By using temporal-causal
relations from those domains as a main vehicle and structure for network models,
the obtained network models get a strong relation to the large body of empirically
founded knowledge from the Neurosciences and Social Sciences. This makes them
scientifically justifiable to an extent that is not attainable for black box models which
lack such a relation.

In this paper it was discussed in some detail how mathematical analysis can be used
to find out some properties of the dynamics of a network model designed according
to a Network-Oriented Modelling approach based on temporal-causal networks; see
also [26], Chapter 12, or [28]. An advantage is that such an analysis is done without
performing simulations. This advantage makes that it can be used as an additional
source of knowledge, independent of a specific implementation of the model. By
comparing properties found by mathematical analysis and properties observed in
simulation experiments a form of verification can be done. If a discrepancy is found,
for example, in the sense that the mathematical analysis predicts a certain property
but some simulation does not satisfy this property, this can be a reason to inspect
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the implementation of the model carefully (and/or check whether the mathematical
analysis is correct). Having such an option can be fruitful during a development
process of a model, as to acquire empirical data for validation of a model may be
more difficult or may take a longer time.
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What governs a language’s lexicon? Determining
the organizing principles of phonological
neighbourhood networks

Rory Turnbull and Sharon Peperkamp

Abstract The lexicons of natural language can be characterized as a network of
words, where each word is linked to phonologically similar words. These networks are
called phonological neighbourhood networks (PNN5s). In this paper, we investigate the
extent to which observed properties of these networks are mathematical consequences
of the definition of PNNSs, consequences of linguistic restrictions on what possible
words can sound like (phonotactics), or consequences of deeper cognitive constraints
that govern lexical development. To test this question, we generate random lexicons,
with a variety of methods, and derive PNNs from these lexicons. These PNNs are
then compared to a real network. We conclude that most observed characteristics
of PNNs are either intrinsic to the definition of PNNs, or are phonotactic effects.
However, there are some properties—such as extreme assortativity by degree—which
may reflect true cognitive organizing principles.

1 Introduction

In natural languages, sentences are composed of words, which are in turn composed
of strings of symbols referred to as phonemes, which represent the smallest units of
sound that can be used to distinguish words from each other. Many psycholinguistic
theories of spoken word recognition and infant language acquisition rely on a concept
of the phonological similarity of words, termed neighbourhood, which is defined
in terms of the phonemic structure of words. Two words are neighbours of each
other if they differ by the deletion, addition, or substitution of one and only one
segment—that is, an edit distance of one. For example, neighbours of plan include
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Fig. 1 Example phonologi-

cal neighbourhood network clan
centred around the English plane
word plan. Note that it is

the sound of a word, not the plaque /

spelling, which determines the T~

phonological neighbours. Note plan ——— plant
further that some neighbours /

of a word are neighbours of pan /
each other.

____flan

planner
~

1
plans — planned

pan (deletion of /1/), plant (addition of /t/), and clan (substitution of /k/ for /p/). See
Figure 1 for a visual example.' The neighbourhood relation is symmetric, intransitive
and anti-reflexive.

For a given lexicon, then, it is possible to construct a complex network to model
phonological neighbourhood relations throughout the language. Phonological neigh-
bourhood networks (PNNs) have been used to study aspects of lexical organization
in several languages [1, 16, 20]. In this paper, we explore the extent to which these
complex network analyses can provide insight into the psychological organization of
human language.

Vitevitch [20] first proposed the use of PNNs to study the phonological aspects of
lexicons. In a PNN, every word in the lexicon is a vertex in a graph, and two vertices
are linked by an edge if a neighbourhood relation obtains between the two words.
This process yields an undirected, unweighted graph, ideal for examination with the
tools of complex network analysis.

Early work on PNNs, in a variety of languages, has demonstrated that these
networks have distinct properties which differ in important ways from other complex
networks studied in the literature [1, 20]. For example, while most complex networks
typically have a giant component which contains around 80-90% of the vertices,
the observed values for PNNs fall between 10% and 65% [1, 16]. PNNs were also
found to be remarkably robust to vertex removal, with the average shortest path
length remaining the same when up to 5% of vertices were removed. Notably, this
effect held regardless of whether vertex removal was at random or in order of degree
[1]. Despite these differences from other networks, the high clustering coefficients
established that PNNs exhibit small world properties.

However, these statistics and examinations rely on comparing the observed net-
works to random networks [14]. While this approach is reasonable for many kinds
of complex networks, it is not an appropriate comparison for PNNs. Unlike other
networks, where vertices exist independently of each other and edges can be made

! Note that neighbourhood is defined based on the pronunciation of a word, not the spelling. For
instance, while the spelling of the words knee and neat are quite different, the pronunciations are
very similar. The addition or deletion of the /t/ sound will transform knee into neat and vice versa.
Therefore, these words are neighbours. On the other hand, the words fough and though have very
similar spellings, but their pronunciations—/taf/ and /dou/ respectively—are very different. These
words are not neighbours.
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or unmade (for example, friendships made or broken, shipping routes established
or abandoned), in a PNN the edges (neighbourhood relations) are intrinsic to the
definition of the vertices themselves (the phonological structure of the words). That
is, because edges exist between two vertices if and only if the two words are phono-
logical neighbours, there are certain graphs which are not possible PNNs.

One such graph is shown in the left of Fig. 2. Here, each vertex is connected
to every other vertex, with two exceptions: vertices 1 and 3 are not connected,
and vertices 2 and 4 are not connected. It not possible for this graph to have its
vertices labelled such that the shortest path from vertex-to-vertex is equal to the
edit distance (Hamming distance) of the vertex labels [9]. In other words, this graph
cannot represent neighbourhood relations between words. On the other hand, the
graph on the right of Fig. 2 is plausibly a PNN, with the mapping O=cant, 1=can,
2=cat, 3=cab, 4=cap.” Note that the graphs in Fig. 2 both have the same number of
vertices and edges, but the left one could not be a PNN while the right one could be.

The difference between these graphs is that the graph on the right is addressable,
that is, there exists a vertex labelling schema which satisfies the neighbourhood
relation, while the graph on the left is non-addressable [2]. Addressable graphs
have also been termed ¢;-graphs, as it can be shown that addressable graphs are
isometrically embeddable into a hypercube [6, 17]. Since the distances along the
edges of a hypercube fall under the definition of an ¢; metric, it follows that these
graphs are isometrically embeddable into an #; metric space [7]. The recognition of
such graphs can be solved in polynomial time [8, 11].

For these reasons, random graphs are inappropriate as comparison cases when
considering PNNs. Currently, it is not easy to tell if results obtained are generalizable
results about language and lexical organization, or if they are simply consequences
of the structure of an addressable graph [10]. It has further been noted that the
statistics of PNNs are very sensitive to the distribution of word lengths within a
lexicon and the number of phonemes in the language’s symbol set [16, 19]. For
example, given n phonemes, the number of possible words is an exponential term of

Fig. 2 Two graphs, both with

the same number of vertices

and edges. The graph on the

left is non-addressable. This e

graph could not represent a

PNN. The graph on the right

is addressable. This graph

could be represent a PNN.

Consider the mapping O=cant,

l=can, 2=cat, 3=cab, 4=cap.

Each vertex is connected to its 9

2 Other possible mappings include (Ozslow, 1=low, 2=sew, 3=go, 4:show); (0=lamp, 1=lamb,
2=lap, 3=lab, 4=lad); (0=gasp, 1=gas, 2=gap, 3=gag, 4=gash); (O=iode, 1=eyed, 2=ode, 3=aid,
4=add) and so on.
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n, while the number of possible neighbourhood connections is a linear term of n [19].
This fact has consequences for how cross-linguistic comparisons are carried out, as
languages differ in the sizes of their lexicons and their number of phonemes [16].
These difficulties make the use of complex network analysis in the study of PNNs a
complex undertaking.

In this study, we generate random lexicons, rather than random graphs. PNNs
are derived from these random lexicons, guaranteeing that the resulting graphs are
addressable. These simulated PNNs can be compared to real PNNs. In broad terms,
there are two possible outcomes to this investigation:

1. The simulated PNNs are indistinguishable from a real PNN.
2. The simulated PNNs differ from a real PNN.

In the case of (1), we can conclude that alleged properties of the human lan-
guage faculty relating to lexical organization [1] are simply consequences of the
mathematical structure of PNNSs. In this regard, the results could shed light on the
hypercube-embeddable graphs, but not on language.

In the case of (2), we can conclude that any areas of difference between the
simulated PNN and the real PNN are due to some organizing principle or cognitive
constraint operating on language. For example, to ensure efficient communication,
the lexicon may be organized to avoid having words which sound very similar [12].

2 Method

To address the question of which properties of PNNs are simply due to their definition
and which are due to linguistic principles, we generated random lexicons, derived
PNNs from these lexicons, and compared the properties of these PNNs to the PNN
of English. The PNN of English we used was derived from the Hoosier Mental
Lexicon [15], a dictionary of American English with phonological transcriptions of
19,320 words, after homophone removal. We refer to this lexicon and PNN as the
‘real English lexicon’ and ‘real English PNN’ to distinguish it from the simulated
(random) lexicons and PNNs that we generated.

2.1 Random lexicons

Each random lexicon had the same size and mean word length (6.35 phonemes), and
used the same inventory of phonemes, as the real English lexicon. Five groups of
random lexicons were generated, differing in the extent to which they approximate the
real English lexicon: uniform random lexicons; Zipfian random lexicons; scrambled
random lexicons; bigram random lexicons; and trigram random lexicons. Each group
consisted of 200 random lexicons.

The simplest group was the uniform random lexicons, which were created by
randomly sampling from the phoneme inventory in a unform manner. Word length
was sampled from a Poisson distribution (with A = 6.35). In these lexicons, while
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the overall properties of the lexicon (number and length of words) was the same as
that of the real English lexicon, the content of the words resemble what one would
obtain from random typing.

Zipfian random lexicons were created in the same manner, except that the sam-
pling from the phoneme inventory was not uniform. Instead, phonemes were fre-
quency ranked according to a Zipf distribution. That is, given N phonemes, the
probability of phoneme ¢, where k € {1,...,N} is given as

-1
(k) = £

e
Phoneme distributions in natural languages are approximately Zipfian [21]; these
lexicons therefore approximate more closely the structure of English than the uniform
random lexicons.

The scrambled random lexicons began with the real English lexicon and scram-
bled the order of the phonemes within each word. This scrambling disrupts the
neighbourhood structure of the words, while preserving the overall phoneme frequen-
cies exactly.

Of these three groups, the uniform random group approximates the average word
length of English; the Zipfian group the average word length and average phoneme
frequency; and the scrambled group matches word length and phoneme frequencies
exactly. An important difference between these groups and the real English lexicon
is that of phonotactics—higher-level generalizations about the combinatoric possi-
bilities of phonemes. The classical example is that neither blick nor bnick are actual
English words, but the former could be a word, while the latter could not. This is
due to a restriction in what consonant clusters English permits at the beginning of
syllables.?

Due to the lack of phonotactics in the randomly generated lexicons, any differences
between them and the real English lexicon could either be due to organizing principles
of lexical storage, or simply a consequence of the fact that phonotactics restrict the
possible words that can appear in a lexicon. To test for this possibility, the bigram
and trigram random lexicon groups were generated.

These random lexicons were generated by creating n-gram models of English
phoneme distributions, where n = 2 for the bigram random lexicons and n = 3 for
the trigram random lexicons. In these models, the probability of a given phoneme
is conditioned on the probability of the preceding n — 1 phonemes. (Kneser-Ney
discounting was applied to smooth the probability space for unobserved forms.)
In this way, the model is able to account for basic distributional facts of English
phonotactics—for example, vowels and consonants tend to alternate; the consonant
cluster ‘thl’ (as in decathlon) is rare, but the consonant cluster ‘str’ (as in string) is
common; and so on. Using this model, a lexicon the same size as the real English
lexicon was generated. Due to the fact that the n-gram models encodes the probability
of individual phonemes, and the ‘end-of-word’ character, these generated lexicons

3 Note that in some languages, like Russian, both blick and bnick are possible words, while in others,
like Japanese, neither are possible words.
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approximate the real English lexicon in terms of phoneme frequencies and mean
word length.

The bigram model yields English-like words, but there are exceptions, for example,
/#nd/, where # represents the beginning of a word. There are no English words that
begin with /nd/.* This situation arises due to the fact that the model can only ‘see’
two phonemes at a time. The sequence /#n/ (that is, the beginning of a word, followed
by /n/) is a frequent bigram sequence, and so it has relatively high probability;
likewise, the sequence /nd/ is frequent and also has a relatively high probability, and
so therefore there is a chance that the model will output sequences like /#nd/. The
trigram model, on the other hand, is able to see three phonemes at a time, notes that
/#nd/ is not attested in the original lexicon, and accordingly assigns this sequence
an extremely low probability. Thus, the trigram model is more English-like than the
bigram model. Still, phonotactics are considerably more complex than phoneme-level
n-gram probabilities, and the trigram model still produces words which sound quite
un-English-like. The use of complex phonotactic generators to create ‘English-like’
simulated lexicons can help alleviate this problem [12], but such an investigation is
beyond the scope of the current study.

To summarize, in terms of fidelity to English linguistic lexical patterns, these
random lexicon groups are expected to follow the following hierarchy:

uniform < Zipfian < scrambled < bigram < trigram

Comparison of these random lexicons with each other and with the real English
lexicon allows us to determine which observed properties of English are lexically
meaningful. If a property is true of all PNNs, it is likely to be a simple consequence
of the definition of the neighbourhood relation over lexicons, and does not necessarily
reveal anything about language. If a property is true of the real English PNN and the
n-gram PNNs, but not the other random PNN:gs, it is likely to be a consequence of the
phonotactic patterns of the lexicon—hard limits on what shapes words can take. If a
property is true only of the English PNN but not any of the random PNNGs, then it is
likely to be due to a deeper organizing principle of the lexicon.

2.2 Network measures

For each group of PNNs, several network measures were taken.

e Giant component size: the size, as a ratio of the number of vertices in the entire
graph, of the largest connected component.

e Clustering coefficient: the mean clustering coefficient for each vertex in the
entire graph.

e Mean number of neighbours: the mean number of neighbours for each vertex in
the entire graph.

4 Even in borrowed words like Ndebele, a short vowel sound is usually inserted before the /n/.



Organizing principles of phonological neighbourhood networks 89

e Assortativity by degree [13]: the correlation coefficient of the degree of a vertex
with that of its neighbours, averaged over the entire graph. This measures the
extent to which highly-connected words cluster together.

e Shortest path: the average shortest path length for all pairwise comparisons.
Vertices which are not connected are ignored, essentially yielding a grand mean
of each connected component weighted by the number of vertices in each com-
ponent.

2.3 Robustness to vertex removal

To evaluate the relative robustness of each PNN, vertex removal was performed.
A proportion of vertices were removed, and the average shortest path of the graph
was measured. The procedure was then repeated with a larger proportion of vertices.
This procedure allows us to examine the change in the robustness of the network as
successively more vertices were removed.

Two vertex removal methods were employed: a random method, where vertices
were removed at random; and a targeted method, where vertices were removed in
decreasing order of degree. That is, the word with the most neighbours was removed
first, the word with the second most was removed second, and so on. We tested
removal proportions from 0 to 0.05, in 21 equally-spaced steps. Two measures of
network robustness were used: giant component size and average shortest path. We
follow convention in assuming that larger giant component size and smaller shortest
path represent more robust networks.

3 Results

Table 1 summarizes the results for the real English PNN and of the five groups of
random PNNs.

3.1 Overall patterns

For giant component size, clustering coefficient, and mean number of neighbours,
the statistics obeyed the following hierarchy:

uniform < Zipfian < scrambled < bigram ~ trigram ~ English

That is, the n-gram PNNs were very similar to the real English PNN, while the
other random PNNs had lower values as a function of their projected similarity to
English. Nevertheless, while the other random PNNs were not similar to English,
their statistics do indicate some small-world properties, as previously reported [1, 20].

The size of the real English PNN giant component is still smaller than most
scale-free networks studied in the literature [14]. The fact that the real English
PNN regardless has the largest giant component of all the PNNs suggests that the
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English lexicon has clusters of highly-connected words [18]. For this to happen, the
lexicon must employ a large degree of re-use of common elements and sequences
of phonemes. It has been theorized that such re-use is beneficial for the developing
lexicon in infant and child language acquisition [3], and aids in the processes of
speech production and perception in adults [4, 5].

All the PNNs examined are assortative by degree: words with many neighbours
tend to cluster together. Assortativity was higher for the n-gram random PNNs than
the other random PNNs, and it was highest of all for the English PNN. Taken together,
these results suggest that the property of assortativity in general is intrinsic to PNNs,
but that it is enhanced by the presence of phonotactics, and enhanced further by
unknown lexical organizational constraints.

The real English PNN had neither the longest nor the shortest mean shortest path
length. This value does not appear to readily distinguish the real English PNN from
the random PNNs, nor does it distinguish the different random PNNs from each
other.

Table 1: Summary statistics for the real English PNN and the five groups of random
PNNs. Standard deviations included in parentheses. GC: giant component; Clust.:
clustering; Sh.: shortest.

GCsize Clust.  coeffi-Mean # neigh- Assortativity Sh. path

cient bours
Uniform .023 .009 (.001) 0.108 (0.010) .540 (.045) 6.032
(.002) (0.334)
Zipfian .100 .034 (.002) 0.628 (0.032) 240 (.021) 4.835
(.003) (0.073)
Scrambled .167 .046 (.001) 0.710 (0.010) 427 (.019) 7.057
(.002) (0.091)
Bigram .286 .106 (.002) 2.604 (0.050) 459 (.009) 5.242
(.004) (0.038)
Trigram 371 .138 (.002) 3.018 (0.055) .538 (.008) 6.432
(.005) (0.068)
English .320 117 2.675 .643 6.991

3.2 Vertex removal

The patterns of robustness to vertex removal are shown in Fig. 3 for giant component
size, and Fig. 4 for average shortest path length. For all groups of PNNs, random
vertex removal does not appear to influence giant component size, while targeted
vertex removal leads to a decline in giant component size. However, it can be seen
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that the fall is very sharp for the uniform, Zipfian, and scrambled PNNs (rapidly
reaching zero), while the slope is much gentler for the bigram, trigram, and real
English PNNs.

The same pattern is observed for the shortest path length: no change for random
removal, rapid increase for targeted removal for the uniform, Zipfian, and scrambled
PNNs, and gentle increase for targeted removal for the bigram, trigram, and real
English PNNs. After a point, the shortest path lengths for the uniform, Zipfian, and
scrambled PNNss fall; this is a consequence of the rapid fragmenting of the graph
into many isolated islands, and does not reflect an increase in robustness. (Note that
the falls coincide with the giant component size approaching zero.)

These results demonstrate that, while the real English PNN is remarkably robust
to both random and targeted vertex removal [1], the same is true of the bigram and
trigram random PNNs. The observed robustness is therefore not necessarily due to
an organizing principle of lexical structure, but phonotactic limitations on possible
words.

Vertex removal method random 4 targeted
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Fig. 3: Giant component size for the five random groups of PNNs, plus the real
English PNN, given two vertex removal methods, plotted as a function of the propor-
tion of vertices removed. Red circles depict values for random vertex removal; blue
triangles depict values for targeted vertex removal.
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Vertex removal method random 4 |targeted
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Fig. 4: Shortest path lengths for the five random groups of PNNSs, plus the real English
PNN, given two vertex removal methods, plotted as a function of the proportion of
vertices removed. Red circles depict values for random vertex removal; blue triangles
depict values for targeted vertex removal.

4 Discussion

For both the real English PNN and the random PNNs, the clustering coefficients
were relatively high, confirming the assertion that PNNs have small-world properties
[1]. However, as this was observed for the random PNNs too, it would appear to
be a property intrinsic to the definition of a PNN, and therefore not necessarily
psycholinguistically meaningful.

In terms of giant component size and mean number of neighbours, the real English
PNN was midway between the bigram and trigram random PNNs, suggesting that
these properties are due to phonotactics rather than any deeper constraints which
may modulate the development of the lexicon.

However, where the real English PNN stood out from the random PNNs was
in assortativity by degree. While all the PNNs were assortative, the real English
PNN was the most of all. It is possible that this high level of assortativity aids in
lexical retrieval by limiting the spread of activation to irrelevant candidate words in
the process of speech perception [20]. However, the mechanisms by which the real
English PNN obtains this high level of assortativity is unknown.

Finally, the vertex removal analysis demonstrated that while the real English
PNN and the n-gram PNNs were very robust to targeted vertex removal, the other
random PNNs rapidly lost robustness. In this regard, the non-n-gram random PNNs
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are similar to scale-free networks, in that the mean shortest path length rapidly
increases upon targeted vertex removal [14]. This finding suggests that the robustness
observed by [1] is not necessarily due to a particular cognitive constraint on lexical
organization, but a consequence of phonotactics.

5 Conclusion

With a novel method for generation of random PNNs, we have shown that some
properties of PNNs—such as small world properties, small giant component size,
and assortativity by degree—are due to the definition of the neighbourhood relation
that defines PNNSs, rather than properties of language per se. Others properties are
common to the real PNN and n-gram PNNs, which simulate the phonotactic patterns
of natural language. For example, the n-gram PNNs are indistinguishable from the
real PNN in terms of giant component size, clustering coefficients, and mean number
of neighbours, and all are equally robust to vertex removal. These properties are
likely due to phonotactics, rather than the definition of the neighbourhood relation or
any underlying cognitive constraints.

A promising avenue for further study is the strong assortativity observed on the
real PNN relative to the random PNNs, suggesting that there could be principles
and mechanisms governing the structure of the lexicons of human languages which
enhance the assortativity of the network. Whether these principles operate over
milliseconds (i.e. they are caused by patterns of cognitive processing) or generations
(i.e. they are caused by patterns of cultural evolution) is a promising question for
future research. Replicating these results for languages other than English is also a
crucial step in establishing the true nature of PNNs.
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Dominance, Deference, and Hierarchy
Formation in Wikipedia Edit-Networks

Jiirgen Lerner and Alessandro Lomi

Abstract Does co-editing of Wikipedia articles reveal users dominating others? Do
these dyadic dominance orderings (if any) lead to a global linear hierarchy among
contributing users? In this article we claim that dominance (respectively deference) is
revealed by users undoing (respectively redoing) edits of others. We propose methods
to turn the history of Wikipedia pages into a dynamic multiplex network resulting
from three types of interaction events: dyadic dominance, dyadic deference, and
third-party assigned dominance ties. We analyze various local temporal patterns for
the different types of ties on a sample of page histories comprising 12,719 revisions
by 7,657 unique users. On the dyad level we analyze whether two users tend to
agree on a dominance order among them or whether dominated users tend to fight
back. On the neighborhood level we analyze various degree effects including whether
dominant users tend to dominate in the future and whether subordinate users tend
to get dominated. On the triad level we analyze whether users have a preference for
transitive closure over cyclic closure of dominance ties. These dynamic patterns shed
light on the micro processes that can foster or impede the emergence of a global
linear hierarchy.

1 Introduction

The formation of dominance hierarchies is a universal pattern in many human and
non-human societies. For instance, experiments with domestic chicken [5, 15] re-
vealed that interaction among two individuals results with overwhelming probability
in a clearly dominant and a clearly subordinate one, that dominant (respectively
subordinate) individuals tend to dominate (respectively get dominated by) others,
and that dominance networks of several individuals tend to be transitive and cycle-
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free. Experiments on dominance among humans (often denoted by terms like status,
reputation, prestige, or power) have been performed with small groups (compare
[6] and references therein) but empirical studies on hierarchy formation in larger
and non-artificial human groups are rare. Collaboration in Wikipedia provides an
opportunity to study large-scale, longitudinal, and completely observed data on hi-
erarchy formation in task-oriented human groups. Analyzing hierarchy formation
is relevant for understanding Wikipedia since, as any production community, it has
to solve the problems of coordination and control. Moreover, acquired high or low
status might be a primary source of motivation or frustration of users [18]. However,
this paper does not attempt to determine the consequences of successful or failed
hierarchy formation but rather analyzes the micro-processes that foster or impede the
formation of a global linear hierarchy.

Contributions. In this paper we propose methods to turn the histories of Wikipedia
pages into sequences of three types of timestamped and weighted interaction events:
dyadic dominance, dyadic deference, and third-party assigned dominance ties. Dyadic
dominance ties result from undoing edits and are tentatively interpreted as user A
claiming: “I (A) dominate you (B).” Dyadic deference ties result from redoing edits
and are tentatively interpreted as A claiming: ““You (B) have high status.” Finally,
third-party assigned dominance ties result from user C favoring A’s edits over B’s
edits and are tentatively interpreted as C claiming: “A dominates B.” Thus, the
difference between dyadic dominance and third-party dominance is whether the
dominance from A to B is claimed by A or by a third actor C.

We turn these events into a dynamic multiplex network, encoding past interaction
among users. Crucially, we aggregate not only the type and weight of events that are
actually observed but normalize by the potential for such events. We analyze how
atie’s embedding in the network of past events influences the probability of future
typed events on it (see Figure 1 for details). This analysis tests the validity of the
tentative interpretation of events and reveals which of these types are appropriate or
inappropriate for uncovering dominance among users.

2 Background and related work on hierarchy formation and
Wikipedia research

Linearity of hierarchies. Dominance hierarchies are universal in groups of many
non-human and human species, e. g., [2, 5, 15]. This tendency to form linear hierar-
chies has often been attributed to advantages in the group’s fitness (cf. [2, 17]); an
interesting perspective for our topic: can the success or failure of task-oriented online
communities be explained by the (in-)ability to form a hierarchy? Whatever the
hypothetical causes or consequences of hierarchy formation, empirical tests of these
need ways to assess the degree of linearity in the hierarchical structure of a group.
Indices for linearity that have been defined for fournament graphs (i. e., graphs in
which every undirected dyad {A, B} has a dominant and a subordinate node), such as
Landau’s /1 or Kendall’s K, have been shown to be inappropriate for sparse networks
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[16]. Global hierarchy indicees for sparse graphs exist (e. g., [14]); alternatively,
it has been proposed to measure the linearity of sparse dominance graphs via the
relative frequencies of small subgraphs, most notably transitive triads (pointing to
linearity) and cyclic triads (pointing to non-linearity) [16, 17].

In this paper we will also consider local configurations but we stress two differ-
ences to the two last-mentioned papers. First, we are not analyzing networks of stable
dominance ties but dynamic networks of relational events. Thus, instead of counting
configurations, we model the probability of current events on a dyad (A,B) as a
function of how (A, B) is locally embedded into the network of past events. Second,
in networks resulting from the co-editing among Wikipedians there is no reason to
assume a priori that reciprocated dominance ties are rare. This marks a considerable
difference to, say, pecking-networks among chicken where dominance ties are rarely
reverted [5]. In Wikipedia, anecdotal evidence, such as the term “edit war” or the
“three-revert rule'”, suggests that at least some users do not accept it when their edits
are undone but have a tendency to fight back. Therefore we must start our analysis
not with analyzing types of triangles or stars but on the lower dyadic level. Figure 1
illustrates the different network effects considered in this paper.

A > B A > B

A =—> B A—>B
INERTIA(+) RECIPROCITY(-) TRANSITIVE TRIAD(+) CYCLIC TRIAD(-)

[ ] [ ] [ ] [ ]
e A—>B o A—>B A=—>B e A—>B o
[ ] [ ) [ ] [ ]
OUTDEG SRC(+) INDEG SRC(-) OUTDEG TRG(-) INDEG TRG(+)

Fig. 1: Local configurations of past dominance events (light gray) explaining future
dominance on the tie from A to B (dark gray). A plus sign (+) indicates a hypothetical
increase in the probability; a minus sign (-) indicates a hypothetical tendency for
decreased dominance probability on (A, B). All of these hypotheses are derived from
the assumption that dominance ties point from higher to lower in the hierarchy. Note
that the ties are not binary but have weights between zero and one, as explained in
Sect. 3.

Wikipedia research. Wikipedia® is an open, Web-based project to create a user-
generated encyclopedia using wiki software [12]. Launched in 2001, Wikipedia is

'nttps://en.wikipedia.org/wiki/Wikipedia:Edit_warring

2 www. wikipedia.org
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one of the Top-10 most visited websites worldwide® and is the largest and most
popular general reference work on the internet. Its societal relevance, together with
the free availability of its complete database, made Wikipedia also a popular case
for empirical research and here we can only discuss some of the most closely
related previous work. Reputation systems for Wikipedians have been proposed,
e.g., in [1, 8]. It has been shown, among others, that contributions of users with low
reputation are more likely to be undone in the future; this finding corresponds to
the hypothesized effect of INDEGREE TARGET in the notation from Figure 1. Other
possible patterns in the Wikipedia edit networks are, however, not tested in these two
papers, but the largest difference is that we do not seek to define a global reputation
index for users but systematically evaluate dynamic local patterns that can foster or
hinder the emergence of a linear dominance hierarchy. Event sequences (compare
[4]) resulting from co-editing Wikipedia articles are analyzed in [7, 9] but none
of these papers is specifically about dominance among users (nor about status or
reputation of users). Signed networks (that is, networks with positive and negative
ties) have been defined resulting from co-editing articles ([3]), from votes for or
against requests for adminship ([11]), or from both ([13]). Subsequently, these three
papers analyze triadic or global patterns confirming or contradicting balance theory
and/or status theory in these signed networks. Adding to these previous papers, we
evaluate more systematically the consistency of local dynamic patterns with linear
hierarchy formation on the dyad level, the neighborhood level (degree effects), and
the triadic level. As it has been argued above and will be empirically shown below,
the formation of linear hierarchies can be challenged not only with triads but already
at a lower level. Last but not least, to the best of our knowledge our paper is the
first that also considers third-party assigned dominance ties in which a user C states
a dominance order between two different users A and B. The distinction between
dyadic dominance and third-party dominance is highly important, since—as we will
show in this paper—the latter type of dominance ties is more consistent with linear
hierarchy formation.

3 Dominance, deference, and third-party dominance

Edit events. We propose to compute relational events expressing dominance, defer-
ence, and third-party dominance by successively comparing the text of subsequent
revisions of the same Wikipedia article in a similar way as in previous work, e. g.,
[1, 3, 8, 13]. As in these papers, we determine for each revision which part of the text
is newly added, which is deleted, and which previously deleted text is restored by
reverting a deletion. As in previous work, we do not treat it as a text modification if
large parts of the text (complete sentences in our case) are just moved or duplicated.
As it is usual, we consider a sequence of consecutive revisions by the same user as
one revision whose text is that of the last one in the sequence. Authorship of text is
maintained at the word level. Note that the same word can appear in different places

3http://www.alexa.com/topsites
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in the text and these different instances can have different authors. Augmenting the
computation of edit events proposed in [3], we encode the user interaction resulting
from it in a more complete way, as explained in the following.

For each word w in the text of each revision we maintain pointers to three poten-
tially different users playing different roles with respect to w:

[author(w),deleter(w),restorer(w)] .

Here author(w) is the author who originally added the word w. This pointer is set
at the revision when the word is added and is never changed afterward. The pointer
deleter(w) gives the last user who deleted the word. It points to nil when the
word is originally added (indicating that no one deleted it so far) and is updated
whenever the word is deleted. The pointer restorer(w) gives the last user who
added or restored the word. It is set to the author when the word is originally added
but, in contrast to aut hor (w), the last restorer of a word can change over time when
a word is restored after being deleted.

Adding a word, thus, assigns the author of it but creates no interaction events.
Interaction events arise when a word is deleted or restored as defined in Figure. 2.
Note that we generate a dyadic event only if active (i.e., the user who performs
the revision) is different from the target of the event and we generate a third-party
dominance event only if the active user, the source, and the target are three pairwise
different users.

author author
s
. ““ ‘1“
" *
1 “‘ “¢
1 ‘ “
[] K *,
s 3
: “" “"
3 s
active ", active %,
’ 1 ~ %
L4 . ~ .
Phd ", S ‘\
. . . b ~A‘
s
3
restorery € sassssssnsnasanass deleter restorer sssssssssssssssssnnas »deleter

Fig. 2: Edit events resulting from the deletion of a word (leff) and a word being
restored (right). Solid lines encode dyadic deference events by which the active user
re-does the target user’s edit. Dashed lines encode dyadic dominance events by which
the active user makes the target user’s edit undone. Dotted lines encode third-party
dominance assignments by which the active user re-does the source user’s edit that
has been made undone by the target user. After deleting a word w the user active
becomes deleter(w) and after restoring w user act ive becomes restorer(w).
Note that author(w) is only set when w is originally added and does never change
again.

The event potential. While iterating over the revisions of a page we do not only
consider events that happen but also the potential for such events. More precisely,
we keep track for each user B and for each of the dyadic event types x (that is, dyadic
dominance and dyadic deference) how many events of type x can have target B.
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Likewise, for each ordered pair of different users (A, B) we keep track of the potential
for third-party dominance events which a user C (different from A and from B) can
assign to the dyad (A, B).

The network of past events. While iterating over the sequence of revisions of a
page, we successively update six functions (called dyad-Ilevel attributes) defined
on ordered pairs (A, B) of different users. Three of these attributes count events of
the three types that actually happened on (A, B) and three of them (the cumulative
potentials) add up the number of events (of the three types) that could have happened
on (A, B) at the edit times.

Finally, to describe the past interaction on dyads (A, B) we consider, separately for
the three event types, the ratio of actually observed events divided by the cuammulative
potential for such events.* These ratios are between zero and one (including these
borders) and can be interpreted as probabilities: the past dyadic dominance ratio
on (A, B) is the probability that a randomly chosen word of B that could have been
made undone by A during the history of the page is actually undone by A. Similar
interpretations apply to past dyadic deference ratio and past third-party dominance
ratio. Henceforward, when we speak of past dominance, deference or third-party
dominance, we refer to these ratios.

4 Statistical model

Outcome variables. Whenever a revision r is performed by a user A, then A has
a certain potential to initiate events of the two dyadic types to various target users
B and A has a certain potential to initiate third-party dominance events on various
dyads (B,C).> The three outcome variables that we consider are the ratios of the
number of events actually performed in r divided by the respective potential for
such events. Thus, for each event type we use a binomial model where instances
are words that can potentially be changed, a “success” instance is such a word that
is actually changed in the revision, and a “failure” instance is such a word that is
left unchanged. The probability that a potential change occurs is specified in logistic
regression models with explanatory variables introduced below.

Explanatory variables. When modeling the probability of change events that could
happen in revision r, we use only information about past interaction resulting from
revisions that happened strictly before r. These explanatory variables are defined by
combinations of three dyadic attributes (past dyadic dominance ratio, past dyadic
deference ratio, and past third-party dominance ratio) on the configurations shown in
Figure 1. Specifically, for the degree variables we add up the attribute values of all
in-coming respectively out-going dyads incident to source respectively target. For the
transitive triad variables we sum over all users C (different from A and B) the product

4 Here we resolve 0 /0 to be equal to 0, since no event of that type could have happened so far on
such a dyad.

3 Here we speak of the potential for events in revision r. Note the difference to the cumulative
potential used for defining tie-weights in the network of past events.
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of the attribute value on (A,C) with the value on (C,B) and take the square-root of
this sum. For the cyclic triads we consider the dyads (C,A) and (B,C) accordingly.

To obtain better interpretable explanatory variables we divide them by their
standard deviation. With this normalization it is easier to compare the effect sizes of
the various variables. Since average probabilities are very close to zero (cf. Tablel),
we can interpret the estimated parameters in the following intuitive (not formally
correct) way: if we estimated a parameter 6 for the variable x when modeling the
dyadic dominance probability p, then (hypothetically) increasing x by one standard
deviation (that is by 1) multiplies the probability p by exp(0).

Empirical data. We analyzed the histories of a sample of ten articles from the
English-language Wikipedia, randomly chosen from the set of articles that have at
least 1000 revisions.® In March 2016 there are 56,042 articles (pages in the main
namespace that are not redirects) that have at least a thousand revisions. (Altogether
there are about 5 million articles; the mean number of revisions per article is just
86.) The ten sampled articles have together 12,719 revisions (disregarding successive
revisions by the same user) performed by 7,657 different users. We note that our

Table 1: Number of instances and non-null instances in the analyzed data.

dyadic dominance dyadic deference  third-party dominance

no. potential dyads 3,126,047 1,753,160 4,852,052
no. non-null dyads 37,823 21,411 21,335
dyad-density 1.21% 1.22% 0.44%
no. potential words 361,673,769 359,365,077 348,420,292
no. changed words 1,738,728 785,233 783,190
word-change density 0.48% 0.22% 0.23%

number of observations is not just ten since the unit of analysis is not the page but
the dyadic event. Table 1 gives the number of dyad-timepoints on which there could
have happened an event of the various types, the number of actual dyadic events,
the number of words that could have been modified, and the number of actual word
modifications. The approach to analyze 10 random pages (rather than just one) has
been chosen since it reduces the likelihood of accidentally analyzing a page with an
exceptional structure. The restriction to pages with at least a thousand revisions is
motivated by the consideration that hierarchy formation takes some time and also a
number of users that is not too small. What blows up the runtime of our analysis is
that we consider not only the actually occurring events but also those that could have
happened. However, we strongly believe that this is necessary since an observation
such as “user A deleted 10 of user B’s words” is meaningless if we disregard how

© These turned out to be the pages: Balika Vadhu; Ganymede (moon); Greed; Jay Park; List of
Hollyoaks locations; Mothra; Pea; Shiv Sena; Swimsuit; and The Third Man.
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many of B’s words user A did not touch and/or if we disregard all the other users
with which A potentially could have interacted but did not. The results reported in
the next section have been estimated to maximize the joint likelihood of all events
from all sampled pages.

5 Results and discussion

Dyad-level effects. Table 2 reports logistic regression parameters explaining the
probability of dyadic dominance by past interaction on the same and the reverse dyad.
In the first model, we observe that past dyadic dominance on (A, B) increases the
probability of future dyadic dominance on (A, B); thus, actors continue to dominate
their subordinates. However, we see that past dyadic dominance on the reverse dyad
(B,A) also increases the probability of dyadic dominance on (A, B); thus, subordinate
actors have a tendency to fight back which is a hindrance to hierarchy formation.
Likewise, we see that past deference on (A, B) reduces the probability of dyadic
dominance on (A, B) (as expected). However, past deference on (B,A) also reduces
the probability of dyadic dominance on (A, B); this makes the interpretation that
deference goes from lower to higher in the hierarchy questionable.

Table 2: Explaining dyadic dominance by past dyadic dominance and dyadic defer-
ence on the same dyad.

dyad model dyadic inertia  dyadic reciprocity
(Intercept) —5.427 (0.001)** —5.427 (0.001)*** —5.427 (0.001)***
dyadic dominance inertia 0.222 (0.000)**  0.115 (0.000)***
dyadic deference inertia —0.288 (0.002)*** —0.071 (0.003)***
dyadic dominance reciprocity 0.060 (0.000)*** —0.064 (0.000)***
dyadic deference reciprocity —0.093 (0.000)*** 0.030 (0.001)***
undirected dyadic dominance 0.127 (0.000)**  0.262 (0.000)***
undirected dyadic deference —0.243 (0.001)*** —0.321 (0.003)***
AIC 17,531,308.231  17,531,308.231  17,531,308.231
Num. obs. 3,126,047 3,126,047 3,126,047

¥ < 0.001, " p < 0.01, *p < 0.05

Looking more closely at the parameter sizes, we see that a dyadic dominance
event on (A,B) has two effects. First it increases the future hostility (likelihood
of dominance events) on (4,B) and on (B,A). This is consistent with a structural
balance interpretation of negative ties (and inconsistent with a status interpretation)
and has also been found by Leskovec et al. [11] who analyzed voting behavior of
Wikipedians. A second effect, however, is that a dyadic dominance event on (A, B)
increases the future dominance on (A, B) more than on (B,A), thereby increasing
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the relative dominance of (A,B) over (B,A). This second effect becomes more
transparent if we control for the increase in dominance activity on both dyads (A, B)
and (B,A) by defining a variable undirected dyadic dominance which is the sum of
dyadic dominance inertia and dyadic dominance reciprocity (normalized to standard
deviation one). In the second and third model in Table 2 we see that, controlling for
the undirected increase in dominance activity, a dominance event on (A, B) increases
the future dominance probability on (A, B) more than expected and that it increases
the future dominance probability on (B,A) less than expected. A similar result is
obtained for dyadic deference, where a deference event on (A, B) decreases the future
dominance probability on (A,B) more than expected and that on (B,A) less than
expected. We note that the three models in Table 2 are equivalent since their variables
are linear transformations of each other.

Summarizing this, a dyadic dominance event on (A, B) has two effects: a structural
balance effect increasing the hostility level on the undirected dyad {A,B} and a
hierarchical effect that shifts the relative dominance towards the direction (A, B). It
is likely that the experimentally found anti-reciprocity of dominance events among
chicken (e. g., [5, 15]) is due to the small network size. In larger and therefore sparser
networks it is likely that reciprocation of acts of dominance, albeit rare, would occur
with a higher probability than the low baseline probability of interacting at all.

We make similar findings when estimating the probability of dyadic deference
by dyadic effects (with the understanding that deference hypothetically points from
lower to higher). These results are not reported in this paper.

Table 3: Explaining third-party dominance by past third-party dominance on the
same dyad.

dyad model dyadic inertia  dyadic reciprocity
(Intercept) —6.196 (0.001)* —6.196 (0.001)*** —6.196 (0.001)***
tp dominance inertia 0.379 (0.000)***  0.391 (0.001)***
tp dominance reciprocity —0.022 (0.001)*** —0.740 (0.001)***
undirected tp dominance —0.025 (0.001)** 0.814 (0.001)***
AIC 9,721,545.325 9,721,545.325 9,721,545.325
Num. obs. 4,852,052 4,852,052 4,852,052

< 0.001, " p < 0.01, *p < 0.05

Table 3 reports logistic regression parameters explaining the probability of third-
party dominance by past interaction on the same and the reverse dyad. In contrast
to dyadic dominance, we see that third-party dominance is clearly anti-reciprocal:
controlling for the undirected increase in the event probability is here not necessary
although it strengthens the anti-reciprocity. This means that if a different user C states
that A dominates B, then the probability that C (or any other user different from A and
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B) later reverses this order decreases. Thus, third-party assigned dominance is more
consistent with the hierarchical interpretation than dyadic dominance. Apparently
bystanders can judge the dominance order among A and B more reliably than A or B
themselves.

Neighborhood-level effects (degree effects). We estimated models explaining the
probability of dyadic dominance on (A, B) by past interaction on edges incident to
A (source) and B (target). For space limitations, the estimated parameters are not
reported in this paper and we will only summarize the main findings. We find some
effects consistent with the hierarchical interpretation, such as a positive effect of
dominance outdegree source and dominance indegree target. However, we can also
find effects inconsistent with this interpretation, such as a positive effect of dominance
outdegree target (which implies that dominant users tend to get dominated). As in
the case of dyad effects, the effects of the degree variables (for dominance and for
deference) become consistent with the hierarchy-interpretation once we control for
the undirected degrees. We also controlled for the dyadic effects from Table 2 in the
degree model which did not change the findings qualitatively. We further estimated
the probability of dyadic deference events by degree effects. These findings differ
qualitatively from those obtained for the dominance probability (whether or not we
control for the undirected degrees) and make the interpretation of dyadic deference
pointing from subordinate to dominant more questionable.

We also estimated degree-models for third-party dominance (not reported in this
paper). Most effects in this model are consistent with the hierarchical interpretation
of third-party dominance ties. The exception is a positive effect of indegree source
which suggests that subordinates are more likely to dominate in the future. As
for dyadic dominance, controlling for the undirected degrees brings all effects in
accordance with the hierarchical interpretation. Controlling for the dyadic effects
from Table 3 in the degree model yields qualitatively the same findings.

Triad-level effects. Table 4 reports logistic regression parameters explaining the
probability of dyadic dominance on (A,B) by past interaction on two-paths of
the form (A,C),(C,B), forming a transitive triad, and on two-paths of the form
(B,C),(C,A), forming a cyclic triad. The first model reveals that the embedding of
(A,B) in a dominance two-path increases the probability of a dominance event on
(A, B), irrespective of whether the resulting triad is transitive or cyclic. Controlling
for the increase in dominance activity caused by a dominance two-path in any di-
rection (dominance triplet) reveals a preference for transitive over cyclic closure of
dominance ties—consistent with the formation of a linear hierarchy. Similar effects
result from two-paths of deference ties. Controlling for dyad effects and degree
effects (not reported in this paper), however, does not keep these effects stable.
Table 5 reports logistic regression parameters explaining the probability of third-
party dominance on (A, B) by past interaction on two-paths of the form (A,C), (C,B),
forming a transitive triad, and on two-paths of the form (B,C), (C,A), forming a cylic
triad. The first model reveals that indirect third-party dominance ties decrease the
probability of third-party dominance on the dyad (A, B) irrespective of the direction of
these two-paths. For transitive triplets, this contradicts the hierarchical interpretation
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Table 4: Explaining dyadic dominance by past dyadic dominance and dyadic defer-
ence on transitive and cyclic two-paths.

triad model transitive triad cyclic triad

(Intercept) —5.264 (0.001)"* —5.264 (0.001)"* —5.264 (0.001)***
transitive dominance triplet 0.149 (0.001)*** 0.049 (0.001)***
transitive deference triplet —0.362 (0.002)*** —0.045 (0.003)***

cyclic dominance triplet 0.027 (0.000)*** —0.013 (0.000)***
cyclic deference triplet —0.135 (0.001)*** 0.019 (0.001)***
dominance triplet 0.105 (0.001)***  0.156 (0.001)***
deference triplet —0.355 (0.002)*** —0.405 (0.003)***
AIC 18,958,234.850  18,958,234.850  18,958,234.850
Num. obs. 3,126,047 3,126,047 3,126,047

= < 0.001, % p < 0.01, *p < 0.05

Table 5: Explaining third-party dominance by past third-party dominance on transitive
and cyclic two-paths.

triad model transitive triad cyclic triad
(Intercept) —5.403 (0.001)** —5.403 (0.001)*** —5.403 (0.001)***
transitive tp dominance triplet —0.024 (0.001)*** 1.330 (0.002)***
cyclic tp dominance triplet ~ —1.792 (0.003)*** —1.760 (0.003)***
tp dominance triplet —2.259 (0.004)*** —0.040 (0.001)***
AIC 10075300.988 10,075,300.988  10,075,300.988
Num. obs. 4,852,052 4,852,052 4,852,052

< 0.001, % p < 0.01, *p < 0.05

but is consistent with a structural balance interpretation of dominance ties (an enemy
of an enemy is not an enemy). When we control for the dominance-reducing effect
of undirected two-paths, we find a preference for transitive over cyclic closure
(consistent with the hierarchical interpretation). As for dyadic dominance, controlling
for dyad and degree effects (not reported in this paper) does not keep these triadic
effects stable.

6 Conclusion

In this paper, we proposed methods to derive three types of interaction events from
co-editing Wikipedia articles. We analyzed whether local dynamic patterns for
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these events are consistent with a linear dominance hierarchy among the users.
The analysis in this paper revealed that past events can have two distinct effects
on future interaction: on one hand on the frequency of events on the undirected
dyad {A, B} and on the other hand on the relative dominance of (A, B) over (B,A).
The effects on the undirected dyads are often more consistent with a structural
balance interpretation of dominance events as revealing negative ties. The effects
on the directed dyads are often more consistent with a hierarchical interpretation of
dominance events. This finding is similar to one made in [11] where voting behavior
among Wikipedians was analyzed. We also showed that the effect on the event
frequency can obfuscate effects on the hierarchical ordering. This finding is similar
to one made in [10] where effects on the interaction frequency were separated from
effects influencing the sign of ties. The analysis in our paper also revealed that
the three different types of events show different levels of consistency with linear
dominance hierarchies. Most notably, third-party assigned dominance was the only
event type that is anti-reciprocal, irrespective of whether we control for a change
in the interaction frequency or not. On the other hand, dyadic deference was the
most inconsistent with the hierarchical interpretation. A promising approach for
future research is to link patterns of (failed or successful) hierarchy formation with
properties of the page, such as article quality. This would need a larger sample of
separately analyzed pages that show variation in their hierarchical structure and in
quality.
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Identifying Influential Spreaders by Graph
Sampling

Nikos Salamanos, Elli Voudigari and Emmanuel J. Yannakoudakis

Abstract The complex nature of real world networks is a central subject in several
disciplines, from Physics to computer science. The complex network dynamics of
peers communication and information exchange are specified to a large degree by
the most efficient spreaders - the entities that play a central role in various ways such
as the viruses propagation, the diffusion of information, the viral marketing and net-
work vulnerability to external attacks. In this paper, we deal with the problem of
identifying the influential spreaders of a complex network when either the network
is very large or else we have limited computational capabilities to compute global
centrality measures. Our approach is based on graph sampling and specifically on
Rank Degree, a newly published graph exploration sampling method. We conduct
extensive experiments in five real world networks using four centrality metrics for
the nodes spreading efficiency. We present strong evidence that our method is highly
effective. By sampling 30% of the network and using at least two out of four cen-
trality measures, we can identify more than 80% of the influential spreaders, while
at the same time, preserving the original ranking to a large extent.
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1 Introduction

Understanding spreading process in real world complex networks is of high impor-
tance due to the variety of applications that they occur, such as the acceleration of
information diffusion, the control of the spread of a disease and the improvement of
the resilience of networks to external attacks.

Key role to spreading dynamics plays the heterogeneity of nodes in terms of
spreading efficiency. High spreading efficient nodes are called influential spreaders,
representing the nodes that are more likely to spread information or a virus in a
large part of the network. Therefore, thorough research has been realized in order to
connect the topological properties of network nodes with their spreading efficiency.

In this paper, we deal with the problem of identifying the influential spreaders
of a complex network when we are not able to analyze directly the whole network,
either because of its large size or of our limited computational resources which
are necessary for estimating global centrality measures or other advanced nodes
properties.

Our approach is based on graph sampling, the problem of selecting a small sub-
graph which will preserve the topological properties of the original graph. In our
case, the central question is whether the top-k spreaders in the samples correspond to
the top-k spreaders in the original graph. Thus, a sampling method could be served
effectively as an influential spreaders identifier if and only if: (a) the fraction of
top-k common nodes in the samples and in the graph is on average sufficiently large
and (b) the rankings of these nodes in the samples are close to the original ranking
in the graph.

We address this question using Rank Degree [18], a graph exploration sampling
method which as proven outperforms other well known methods such as Forest Fire
and Frontier sampling [11, 10, 14].

We conduct extensive experiments in five real world networks using four cen-
trality metrics in order to rank the nodes, with respect to spreading efficiency. In
order to emphasize the efficiency of Rank Degree, we compare our method with
that of Forest Fire. The results show that Forest Fire is inadequate in identifying the
best spreaders, while our method is highly effective. Studying the samples of Rank
Degree, we are able to identify in every network, at least 80% of the influential
spreaders by sampling 30% of the network, using at least two out of four centrality
measures.

Finally, and more importantly, in four out of five networks, the rank correlation
between the top-k nodes in the samples and the top-k nodes in the original graph is
very large.

The rest of the paper is organized as follows. Sect. 2 describes the related work.
Sect. 3 presents our method. Sect. 4 describes the experimental analysis and pro-
vides information on the methods and datasets used and Sect. 5 concludes the paper.
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2 Related Work

The problem of identifying the influential spreaders in a network is a central subject
in complex networks analysis and therefore, several approaches have been proposed
in the literature.

Kitsak et al. [9] proposed the k-shell decomposition method [15, 16] as an influ-
ential spreaders identifier, showing that the k-core values constitute a more reliable
measure than degree centrality and betweenness centrality. One of the core results
is that the placement of a node (node global property) is more important than its
degree (node local property). Two nodes with the same degree but different place-
ment, where the one is connected with the periphery of the network and the other
with the innermost core will not have equal spreading efficiency. Thus, highly con-
nected nodes are not always the best spreaders, while less connected nodes but well
connected with the core of the network may strongly affect the spreading process. In
addition, Zeng et al. [19] investigated the limitations of the k-shell method and they
proposed a mixed degree decomposition procedure which performs more accurately
than the k-shell approach.

Chen et al. [2] proposed the local centrality, a semi-local centrality measure as
a tradeoff between the degree centrality (local measure) and the computationally
complex betweenness and closeness (the global measures). They showed that local
centrality is more effective to identify influential nodes than the degree centrality.

LeaderRank [13] is a ranking algorithm for identifying influential nodes in di-
rected social networks. LeaderRank is a parameter-free random walk algorithm
analogous to PageRank [1]. Moreover, Li et al. [12] proposed a weighted variation
of Leader Rank which outperforms LeaderRank. Furthermore, in [3] the authors in-
troduced ClusterRank a local ranking algorithm for directed graphs that takes into
account the nodes clustering coefficient and they proved that ClusterRank outper-
forms other approaches such as LeaderRank.

3 The Rank Degree Method

Algorithm 1 presents briefly the Rank Degree (RD) sampling method. RD is a
graph exploration sampling algorithm which outperforms several other well known
approaches. A detailed analysis of the algorithm is out of the scope of this paper
and we refer to [18] where the authors studied thoroughly the properties and the
efficiency of the algorithm.

The main characteristic of the method is that the graph traverse is based on a
deterministic selection rule, the ranking of nodes according to their degree values
(see Steps 9-10). The algorithm is specified by two parameters: (a) the number s
of the initial starting nodes (seeds) and (b) the parameter p which defines the top-
k, that is, the selected fraction of nodes from each ranking list. Hence, we use the
notation RD (p). The extreme case is for top-k with k=1, in other words when we
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Algorithm 1 Rank Degree Algorithm

: Set parameters: (i) s: number of initial seeds, (ii) p (see Step-10), (iii) target sample size x
: Input: undirected graph G (V,E)
Output: sample of size x
: Initialization: {Seeds} < s nodes selected uniformly at random
1 Sample <0
: while sample size < target size x do
{New Seeds} + 0
for Vw € {Seeds} do

Rank w’s friends based on their degree values

Selection rule:

(i) RD (max): select the max degree (top-1) friend of w

(ii) RD (p): select the top-k friends of w, where k = p - (#friends(w)),0 < p <1
11: Update the current sample with the selected edges (w, friend(w) on the top — k) along

with the symmetric ones
12: Add to {New Seeds} the top-k friends of w
13:  end for
14: Update graph G: delete from the graph all the currently selected edges
15:  {Seeds} <— {New Seeds}
If {New Seeds} = 0 then repeat Step-4 (random jump)

16: end while

—_

select only one node from each ranking list - that node having the maximum degree.
For simplicity, we refer to this case as RD (max).

The algorithm, starting from s initial nodes, performs s parallel graph traverses.
At each time step, the number of visited nodes (current seeds) varies and depends
on the set of selected nodes at the previous time step.

As referred to, in [18], the algorithm generates the most representative samples
for RD (max) and RD (0.1), i.e. when we select either the top-1 or the top-10% from
the ranking lists. In this paper, we concentrate our analysis to RD (max) studying its
performance with respect to influential spreaders.

4 Experimental Analysis

4.1 Methods

Sampling: Apart from our method, RD, we study the Forest Fire (FF), a well known
sampling method introduced by Leskovec et al. [11]. FF starts from a randomly
selected node (seed) w and at each step, the algorithm moves from the current set
of seeds to the next one as follows: from each node w in the set of current nodes, a
random number x is generated which is geometrically distributed with mean p (1 —
py). The parameter py is called forward burning probability which is set to 0.7.
Then, x outgoing edges are selected from the set of w's outgoing edges. The end
nodes of the selected edges constitute the next set of current nodes. At each step,
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the visited nodes are considered as burned and are removed from the graph. Hence,
they cannot be traversed for a second time. Finally, the process is repeated until a
sample of the requested size is reached.

Spreading efficiency: In the absence of ground truth information with regard
to nodes spreading efficiency, several approaches have been proposed in the liter-
ature such as the Linear Threshold and Independent Cascade models [7], as well
as the basic epidemic models Susceptible Infected Recovered (SIR) and Susceptible
Infectious Susceptible (SIS) [9, 2] which tend to simulate the spreading process in a
graph.

In this paper, we use local and global topological properties, centrality measures,
in order to estimate the nodes spreading efficiency in the original graph and in the
samples: (a) k-core decomposition, a subgraph with nodes of degree at least k (on the
subgraph). k-shell: the set of nodes that belong to the k-core but not to the K+ 1-core.
For the rest of the paper, when we refer to nodes k-core values we imply the max
k-shell that these nodes belong to, (b) degree centrality, (c) betweenness centrality
and (d) closeness centrality [5].

It has been proved that most of the centrality measures are positive correlated
[17] and also that some measures are less effected by sampling [4].

Sampling evaluation: We study the efficiency of the sampling methods with
regard to node influences using two measures:

(a) OSim [6], an object similarity measure (in our case the objects are the nodes),

the overlap between the elements of two ranking lists A and B (each of size k),

ANB
without taking into account their ordering. It is defined as OSim(A,B) = ! In

our case, the lists A and B correspond to the ranking lists 7g(rop —k) and rs(top — k)
which are computed as follows: for a given centrality measure we calculate the
nodes centrality values for both the original graph G as well as each of the collected
samples S and we rank the nodes accordingly (in descending order) creating the
ranking lists 7 and rg. Then, for a given k, we create the rg(fop — k) and rs(top —k)
collecting the top-k nodes of the ranking lists ¢ and 7s.

(b) Kendall tau [8], the well known rank correlation coefficient measure, with
which we measure the relative ordering between all pair of nodes in the two ranking
lists rg(top — k) and rg(top — k).

4.2 Data and Sampling Setup

We evaluate the efficiency of RD (max) as influential spreaders identifier in five real
world datasets, two of small and three of medium graph size (Table 1). We restrict
our analysis to undirected graphs, therefore we transform the directed graphs (wiki-
Vote and p2p-Gnutella30) to undirected, by applying to each edge the symmetric
one. In addition, we study the efficiency of FF - a well known sampling algorithm
which, contrary to RD, inadequately identifies the most influential nodes, even if it
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Table 1 Datasets

Graph egoFacebook wiki-Vote CA-CondMat p2p-Gnutella30 Email-Enron
Description Ego-net Wiki-net  Collaboration Net. P2P Net. Comm. Net.
Type Undirected Directed  Undirected Directed Undirected

# Nodes 4039 7115 23133 36682 36692

# Edges 88234 103689 93497 88328 183831

is producing representative samples with regard to some topological properties of
the graph.

For each dataset and each method separately, we collect 40 samples, per sam-
ple size, where the sample sizes are 10%,...,50%. In all experiments, the number
of initial seeds is defined by the 1% of the target sample size. For instance, for a
given graph G with 2000 nodes and target sample size 10%, the number of initial
seeds is 2. Moreover, we compute the OSim and Kendall tau for each top-k in-
terval separately. Therefore, we define two top-k intervals, the small top-k, where
k € [0.001,0.01] (i.e. one per mill to one percent) as well as the medium top-k,
where k € [0.01,0.1] (i.e. 1% to 10%)

4.3 Results

4.3.1 Effectiveness of Rank Degree

Top-k similarity (OSim): For a given graph G, top-k and centrality measure, we
calculate the OSim between the top-k nodes in G and the top-k nodes in each of the
40 samples separately.

Fig. 1 and Fig. 2 present the average OSim for RD(max) samples, of the small
and medium size graphs. Specifically, for each graph, for each top-k interval, and
for each sample size, we plot the average OSim values of the 40 samples, for
each centrality measure separately. The results for small and medium top-k (i.e.
k € [0.001,0.01] and k € [0.01,0.1]) are given in separate plots. For the sake of
clarity, only the sample sizes 10% and 30% are shown.

We observe that, in egoFacebook the samples size 30% maintain at least the
80% of influential spreaders in terms of k-core and degree centrality for small top-k
(Fig. 1(a)), while for medium top-k, the corresponding OSim values are larger than
90% (Fig. 1(b)). Moreover, from Fig. 1(c) (wiki-Vote), it is clear that all centrality
OSim values are higher than 70% for all sample sizes. In medium top-k (Fig. 1(d))
and for samples size 30%, the degree centrality and k-core have the largest OSim
values where in some cases are close to 100%.

In Fig. 2(a) (CA-CondMat), we can see that for small top-k, degree centrality and
closeness centrality are close to 80% with betweenness and k-core following. The
results are similar for medium top-k (Fig. 2(b)).
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Fig. 1 Average OSim per top-k. Small size graphs

In the case of p2p-Gnutella30 (Fig. 2(c)), k-core comes first for sample sizes
10% and 30% with closeness, degree centrality and betweenness following. For
medium top-k, three out of four centrality measures have OSim values larger than
80% (Fig. 2(d)).

In Email-Enron and small top-k, three out of four centrality measures have OSim
values larger than 80%. In almost all sample sizes and top-k intervals, the OSim
for k-core is close to 100% (Fig. 2(e)). Finally, the results for medium top-k and
samples size 30%, three out of four centrality measures have OSim values larger
than 90% (Fig. 2(f)).

Ranking similarity (Kendall tau): For a given graph G, top-k and centrality
measure, we apply the Kendall tau on the ranking values of the common nodes be-
tween the top-k nodes in the graph G and in a given sample S. Specifically, consider
two ranking lists rg(fop — k) and rg(top — k). First, we compute the intersection
R = rg(top — k)N rs(top — k). Then, we define the Rg(top — k) and Rg(top — k)
which contain only the ranking values from rg(top — k) and rs(rop — k) that corre-
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spond to the nodes in R. Finally, we compute the Kendall tau of Rg(top — k) and
Rs(top —k).
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Fig. 3 Ranking similarity: Average Kendall tau per top-k. Samples size 30%

Fig. 3 presents the average Kendall tau values for k-core and degree centrality for
small and medium top-k and samples size 30%.

We observe that in four out of five datasets the average Kendall tau values are
large, at least 0.7. Thus, there is a large positive correlation between the ordering of
the top-k nodes in the samples and the top-k nodes in the original graph.

For instance, in wiki-Vote and Email-Enron, for small top-k and top-k in [0.01,0.4],
the Kendall’s tau values are almost equal to one (Fig. 3(a) and Fig. 3(b)). Moreover,
in every top-k, the samples from all datasets except CA-CondMat preserve strongly
the relative ordering of the top-k nodes.

In the case of degree centrality, the results are similar. For instance, in four out of
five datasets and for any interval of medium top-k, the average Kendall values are at
least 0.8 (Fig. 3(d)).
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Fig. 4 Comparison of RD(max) and FF: average OSim RD(max) minus average OSim FF per
top-k. Samples size 30%

4.3.2 Rank Degree vs Forest Fire

We conclude the analysis comparing our method with the Forest Fire (FF). For each
top-k and for each sample size, we compute the difference between the average
OSim of RD(max) and the average OSim of FF. We present the results only for k-
core and degree centrality, as well as for samples size 30%. The results for the other
sample sizes and centrality measures are similar, hence we omit the plots.

Observing the Fig. 4 and taking into account Fig. 1 and Fig. 2, where we present
the average OSim between the original graph and all 40 samples, we conclude the
following.

In both small and medium datasets and for every top-k, the difference of OSim
values in terms of k-core and degree centrality is always positive. The range of
difference is roughly between 0.3 to 0.9 which shows that RD is more efficient than
FF as an influential nodes identifier.
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5 Conclusion

In this paper, we proposed a graph sampling approach to the problem of identifying
the influential spreaders in a complex network. Our approach is based on graph sam-
pling and specifically on Rank Degree, an efficient graph exploration sampling al-
gorithm. We experimentally analyzed the proposed method using several centrality
measures and studying five real world networks. The analytical experiments demon-
strate that our method can identify, with high accuracy, a large fraction of the most
influential nodes along with their original ranking in the whole graph. In future,
we intend to extend our analysis applying the SIR and SIS epidemic models that
will serve as ground truth information on the spreading efficiency of nodes. More
specifically, we will investigate the correlation between the centrality measures and
the spreading efficiency of nodes, as defined by the epidemic models in the original
graph and in Rank Degree samples.

Acknowledgements We thank Kyriaki Chryssaki for her helpful comments on the final manuscript.
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Influential Actors Detection Using
Attractiveness Model in Social Media Networks

Ziyaad Qasem, Marc Jansen, Tobias Hecking and H.UlIrich Hoppe

Abstract Detection of influential actors in social media such as Twitter or Facebook
can play a major role in improving the marketing efficiency, gathering opinions on
particular topics, predicting the trends, etc. The current study aspires to extend our
formal defined 7" measure to present a new measure aiming to recognize the actors
influence by the strength of attracting new attractors into a networked community.
Therefore, we propose a model of an actor influence based on the attractiveness
of the actor in relation to the number of other attractors with whom he/she has
established connections over time. Using an empirically collected social network for
the underlying graph, we have applied the above-mentioned measure of influence in
order to determine optimal seeds in a simulation of influence maximization.

1 Introduction

With the wide spread of social media networks nowadays, it has become possible
to acquire insights into and knowledge about a wide variety of more or less nu-
merous communities interacting through the Internet. Moreover, applying analytic
approaches to social media data can provide better-informed decision-making pro-
cesses in various fields like marketing, politics, education, etc. In fact, there is an
important aspect of such analytics, that is, the detection and characterization of influ-
ential actors in social networks. Various studies have suggested different approaches
and specific measures to solve the problem of influential actors detection.
Influential actors in social media have an effective role in information diffusion.
For instance, A viral marketing operation for a new product can be conducted by
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seeding the product in Twitter with a few elected influential actors who can influence
others in a way that might help in the rapid spread of that product.

T measure [13] provides a new type of influence in online social network in order
to emphasize on those actors who attract many outsiders to join the own community
in which a specific topic is dealt. For example, in Twitter those actors spawn many
retweets on a certain topic from people who have no previous contributions on that
topic.

In this paper, the robust promise of influential actors detection leads us to extend
T measure to present a new measure (H7T measure) for the detection of influential
actors which is based on quantifying the contribution of this actor to increasing the
size of the network by attracting new attractors of the specific subcommunity. In
other words, while T measure defines the attractiveness value of an actor through
evaluating the number of outsiders who joined to the community by this actor, HT
measure will refer to his/her attractiveness value through evaluating the importance
of those outsiders. In the evaluation section of this paper, we apply our measure to a
dataset based on Twitter communication around #EndTaizSiege (related to recent
events in Yemen). We compare our measure with 7', Katz centrality, indegree, and
betweeness measures in terms of how good these measures are if used to refer to the
influential actors in social media in terms to their ability to attract others to become
active in the information diffusion process.

The rest of the paper is organized as follows: Section 2 presents related research.
An overview of T measure approach is given in section 3, which also provides the
basic formal definitions. Section 4 introduces the implementation of our measure,
followed by the description of our datasets and the experimental results in section 5.
Section 6 deals with the performance of our approach in the influence maximization
problem. Finally, conclusions are drawn and an outlook for further research is
described in section 7.

2 Related Works

Social influence analysis has attracted considerable research interests in recent years.
A wide scheme of research focused on modelling and measuring influence and on
influential actors detection. Particularly online social networks such as Twitter are
of special interest. However, regarding the manifestation and identification there are
still open questions.

It could be shown from the study presented by Cha et al. [2] that applying
different measures can produce utterly different results when it comes to the task of
ranking actors according to their influence. They illustrated an in-depth comparison
of three measures of influence: indegree (number of followers of an actor), retweets
(number of retweets containing ones actor name) and mentions (number of mentions
containing ones actor name). They concluded that different measures can be used
to identify different types of influential actors. Popular actors with high indegree
were not necessarily influential in terms of spawning retweets or mentions and most
influential actors can hold significant influence over a variety of topics. Consequently,
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the way in which a network is extracted from social media content and the measure
of influence should be considered carefully with respect to the roles and type of
influence a one aims to reveal.

Qasem et al. [13] proposed a new approach which is related to the research
presented in [2] in the sense that it aimed for a clear formulation of social influence
and a methodology to produce an exact ranking of the actors according to the
definition. In concrete, Qasem et al. [13] introduced a new type of influence in
online social network to define those actors who attract many actors to join the own
community in which a specific topic is dealt. Based on this type of influence, a new
measure (T measure) has been proposed to define those actors.

In contrast to local measures that only take into account the direct neighbourhood
of an actor, there exist also recursive measures that determine the centrality of an
actor relative to the influence of its neighbours. A measure of influence proposed in
the early years of social network analysis, which is still of importance, is the Katz
centrality[7]. It accounts for the ability of an actor to spread information through a
network by the counting the number of paths the actors have to each other actor. In
addition, longer paths are weighted less than short paths.

Closely related measures are Eigenvector centrality for undirected networks and
PageRank for directed networks. These measures are recursive in the sense that
they calculate the centrality of each actor based on the centrality of its neighbours.
Adaptations to Twitter a based on link analysis are TURank (Twitter User Rank) [16]
utilizes ranking algorithm to present based on link analysis a new algorithm in which
influential actors are defined. TURank defines actor-tweet graph where nodes are
actors and tweets, and links are follow and retweet relationships. PageRank algorithm
is extended by TwitterRank [15] to detect influential actors in Twitter based on link
structure and topical similarity. Azaza et al. [1] proposed a new influence assessment
approach depending on belief theory to combine different types of influence markers
on Twitter such as retweets, mentions and replies. They used Twitter dataset of
European Election 2014 and deduced the top influential candidates. These ideas were
taken up in this work to assess the importance of an actor according to the potential
to attract new actors to join the network. Here, the attraction value of an actor can
be adjusted by the attraction values of the attracted actors achieve later on. In other
words, high attractors are those who influence others to become active in the Twitter
communication and also attract many others to do so.

Information diffusion in a network refers often to the influence in the spread of
information. Particularly in social media, influential actors can control the diffusion
of information through the network to some extent. Information diffusion is defined
as the process by which a new knowledge or idea spread over the social networks
by the means of communications among the social network actors [14]. The most
widely used information diffusion models are the independent cascade (IC) [3][4]
and the linear threshold (LT) [5]. These two models describe different aspects of
influence diffusion. The IC and LT models have been introduced by Kempe et al.
[8] to fix the problem of the influence maximization which search for those actors
whose aggregated influence in the social network is maximized. whereas Pei et al.
[12] provided strategies to search for spreaders based on the following of information
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flow rather than simulating the spreading dynamics (modeled_dependent results).
Furthermore, The features of identifying spreaders measures using independent
interaction and threshold models through empirical diffusion data from LiveJournal
are discussed in [11]. Morone et al. [10] proposed to map the problem of influence
maximization in complex networks onto optimal percolation using CI (Collective
Influence) algorithm.

Our work is related to the research presented in [13] in the sense that we aim to
define a new type of influence based on the attractiveness model in order to detect
those actors who attract new other attractors to participate the activities of the own
community. As well as, our study is related to the approach of [7] in the sense that
an actor is influential if he/she is linked from other influential actors. This new type
of influence led us to propose a new measure (H7T measure) to detect those actors,
and compare the results with other standard measures. In this paper, we evaluated
the performance of our measure in the information diffusion maximization problem
by selected sets of top actors based on HT measure and other sets which are defined
by T, Katz measure, and other standard measures.

3 Approach

The approach of T measure provides a new type of influence in online social network
in order to emphasize on those actors who attract many outsiders to join the own
community in which a specific topic is dealt. Thus, influential actors who are detected
by T measure are those actors whose tweets spawn many retweets in a way that leads
to an increase in the size of social network. T measure depends on the decomposition
of a topical dataset that is collected from a social network according to the time
period of collection. The basic idea of the dataset decomposition is to analyze a
specific event in social media after each slice of time. The aim is to define the actors
who affect the size of this event by attracting outsiders to participate. To be more
specific, the attractiveness value (T value) of the actor A in the slice time ¢ equals
the number of new attractors who joined the community in the slice time 7 4 1 by
establishing new connection with actor A.

To formalize our HT measure, we will enumerate here briefly some of the concepts
that are used to implement 7 measure.

The approach of T measure is based mainly on the decomposition of a topical
dataset that is collected from a social network according to the time period of
collection. This time period is referred to by the term P-period.

Definition 3.1 (P-period). P-period is a time duration of the data collection process
from social networks.

The definition above is applied to the streaming dataset obtained from online
social networks. If we have a historical dataset, P-period will be the period between
the oldest activity (in Twitter, the activity would be tweet, retweet, reply, etc.) and
the newest one in that dataset.



Influential Actors Detection Using Attractiveness Model in Social Media Networks 127

The social networks dataset in this approach is represented by a directed graph
which is refereed to by P-graph.

Definition 3.2 (P-graph). P-graph is a directed graph constructed from social net-
work data which have been collected during P-period.

Decomposition of a P-graph leads to decomposition of the P-period into slices of
time so that every subgraph is related to a slice. This slice is referred by P-slice.

Definition 3.3 (P-slice). P-slice is a time slice of P-period.
If all P-slices are equidistant, the P-slice is called EP-slice.
Definition 3.4 (EP-slice). EP-slice is a P-slice in case all P-slices are equidistant.

To ease the definition of subgraphs of this approach, some terms related to actors
according to P-slices are defined.

Definition 3.5 (P-actors). Let s1,s7,...s, be the P-slices. For every i such that 0 <
i < n, the P-actors A; is a set of all actors that joined the social network between the
P-slices 0 and s;.

Definition 3.6 (P-actors). Let sq,s,...s, be the P-slices. For every i such that
0 < i < n, the Ps-actors Ag; is a set of all actors that joined the social network between
the P-slices s;_1 and s;.

Figure 1 shows how the P-actors and Ps-actors are taken with respect to P-slice in
this approach. The figure displays the P-actors A3 and Fy-actors Ay, as an example.
A3 is the set of all actors who joined the community until s3 whereas Ay, joined
between P-slices s, and s3.

P-actors Ay interval

P,-actors A, interval
= 2

Fig. 1: P-actors and Ps-actors with respect to P-slices

The subgraphs used in this approach are defined as the following:

Definition 3.7 (P-subgraph). P-subgraph G;(A;,E;) is a directed subgraph of P-
graph which is aggregated until P-slice s;.

Definition 3.8 (S-subgraph). The i-th directed S-subgraph S;(A;,Ey;) is the sub-

graph of the directed P-subgraph G;(A;, E;) with E;, = {(a,b) : (a,b € Ay, ) or (b €
Ai—iand a € Ay; )} NE;
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Figure 2 shows the difference between P-subgraph and S-subgraph in this ap-
proach where # is the number of P-slices and 1 < i < n. P-subgraph G;_; is the
P-subgraph of the P-slice s;_;, and P-subgraph G; and S-subgraph S; are of the
P-slice s;.

P osubzraph G,_y Possbgrach 6 Ssubgrash 5,
-——y, st | 11 - 2 .
A A [‘ L\
o @ " - o
.

a

Belongto P-actors A;_;

-
B Belongto R-actors Ay
4= Communication occurred between the P-slices 0 and 5;_,

% Communicationoccurred between the P-slices s;_, and s;

Fig. 2: Directed P-subgraphs G;_ and Gj, and directed S-subgraph S;

In the next section, we will introduce the implementation of our measure based
on this approach.

4 Implementation

T measure tries to define those actors who attract many actors to the community.
Figure 3 shows how the attractiveness value of the actor A is calculated with respect
to T measure.

From figure Figure 3, T value of the actor A in the P-subgraph G(;_1) is equal to
its indegree value in the S—subgraph S;. Hence, The number of new actors joined the
community by the actor A.

T(Ag, ,) = indegree(As,) (1)
The indegree measure evaluates the number of neighbors of the actor A with order
1 (number of the immediate neighbors). In HT measure, we will increase the order
to include the neighbors with order m, where m is the maximum neighborhood order.
Thus, HT measure defines the attractors of attractors. Figure 4 shows the difference
between 7" measure and HT measure.
From figure 4, HT value of the actor A in the P-subgraph G(;_y) is equal to its
indegree plus the indegree of his/her neighbors with order m in the S—subgraph S;.

P subgraph G;_y P -subgraph G; - S-subgraph §;

- = /- - = ./
. .’ '_:2/ ‘\.b’“_- . }
A AR-F-- A

Fig. 3: T measure evaluation
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HT (A, ) =T(Ag, )+ Z indegree(as,) 2)
aEneighbars(Asl. m)
Where m is the maximum neighborhood order.
HT and T values of the actor A in whole P-graph G are calculated as following:

n—1

T(Ag) = ), T(Ac) 3)

HT(Ag) = Y HT(Ag;) )
|

Where n is the number of slices.

5 Evaluation

In this section, we will describe the evaluation strategy. Furthermore, the experimental
results on the dataset will be discussed in this section.

5.1 Evaluation Strategy

We gathered a dataset from Twitter via Twitter API from December 31, 2015, to
January 06, 2016. This Twitter dataset relates to the hashtag #EndTaizSiege (14,944
actors and 46,552 connections) that comprises a big connected component (containing
84% of actors), singletons (14%), and smaller components (2%).

Applying our approach leads to decompose P-graph constructed from Twitter
dataset into three P-subgraphs and two S-subgraphs based on three P-slices. As a
matter of fact, the time slicing has been estimated in accordance to the size of dataset
using an equal window size for each slice. Figure 5 shows how the P-period with
Twitter dataset #EndTaizSiege has been decomposed into equal window size so that
we get a fair division of the retweet activities for each time slice.

The directed weighted P-graph of our collected Twitter dataset is constructed
based on retweet activities so that actor a gets incoming connection from actor b if
actor b retweeted a tweet of actor a. The weight of connection refers to the number
of retweets between two connected actors.

P subgraph G;_,
P e cn
. ki " . @
o @, - :
A A "wa A

Fig. 4: HT measure evaluation

P -subgraph G S-subgraph S,
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5.2 Experimental Results

For our Twitter dataset, we applied HT measure to verify whether it can detect
influential actors. Table 1 shows the description of the top influential actors with
respect to HT', T', Katz centrality, indegree, and betweenness measures. The question
mark in the table 1 fields refers to an actor who is not a well-known as an influential
actor within the community. We notice here how the HT and T measures refer to
well-known influential actors within the community, or to the famous news accounts.
Unlike other measures, the top ten influential actors with respect to HT and T
measures are well-known within the community. In our case, the well-known actors
have been recognized based on a local expertise, where they are the most renowned
actors in the field of human rights and politics who continually traded their names
in the newspapers and news concerning the current situation in Taiz city in Yemen.
Their names have not been mentioned explicitly in order to protect their privacy.

Table 1: Description of top influential actors according to different influence measures
in Twitter dataset #EndTaizSiege

Political activist P2

Political activist P2

9

9

Rank HT T Indegree Betweenness Katz Centarlity
1 News Account N1 News Account N1 News Account N1 ? News Account N1

2 TV announcer T1 Journalist J1 Journalist J1 ? ?

3 Journalist J1 TV announcer T1 TV announcer T1 ? Human Rights Activist H1
4 Human Rights Activist H1|Television reporter R1 Journalist R3 Journalist J2 Journalist J2

5 Human Rights Activist H2|Human Rights Activist HI |Human Rights Activist HI|? ?

6 Television reporter R1 Human Rights Activist H2|News Account N2 ? Television reporter R1
7 News Account N2 News Account N2 Human Rights Activist H2|Human Rights Activist H3 |Journalist J1

8 |Journalist J2 Political activist P1 ? TV announcer T1 TV announcer T1

9 Political activist P1 Journalist J2 Political activist P1 News Account N1 ?

1

9

2000

S

Active retweets

Ve

i 2

Sy

-

f
Time [days]

Sz

S3

Fig. 5: Retweet activities over time in our Twitter dataset
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6 Information Diffusion

In our work, we study the information diffusion to compare our measure with other
existing measures in terms of how good these measures are if used to refer to the
influential actors in social media in terms to their ability to attract others to become
active in the information diffusion process. In order to assess how well the HT
measure is suited to uncover influential actors with respect to information diffusion,
we simulate the diffusion of information originating from a seed set of nodes through
the Twitter networks using the well-known independent cascade (IC) model [8].

In information diffusion, the IC model is proposed where the information flows
through cascade over the social network. In IC model, there are two terms are used
to describe the state of the actors. The actor who is influenced by the information
is called active, and inactive for the actor who is not influenced. The IC model
process starts with activated actors as an initial seed set . In step s, an actor a will
get a single chance to activate each currently inactive neighbor b. Actually, the
activation process is based on the propagation probability P of the actors links. The
propagation probability P of a link is the probability by which an actor can influence
the other actors. In Twitter, we proposed that actor a is influenced by actor b if
he/she retweeted from actor b in proportion to the tweets number of actor b. So, the
propagation probability P in IC model is based in our Twitter dataset on the link
weight divided by tweets number of target actor.

To compare the performance of actors sets selected by the HT measure with other
influence measures, we selected sets of top actors based on the HT, T, and Katz
centrality measures. As well as, we selected the sets identified by measures that are
known to be good heuristics for seed set selection, namely degree and betweenness
centrality [9].

6.1 Simulation of attraction processes with time-respecting paths

In this section,We will report results based on simulated attraction processes. To do so,
we adapt the IC model that is known to simulate the diffusion of information through
a network as described above. Information diffusion and attraction processes have
some commonalities but differ on various aspects. In traditional information diffusion
models such as the IC model, the network is usually considered as stable in the sense
that the set of nodes and the set of edges do not change over time. However, the nodes
changes their states “inactive” and “active” during the information diffusion process.
Attraction, as it is studied in this paper is similar in the sense that actors who are not
part of the community (i.e. do not have contributed a tweet) are inactive while others
are considered as active. On the other hand, the original IC model does not account for
the fact that the network grows when new actors become attracted to the community.
Thus, the IC model was adapted to take into account the creation times of the edges.
These time varying networks have special characteristics regarding reachability of
node pairs since a walk on the graph can only take edges with increasing timestamp,
which is known as the time-respecting property (see [6]). In this aspect, we added
a new activation rule to the IC model which is: the actor who is activated in time ¢
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cannot activate those actors who have been linked with him/her before the time ¢. To
explain this activation rule in more details, we define the following terms:

Definition 6.1 (Path-time). The path-time of each link in the network is the P-slice
number in which this link has been created.

Definition 6.2 (Activation-time). The activation-time of each activated actor is the
path-time of the link by which this actor has been activated.

Now, we can state that the actor a can not activate the actor b if the link from b to
a has a path-time later than the activation-time of the actor a.

Using this activation rule the simulation can be interpreted as an attraction process
were actors who are already part of the communities can attract others only if their
activity starts after the activator has become active.

Previous studies [13] have shown that a seed selection strategy based on indegree
yields similar results as a selection strategy based on the 7" measure. This is also
expected with respect to the high correlation between these two measures. However,
the benefit of the 7 measure that distinguishes it from other measures is that time is
explicitly taken into account. The experimental results in the next section support
the assumption that the 7 and HT measure can identify important attractors in time
varying networks while it boils down to indegree if time is neglected.

6.2 Experimental results

Here, we considered the dataset of #EndTaizSiege which is related to an organized
event in Yemen. Hence, we got a highly connected component that is suitable for the
application of our approach which is basically aimed to identify those actors who
contribute to attract others to participate in a specific organized event. We simulated
the information diffusion based on the IC model with time-respecting paths for seed
sets of sizes n = 1...25 which are generated from different influence measures. The
diagram in figure 6 shows the results of applying IC model on our Twitter dataset with
different seed sets which identified by different influence measures. Comparing with
other influence measure, we notice that the HT measure yield the best performance
in information diffusion under the IC model with time-respecting paths for the seed
sizes bigger than 11. Additionally, we statistically verified the results of simulation
for each seed set using T-Test. In case of n > 11, the differences between HT and T
measures are significant. For example, results for the seed set 12 show that there is
a significant difference in the score of HT measure (M =1259.95; SD = 291.1128
conditions; t(19) = 3.678480757; P = 0.000). On the other hand, the differences
among HT and indegree mearures are also significant in case of n > 12.
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Fig. 6: IC model under time-respecting paths with different influence measures over
Twitter dataset #EndTaizSiege

7 Conclusion

In summary, we presented in this paper an extended approach to detect influential
actors based on the attractiveness model that is introduced with 7" measure. Our
approach detects those actors who contribute effectively to increase the size of social
network by attracting new attractors to the community in which a specific topic is
dealt. Through experiment results we presented through how our proposed measure
HT referred to the influential actors in Twitter dataset. Furthermore, we showed
through experiment and statistical tests that the best performance has been yielded
by HT measure in maximization of influence problem when we took the time into
account.

Our current work in extending and improving this approach focuses on an elab-
oration of our measure with more datasets and more results, and describe it on
multi-layer networks. Furthermore, we plan to develop an efficient general strategy
for time slicing to determine the time period decomposition into time slices, and the
role of time slicing in making HT measure far better than existing measures.
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Analyzing Multiple Rankings of Influential
Nodes in Multiplex Networks

Sude Tavassoli and Katharina A. Zweig

Abstract In many networks, different centrality indices reveal conflicting rankings
of the nodes. The problem is worsened, if the same nodes occur in different but
related network layers, i.e., in multiplex networks. The main concern in the analysis
of multiplex networks is maintaining the inherent nature of multiple layers in the
explorations. Therefore, in this paper we discuss a method combining a fuzzy operator
with a visualization, that allows the exploration of a node’s centrality with respect to
different network processes on different layers of the same network simultaneously.
Our empirical results indicate that an airport transportation network allows for a
smaller number of different behaviors than social networks in a medium sized law
firm and a large sized tweet dataset.

1 Introduction

Freeman already pointed out in 1978, that the concept of centrality can be charac-
terized in different ways using a number of centrality indices [8]. The wide range
of proposed centrality measures confirms the success of this simple concept in the
analysis of static network structure [4, 9, 11, 13, 16]. However, for a long time, there
was neither a full, non-trivial characterization containing all known centrality indices
nor a theory that explained when to use which of the dozens of centrality indices [14].
Finally, in 2005, Borgatti stated that centrality indices predict the importance of a
node with respect to a process on a given infrastructure [3], e.g., spreading a ru-
mor [5] or propagating an infectious disease [10]. Thus, for any single process, only
one centrality index fits, according to Borgatti [3]. The question that arises is what
happens if multiple processes take place in a network and if one wants to analyze the
centrality of the given network? In our previous work, we proposed to use a fuzzy
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operator based on at least one, a few, almost all, or all the processes in that set [17].
It has been elaborated in a study that the complicated nature of complex systems
entails going beyond the analysis of single-layer networks and considering multi-
layer or multiplex networks where agents interact using multiple types of relations
or interactions [12]. Therefore, a wide range of recent studies suggested methods
to analyze these networks, such as structural measures [2], link assessment [1], and
centrality ranking in multi-layer networks [16]. Similarly, the question that arises is
how to deal with a node’s centrality index in multiple layers, or—worse— multiple
centrality indices of a node in multiple layers. First approaches simply aggregated
the result of centrality indices over the layers, e.g., by averaging over all indices in
all layers. However, the aggregation of the classical centrality indices can result in
misleading results [6, 16] and suppresses possibly interesting information.

In our recent studies [17, 18], we considered the evaluation of nodes’ centrality
as a Multi Criteria Decision Making (MCDM) problem. In that setting, several
normalized centrality indices play the role of multiple criteria and nodes were
considered as alternatives; if a node gets a high normalized index of centrality, it
obtains a high satisfaction value of the corresponding criteria. The best solution
among the alternatives can be selected with respect to the chosen multiple criteria
which are, e.g., the normalized classical centrality indices: Degree, Betweenness,
Closeness, and Eigenvector. Likewise in this paper, we analyze the influence or
importance of nodes with respect to multiple centrality indices but in multiplex
networks.

1.1 Research questions

Considering multiple aspects of centrality based on a set of network processes
of interest, brings up the question of how conveniently the influence of a node
can be analyzed with respect to at least one process, most of them or all of them
within a layer and over multiple layers. In most studies, a regular average over
multiple centrality indices and/or over the layers is employed. Building the average
is convenient, but it has been suggested that it is not an ideal option when multi-layer,
interconnected, or multiplex networks are concerned [6, 16]. In addition, it misses
the information whether one node is especially important for at least one of the
network processes, or whether there is a node that is never very influential, but at
least moderately influential for all network processes.

Thus, our research questions are the following: (1) Do rankings based on a set
of centrality indices rather correlate or conflict? (2) If they conflict, how can the
different aspects of centrality be explored for each node within one layer? (3) How
can the different aspects of centrality be explored for each node within all layers
of interest? (4) How can the patterns of centrality rankings of nodes be analysed
within all layers? We show how one kind of visualization can help to understand
conflicting centrality indices rankings. For this, we consider the normalized centrality
indices themselves as multiple criteria in a decision making problem. We then use a
fuzzy operator to find the best solution, i.e. the most influential node, based on the
possibly conflicting centrality indices. Finally, we propose two measures that allow
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us to partition the nodes into the different groups and to explore the nodes that have
a similar pattern of centrality rankings.

2 Definitions, data, and methods

A multiplex network is defined as follows: it is a network with |M| layers M =
{1, 2, -+ ;g } where each layer /; itself is a network comprised of |N;| nodes and
|E;| edges. Each edge set E; represents a different type of relation or interaction,
and in almost all multiplex networks some nodes are contained in multiple layers.
Let d;(v,w) denote the distance of two nodes in layer /; which is defined if and only
if v,w € N;. The degree deg;(v) is defined as the number of edges it is contained
in layer /;. The closeness centrality close;(v) of a node is defined as the sum of all

distances of v to all other nodes in N;. The betweenness centrality berw;(v) is defined

as Y ien; 8552 ,.(,V) , where &;,(v) denotes the number of shortest paths between s and ¢

that contain v and J;, denotes the number of all of their shortest paths.

2.1 Data sets
We use the following three multiplex network data sets:

1. The Europe Airlines dataset is a multiplex network dataset which has been
developed by Cardillo et al. (2013) [4]. The dataset contains an undirected and
unweighted network comprised of 37 layers where each layer corresponds to an
airline in Europe, including high cost airlines (Lufthansa, British airways, and
Air France) and low cost airlines (Airberlin, Ryanair, and Easyjet). Each node
represents an airport and two nodes are connected if there is at least one direct
flight between them. For the experiments in this paper, we use the three layers of
low cost airlines, which share 20 airports.

2. Law firm data set is a 3-layer multiplex network provided by Lazega (2001) [15]
in the study of how 71 attorneys of a law firm go forward on the same task based
on their social ties which namely represent seeking advice (directed relationship),
co-working, and friendship. In the first layer, a node is connected to the other
nodes to whom he/she might go for taking advice on a task. The second layer of
network contains the ties between two nodes if they are co-workers. Note that,
the advisor is not necessarily a co-worker or wise versa. In the third layer, the
nodes are connected if they socialized outside the firm.

3. A tweet network called the Higgs Boson dataset, compiled by De Domenico et
al. (2013) [5], includes four directional network datasets. The nodes are the users
and there is a directed edge between a pair of nodes in the first three networks, if
one user replied to another one, retweeted the post, or mentioned the other user
in his/her tweet about the Higgs particle. The fourth network contains the social
interactions of the nodes for being friends/followers. Our analysis is restricted to
the biggest, strongly connected component of each of the first three networks,
which have 127 nodes in common.
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2.2 Identification of influential nodes as an MCDM

As discussed earlier, a node might be considered central for some network processes
but not for all, even within a single layer. This problem becomes even more complex,
if the centrality of multiple layers is concerned. We consider the analysis of the
different normalized centrality indices (degree, betweenness, and closeness) of a
node within one layer as an MCDM problem. An MCDM tries to find a satisfying
solution among alternatives with respect to multiple, possibly conflicting criteria—as
is the case for most centrality indices that almost never agree perfectly on the ranking.
The nodes are considered as the alternatives in this decision making where the best
solution (the most influential node) can be selected based on the satisfaction of either
at least one criterion, most, or all of them or anything in between. Fuzzy operators
provide a means to scale between these extremes in a seamless way, guided by some
parameter.

Maximum Entropy Ordered Weighted Averaging is one of the fuzzy operators
proposed by Yager to solve an MCDM problem [7, 19, 20]. He assumes that the
extent to which a criterion is met is expressed by a value between 0 (no satisfaction)
and 1 (full satisfaction) and considered various ways of aggregating these possibly
conflicting values into a single result, which can then be used to rank all alternatives.
He stated that the aggregation of multiple criteria in a decision making problem for a
solution can be scaled between two extreme cases of pure OR and pure AND. In the
pure OR, the maximum value of satisfaction obtained from any criteria has the most
important role in the aggregation. In the pure AND, the role of the minimum value
of satisfaction among the criteria determines the aggregation. The OR operator thus
represents the situation in which at least one criterion with the best satisfaction value
is enough to give an alternative the highest rank and the AND operator represents a
situation in which all the criteria needs to be satisfied to result in a high rank. Yager
showed that anything between these two extreme cases can be represented using
proportional linguistic quantifiers such as a few, most, and almost, as introduced
by Zadeh [21]. For each alternative x, MEOWA operator uses A(x), the vector of
its n satisfaction values, where all values are between O and 1. Then, these values
are sorted non-increasingly in vector B(x). Note that the order of the criteria is in
general different for each of the alternatives! The aggregation is then computed as
the scalar-product of a weight vector W and B(x):

).«(611702,"' aan) = ZWJ B(x)j
J

The weight vector itself is obtained using the following function based on some
parameter § [7]:

W= ———.

i ;!:1 . B H
The resulting weights are always between [0, 1] and their sum is equal to 1. It can be
easily seen that high values of 8 lead to a weight vector that gives a weight close to
1 to the first position of the sorted vector B(x) j» 1.e., the result is dominated by the
maximum satisfaction value. This is considered to be a high orness - it is enough if

one criterion is strongly satisfied. A high, negative value of 3 favors the last position
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in the sorted vector B(x);, i.e., the least value. This is considered a high andness.
Note that for f = 0, the weight vector contains 1/z in all positions, i.e., an average
of the satisfaction values is computed. For all values of 8, an orness measure denoted
by € is defined by Yager [7]:

Y- —

i=1 Z’}:, Pt

For the B-values of —20 and 20, the orness equals 0 and 1 respectively. The orness
is 0.5 for B =0.

3 Experimental Results

3.1 Air-transportation network

Via the air-transportation network, different centrality indices are of interest: a direct
property indicating importance is the number of flights reaching a city, as measured
by the degree—it can be assumed that it correlates with the number of people wanting
to go there (by a specific airline). Another indicator of importance is the average
distance to an airport which is directly proportional to its closeness. It might be
interpreted as the ease by which an infecting disease reaches this airport. Finally, the
betweenness centrality is associated with a network process that uses shortest paths;
it is directly proportional to the average fraction of shortest paths that would be lost
if that airport was shut down, between any two airports taken at random. For twenty
airports shared between all three layers of low cost airlines, these three centrality
indices were measured in each layer and normalized by the maximum and minimum
observed values for the corresponding index.

The first question to be addressed is that whether the rankings regarding the chosen
centrality indices actually conflict or whether they correlate strongly. Figure 1a shows
a pairwise scatter plot of two of the chosen centrality indices. While there is a general
positive correlation, there are always conflicting views on the same node. Thus,
an analysis with a fuzzy operator is meaningful and can be used to explore these
conflicts in a convenient manner. Figure 2a shows, for each of the shared airports
and each of the three low-cost airlines Airberlin, Ryanair, and Easyjet, the airports’
ranking position within each of the layers for different values of . By concentrating
on all curves of the same color, a comparison of within-layer influence regarding the
three chosen network processes is possible, as shown in the following. In the layer
of Airberlin, it can be seen that the airports of Palma de Mallorca and Kos Island
obtain the highest and the second highest rank among the airports within the layer,
independent of f. Faro airport ([0.48,0.107,0.72]) is also an airport with an almost
stable ranking position, but there are always nodes with even higher values. In the
high orness (right side of the plot), for example, it is located lower than the airport
of Alicante with the normalized centrality values of [0.44,0.098,0.732], because
Alicante’s last value is a tad higher than Faro’s last value. But to the left side of
the subplots (high andness), the ranking of Alicante is demoted, since its smallest



140 Sude Tavassoli and Katharina A. Zweig

AirBerlin Advice Mention
1.00 1.00- 1.00
0.75- o ¢ 0.75- 0.75
-
0.50- 2.e 0.50-
= 0.50
0.25- § 025- . 0.25 Pl of %
= pu gk Nkl s RF TR
0.00- & | | | | 0.00- sdlomibad B4 coPalle | = 000 { itk
000 025 050 075  1.00 000 025 050 075  1.00 000 025 050 075 1.0
Easyjet Coworker Reply
1.00 1.00 . 1.00 .
0.75 075- 4 075
.
050- @ o 050- * e 050
' {1
0.25- 4 0.25- 0.25 4
- g e T T A
0.00- # | | | | 0.00- SRS, . : © 000- ohsitine
000 025 050 075  1.00 000 025 050 075  1.00 000 025 050 075 1.0
Ryanair Friend Retweet
1.00 1.00- 1.00 .
075 0.75- 075
0.50- o 0.50- % 0.50
[ ; .
0.25- 8 0.25- e s ™ 0.25 s coin
H _...'.- s L = .:-?-'. L 3
0.00- = | | | | 0.00- Sube? M afPe s BESEL, 00 000 BhWed e
000 025 050 075  1.00 000 025 050 075  1.00 000 025 050 075  1.00
® betw_close 4 deg_betw = deg_close ® betw_outclose 4 deg_betw = deg_outclose @ deg_outbetw 4 deg_outclose = outbetw_outclose
(a) Europe Airlines dataset (b) Law firm data set (c) Tweet network

Fig. 1: The correlations between the three normalized centrality indices are depicted
for each layer of three multiplex networks respectively.

value of satisfaction (0.098) is less than that for the Faro airport (0.107). In the layer
of Easyjet, the airport of Gatwick always occupies the highest rank, independent
of the fB-value, i.e, its ranking pattern is similar to London airport in the layer of
Ryanair. As mentioned, in the layer of Ryanair, not very surprisingly, London is first
with respect to all chosen network processes, while, maybe more surprisingly, the
airports of Alicante and Madrid are always second and third. We can also use the
same visualization to understand the influence of one node (airport) with respect to
all three airlines and all three network processes of interest. The very first observation
is that there is no airport that is most influential in all three layers at the same f—it
seems that the low-cost airlines rather partition the market than share it. However,
the airports of Malaga and Alicante are always among the top 6 influential nodes in
all three layers.

In order to address the fourth research question, we use AAgg, which measures
the maximum difference in ranking positions fixing a layer and ALayers, which
measures the maximum differences in ranking positions fixing a f-value. First,
we obtain the minimal rank of node v within layer L; over all B-values and de-
note it by minRank(v,L;) and obtain maxRank(v,L;) accordingly. Then, Aagg(v) :=
max{maxRank(v,L;) —minRank(v,L;)|1 <i < |L|}; alarge value of AAgg means the
centrality indices where more conflicting. Note that, the maxRank(v,L;) can be found
in a B-value in the range of [—20,0) or in [0,20]. For the categorization, we count
the number of times that the maxRank among |L| layers is obtained in a $-value in
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Fig. 2: (a) Rankings of some airports shared between the three layers of airlines using
the different values of . (b) Categorizing of the shared nodes (20 airports in total)
using two proposed measures of AAgg and ALayers.

[—20,0). If the measured frequency (FmaxRank(v) > k), then —Aagg is assigned to
the node v, otherwise AAgg; this partitions the nodes into two groups. In the first
group, the nodes’ least centrality value among three indices is high enough to give
them a high rank in the high andness and in the second group—above the horizontal
line— the nodes’ maximal centrality index value is high enough to prioritize them in
the high orness.

The maximal differences among all layers for node v for any f3-value can be
measured using maxRank(v, B), which is the maximal rank of v based on any layer
and minRank(v, ) is defined as minimal rank for any f-value. The overall maxi-
mum differences of node v is then defined as ALayers(v) := max{maxRank(v,3) —
minRank(v,3)|B € I'}, where I' is a set of B-values. A large value of ALayers indi-
cates, the node v is more influential in one or two layers and not influential in the rest.
In the categorization, if the max value has been obtained in a §-value in [—20,0),
then —ALayers is assigned to node v, otherwise A Layers; this again partitions the
nodes using a vertical line into two groups. We choose k = 2 as the number of layers
in the used multiplex networks is only three.

As shown in Figure 2b, for instance, Madrid airport obtains Aagg = 2, which
indicates that this airport has almost stable ranking fixing one layer using different
aggregation strategies and its maxRank-values have been found in at least two layers
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towards the high orness. Instead, it has a high difference of ranking among all layers
(ALayers = —16), i.e., very central in two layers and not central in the rest. Its
maximum difference has been found in a 8 value toward the high andness. The
interesting point of this visualization is that we observe the nodes that have similar
ranking patterns considering multiple layers. For example, Madrid and Kos Island
have similar patterns considering both AAgg and ALayers. London and Barcelona
are located in two different groups. London often obtains the maximum rank in the
high andness and in contrast, Barcelona achieves it in two layers in the high orness,
but, they both obtain positive ALayers-values. Madrid and London airports are
exactly located in opposite groups.

3.2 Law firm data set

In the law firm data set, one important network process is again the direct influence
someone might have on other people, as quantified by the degree centrality. Regarding
communication flows in small groups, the betweenness centrality might again reflect
the influence of a person. Since we also have directed relations in this data set, the last
network process of interest is the average minimal number of steps to give a message
to another person—as quantified by the out-closeness, the analogous, directed version
of the classic closeness. Figure 1b shows that the different centrality indices have
very different ideas about who is most influential with respect to the network process
they represent.

In the layer of Advice as shown in the Figure 3a, node 1 is among the three most
influential nodes with respect to all three normalized indices of [0.442,0.114,1]—it
is also interesting to see that the degree, the number of people seeking advice from her
or him, is not maximal. It achieves a maximal value in the out-closeness. The other
top ranks in this layer are node 26 in the highest place with the indices of [1,1,0.037]
(maximal betweenness) and node 24 in the fourth place: [0.767,0.557,0.042], also
based on a high degree. Note that the node’s lowest satisfaction value at the out-
closeness is really very small. This gives node 24 a medium to high rank when
the ranking considers the node’s influence with respect to all network processes of
interest. In the layer of Coworker where a lawyer (as a node) is connected to the
other nodes if he/she spent time with them on a law case. Interestingly, node 24
and 4 which we already analyzed in the Advice layer, are among the top 2 in the
high orness with respect to their normalized centrality indices of [1,1,0.332] and
[0.632,0.41,1], respectively. Another interesting case is node 3 which is one of the
nodes with a sharp decreasing from the high orness to the high andness. It turns out
that this node has the least number of coworkers but in terms of being indirectly close
to other coworkers of coworkers, he/she obtains a much larger value [0,0,0.703].
Thus, when at least one criterion is enough, the corresponding lawyer is one of the
top 10 influential persons in the law firm, but both, on average and when all network
processes are considered, this node gets the least ranking position. As can be seen in
Figure 3b, the number of nodes with almost similar ranking patterns as node 3 is not
small in the top right category. In the layer representing friendship, in the high orness,
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Fig. 3: (a) Rankings obtained using the different values of 3-parameter for some
selected nodes out of 71 nodes in all three layers of relations. (b) Categorizing of the
71 nodes using two proposed measures of AAgg and ALayers.

nodes 1 and 24 are top two nodes with the normalized indices of [0.259,0.011,1]
(maximal out-closeness), and [0.889,0.341,0.186], respectively. However, node 1 is
one of the nodes in this layer that has one of the smallest minimal satisfaction values
and thus its rank drops significantly for the high andness.

3.3 Tweet network data set

A tweet network, especially of a very large size, definitely supports direct influence as
measured by the degree, but in our view it is not likely to support any network process
that uses shortest paths and assumes that all pairs of nodes want to communicate
with each other or learn of each others’ interest with the same frequency. However,
the closeness and betweenness centrality indices assume exactly this: equal need
of communication along shortest path between all pairs of nodes. However, for
consistency with the other data set and as a pure demonstration, we stick to the
normalized indices of degree, out-betweenness and out-closeness. Again, these
centralities do not correlate very strongly (s. Figure. 1c).
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Fig. 4: (a) Rankings obtained using the different values of f-parameter for some
shared nodes between the three layers of the Higgs Boson dataset. (b) Categorizing
of the 127 shared nodes using two measures of AAgg and ALayers.

We use the degree of these 127 nodes obtained in the fourth layer as an additional
information for the exploratory analysis, i.e., the number of their friends/followers
on Twitter. This additional information allows for another aspect of the different
centrality indices in the different layers of the Tweet network: it seems that there is no
obvious correlation between the number of direct followers and their centrality with
respect to various aspects of communication on Twitter, as detailed in the following.
In the Mention layer, nodes 2, 59, and 96 are among the top 10 nodes, but their
number of followers varies between as little as 322 (node 96) and 33,664 (!) friends
(node 59). This is a very interesting result as the number of direct friends should be
assumed to correlate strongly with the number of mentions or replies, but it is not
necessarily the case, as can be seen here. Nodes 15 and 28 have a similar situation
as the last cases. Although node 15 has a very large number of friends/followers
(11,880) —about 40 times larger than the other— they stay among almost similar range
of ranking positions with respect to mentioning the other users in their re-tweeted
tweets. Similarly, but less extreme results can be seen on the Reply layer, where
nodes 103, 26, and 46 show similar rankings despite the fact that node 103 has about
3 and 5 times more friends than nodes 26 and 46, respectively. Vice versa, nodes 40
and 46, both with about 500 friends/followers, show distinct behaviors, especially
with respect to operators with a high andness. In Figure 4b, nodes 2 and 103 have
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similar patterns of ranking and thus located in one category and similarly, nodes 28
and 15 placed in the top left group close to each other.

4 Summary

In this paper, we investigate the influence of the nodes in three different multiplex
network data sets each of which contained a three-layer network and in each layer,
multiple network processes of interest can occur. Since the centrality indices corre-
sponding with these network processes result in conflicting rankings, we propose to
use a fuzzy operator that scales between emphasizing the result of either at least one
or all centrality indices. By comparing the curves for different values of 8 of one
node in all layers of interest, the overall importance of a node for different network
processes in different but related network structures can be explored. Then, using
two proposed measures in a visualization, the overall ranking pattern of nodes can be
analysed. For the air transportation network, we basically see two different behaviors:
either, the airport has almost the same centrality for all network processes or it is a
very influential node in one or two airlines and unimportant for the remaining one(s).
In the second network data set, the centrality indices were much more conflicting
that resulted in more different ranking behaviors. In the third network dataset we find
that the number of direct followers is not necessarily correlated with other aspects
of communication on Twitter and the exploration shows interesting individuals who
are influential with respect to various, possible network processes despite their low
number of direct followers. In general, the method reveals that centrality indices
are not easily interchangeable because they produce quite different rankings. By
correlating the new insights with external variables, it might even be possible to find
out whether it is a better strategy to copy other peoples’ behavior or to complement
it, i.e. whether the important positions in a network are rather shared by more or less
the same nodes or whether they are partitioned onto different nodes. The answer to
this question will be left to future works.
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Preserving Sparsity in Dynamic Network
Computations

Francesca Arrigo and Desmond J. Higham

Abstract Time sliced networks describing human-human digital interactions are
typically large and sparse. This is the case, for example, with pairwise connectivity
describing social media, voice call or physical proximity, when measured over
seconds, minutes or hours. However, if we wish to quantify and compare the overall
time-dependent centrality of the network nodes, then we should account for the
global flow of information through time. Because the time-dependent edge structure
typically allows information to diffuse widely around the network, a natural summary
of sparse but dynamic pairwise interactions will generally take the form of a large
dense matrix. For this reason, computing nodal centralities for a time-dependent
network can be extremely expensive in terms of both computation and storage; much
more so than for a single, static network. In this work, we focus on the case of
dynamic communicability, which leads to broadcast and receive centrality measures.
We derive a new algorithm for computing time-dependent centrality that works
with a sparsified version of the dynamic communicability matrix. In this way, the
computation and storage requirements are reduced to those of a sparse, static network
at each time point. The new algorithm is justified from first principles and then tested
on a large scale data set. We find that even with very stringent sparsity requirements
(retaining no more than ten times the number of nonzeros in the individual time
slices), the algorithm accurately reproduces the list of highly central nodes given
by the underlying full system. This allows us to capture centrality over time with a
minimal level of storage and with a cost that scales only linearly with the number of
time points.
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1 Introduction

In network science, centrality measures assign to each node a value that summarises
some aspect of its relative importance. Such measures arose in the social sciences, but
have now become very widely used by researchers who wish to summarise important
features of large, complex networks [5, 14, 19]. Because matrix representations of
networks are typically sparse, and because centrality measures usually involve the
solution of linear systems or eigenvalue problems, it is feasible to compute centrality
measures on a current desktop computer for networks with, say, a number of nodes
in the millions.

Our focus in this work is the case of time-dependent network sequences [8].
Such data sets may be regarded as three-dimensional tensors, where, along with the
(i, J) coordinates that capture pairwise connectivity, we also have a third coordinate
that represents time [1]. These types of connections arise, for example, when we
record human-human digital interaction through social media, telecommunication or
physical proximity. In [7] the concept of a dynamic communicability matrix was intro-
duced, which converted the time sequence of networks into a single two-dimensional
array, with (i, j) element summarising the ability of node i to communicate with
node j, using the time-dependent sequence of edges recorded in the data. From this
matrix, it is straightforward to compute centrality measures:

e dynamic broadcast centrality takes large values for nodes that are effective at
distributing information,

e dynamic receive centrality takes large values for nodes that are effective at
gathering information.

In a case study on Twitter data, this approach was seen to be successful, in the
sense of correlating well with the independent views of social media experts [10]. It
was also found to outperform the crude alternative of simply aggregating all edges
into a single static network that forgets the time-ordering of the interactions; see
[12] for further discussion. Tests in [4, 13] also showed that dynamic broadcast
centrality can be effective at quantifying the potential for the spread of disease across
time-ordered interactions.

However, as we explain in the next section, the computation of dynamic broadcast
centrality can be expensive in terms of both storage and computation, as a result of
inevitable matrix fill-in as temporal information accumulates. Our overall aim here is
to address this issue by deriving a new algorithm that delivers good approximations
to the original dynamic broadcast centrality measure while retaining the benefits of
the sparsity present in the time slices.

We note that other approaches to computation of node centrality for time-
dependent networks have been put forward. For example, [15, 16, 17] made use
of paths rather than walks, which, for our purposes, leads to an infeasibly expensive
algorithm. In [18] a block-matrix approach was suggested which allows centrality
measures for static networks to be applied. However, as mentioned in [12], that
formulation does not fully respect the arrow of time.
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2 Background and Notation

In this section we recall some definitions and notation that will be used throughout.
Let#) <t <--- <ty be an ordered sequence of time points and let {9["] }2”2 0=
{(V¥, &)} be a time-ordered sequence of unweighted graphs defined over n nodes.
A graph is said to be unweighted when all its edges have the same weight, which
can thus be assumed to be unitary. Consider the adjacency matrices {A[k] }ﬁ”z 0=

{(ay;])} € R™" associated with these graphs at times {f }*L;, whose entries are
defined as

Ja_ ) rif (i) el
i) 0 otherwise.

In [7] the concept of a dynamic walk of length p was introduced to extend to
the temporal case the well-known concept of a walk of length p in static networks.
Loosely, we have a (possibly repeated) sequence of p + 1 nodes connected by edges
that appear in a suitable order. More precisely, a dynamic walk of length p from

node i to node i, consists of a sequence of nodes iy, iy,...,i,+1 and a sequence

of times 7,y <t,, <--- <1, such that a,[;"}’LH #0form=1,2,..., p. We stress that
more than one edge can share a time slot, and that time slots must be ordered but do
not need to be consecutive.

The concept of dynamic walk was used to motivate the definition of the dynamic

communicability matrix

oM = (1 — AN (1 — APy~ (1 — aaAMH T (1a)
which can be defined equivalently via the iteration
oM = o=1l(1— @AM)=1 k=0,1,....M, (1b)

where Q"1 = I is the identity matrix of order n, 0 < o0 < 1/p*, and p* =

max {p(A)} is the largest spectral radius among the spectral radii of the ma-

trices {A"}. Here the free parameter o plays the same role as in the classical Katz
centrality measure for static networks [5, 9, 14]. For simplicity, our notation does not
explicitly record the dependence of Q upon «.

To avoid overflow in the computations, a normalisation step Q — Q/|Q| should
follow each iteration in (1b). Throughout this work we use the Euclidean norm.

The requirement o < 1/p* ensures that the resolvents in (1a) exist and can be
expanded as (I — aAM) 1 = Y,—o(aA k)7 1t follows that the entries of Q| provide
a weighted count of the dynamic walks between any two nodes in the networks using
the ordered sequence of matrices A%} Alll ... A weighting walks of length p by
a factor a”. Hence, (Q);; is an overall measure of the ability of node i to send
messages to node j.

Using the dynamic communicability matrix one can define and compare the
broadcast and receive centrality of nodes by taking row and column sums of the matrix
OMI | respectively. The broadcast centrality of node i is defined as bl[.M] = el oM,
where e; € R” is the ith column of 7, the superscript “7” denotes transposition,
and 1 € R" is the vector of all ones. Similarly, the receive centrality of node j is

defined as rB-M] =1TgMle ;. It is straightforward to show that the latter satisfies a
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lower-dimensional, vector-valued iteration given by
rld=1TQlW = ¢kl — @AM~ k=0,1,...M,

with rl= !l = 1. The receive centrality of the nodes can thus be updated at each step by
solving a single sparse linear system whose coefficient matrix is the latest network
time slice. In particular, this means that we do not need to store and update the
full matrix QX! to recover the receive centrality of nodes at level k. By contrast,
to compute the broadcast centrality vector, pMl — Q[M]l, we need access to the
current dynamic communicability matrix at each step. Intuitively, this difference
arises because,

e given a summary of how much information is flowing info each node, we can
propagate this information forward when new edges emerge: receive centrality
cares about where the information terminates, but

e a summary of how much information is flowing out of each node cannot be
straightforwardly updated when new edges emerge: broadcast centrality cares
about where the information originates.

Our focus here is on the natural setting where data is processed sequentially,
with the centrality scores being updated as each new time slice A arrives. As
confirmed in Section 4 on a real data set, we then face a fundamental issue with the
use of the dynamic communicability matrix: although the time slices are typically
sparse, ol generally evolves into a dense matrix. At this stage, computing dynamic
communicability from (1b) requires us to store a full O(n?) matrix and solve at each
subsequent time point a corresponding full linear system. In the next section, we
therefore develop and justify an approximation where matrix fill-in is controlled so
that the benefits of sparse matrix storage and computation are recovered.

3 Sparsification

To create a sparse approximation, @k], to the dynamic communicability matrix, oM,
we first observe that the original iteration (1b) includes some traversals that are
not very meaningful, e.g., repeated cycles i — j — i — j — i — j using the same
undirected edge at the same time point. We thus use an “at most one edge per time
point” alternative to (1b) so as to avoid considering these types of walks and similar
ones:

oM = k(1 oAy, k=0,1,....M, )
with Q\[’l] = 1. As discussed in [7], this matrix product can be interpreted in terms
of network combinatorics; at each time step a dynamic traversal can either wait, as
described by the identity matrix I, or take a current edge, as described by latest adja-
cency matrix, A In the latter case, the length of the walk (i.e., the number of edges
used) has increased by one, and thus we multiply the corresponding matrix by ¢. An
alternative interpretation is that we are using a second order Taylor approximation for
each of the resolvents appearing in (1b). This simplification is likely to be reasonable
when either (a) o is chosen to be small, so that short walks are favoured, or (b) the
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powers of Al do not grow rapidly with k (which is typically the case for sparse
matrices).

As the time index k increases in (2) the number of nonzeros cannot decrease, and
the matrix Q[k] will generally fill in. In order to produce a sparse approximation we
will proceed iteratively. At each step we threshold the matrix at a level 6,—this type
of approach has been widely used in large scale machine learning, data mining, and

signal processing; see, e.g., [2, 3] and references therein. Hence, for k =0,1,... .M
we redefine the iteration to be
N Olk—1] (K]
ILQ*=1 (1 + aAl) fg, |12
where Ql~!) = I and for any nonnegative matrix C = (c; j)» the matrix [C|, arises

from setting to zero all entries where ¢;; < 6.

Remark 3.1. The matrices {Q[k] W o are non-negative by construction.

3.1 A little twist

From a network science perspective, the approach just presented has a strong limi-
tation. Imagine a user i of Twitter who remains inactive for a long time after each
tweet. After such inactivity, the thresholding may zero out all entries in the ith row of
one of the matrices Q[k]. From that time, the ith row of the matrices appearing in (3)
will always be zero, and no subsequent activity of node i will be registered by this
approach.

To mitigate pathological behaviour of this type, we modify (3) so as to keep
track at each step of the behaviour of those nodes corresponding to zero rows in the
iteration matrix. Our final version of the iteration goes as follows:

oM = 10K (1 + @A) g, +mAM, k=0,1,....Mm, (4)

foAllowed by normalisation, where @_1] = I, my is the smallest nonzero entry of
L[ OF (1 + oAl | g, AK = aWMAK and W = diag(wi, w2, ..., w,) € R™" is
a diagonal matrix whose entries are

o Jitel 0%+ aal) Jg1=0
"] 0 otherwise.

The matrix AKX keeps track of those edges that appear at step k and would otherwise
get lost. Indeed, the matrix product WK AKX returns a matrix that has nonzero entries
(if any) only in the rows corresponding to those nodes that have either been inactive
until step k or have broadcast very little information (which thus was thresholded in a
previous iteration). The penalisation by « is added because we are taking one hop in
the network. Finally, the multiplication by m; comes from the fact that a poor choice
of the parameter o may compromise the results. Indeed, the entries of A% may be
too large with respect to those appearing in LQ["_” I+ OCAV‘])J 6, thus leading to a
complete reshaping of the rankings. We refer the reader to Section 4 for an example
of this issue.



152 Francesca Arrigo and Desmond J. Higham
Remark 3.2. Tt is possible for the contribution added by miAK to be zero. This
happens when the zero rows in | Q¥ 1(1+ aAl)| g, correspond to nodes that are
not broadcasting information at step k.

Remark 3.3. Note that if AKl = 0 for some &, then QV‘] = Q[k_l],just as QK = glk—11,

3.2 On the thresholding parameters

The thresholding parameters {6, } are a key part of the sparsification process. Before
explaining how we select these values in applications, we first describe the types of
contributions that are removed from the approximation to the dynamic communica-
bility matrix when the thresholding is performed. There are two key circumstances
where the thresholding has an effect:

o the value of o dominates the contribution given by the products of the adjacency
matrices, i.e., there are not too many walks of length p between the two nodes
under consideration;

e the information has not moved from a certain node for a long time and the
normalisation step has made the corresponding contribution smaller than the
other entries.

In both cases, we are dismissing information that has little potential, as it is not
diffused much. Clearly, an over-stringent selection of the parameters 6; may lead to
an excessive penalisation of these two types of behaviours. Our strategy is to make an
initial choice for the maximum number of nonzeros that we will allow in the matrices
Q[k], for k=0,1,...,M. Then, as the iteration proceeds, the thresholding value 6y, is
chosen so as to make | QK1 (1 + aAl¥) | ¢, have approximately this desired level of
sparsity.

We point out that the maximum number of nonzeros one wants to allow has to be
at least n +nnz(A%), where nnz(A[)) is the number of nonzeros in the matrix A%
Consequently, 6y < o. Indeed, if this is not the case, then we will have 6; > « for
all k and therefore that Q[k] = [ for all k.

3.3 Cost Comparison

We are now in a position to quantify, at least approximately, the computational
benefits of using Q[k] in (4) rather than the exact matrix Q¥ in (1b) to compute
dynamic broadcast communicability. Because the exact representation 0¥ becomes
full in general, it follows that:

o We have reduced storage requirements by a factor of n.

e We have reduced the dominant computational task at each time step from solving
n sparse linear systems to multiplying two sparse matrices. For general complex
networks with no exploitable structure, if a standard iterative scheme is used to
solve a sparse linear system, each matrix vector multiplication will cost O(n)



Preserving Sparsity in Dynamic Network Computations 153

and thus the total cost to compute Q¥l by solving n such linear systems will be
at least O(n?). Instead, the overall cost of computing the product of Q[k_l] times
Al is O(n), if we assume that there is a fixed number of active nodes at each
time point. Thus, the cost has been reduced by a factor of n.

3.4 Comparing top K lists

The main goal of this work is to match the broadcast ranking of the nodes in an
evolving network using a sparse approximation to the dynamic communicability
matrix. As usual in network science, we are not interested in matching exactly the
rankings of all nodes in the network, but rather to accurately capture the top K < n
most influential broadcasters. Although there is no perfect way to summarise and
compare rankings, it is clear that generic correlation coefficients like Pearson’s
correlation coefficient or Kendall’s tau have the major drawback in this context that
they treat entire vectors, and hence all network nodes.

In order to compare the top K entries of two ranking vectors, an appropriate
index is the intersection similarity [6]. This quantity is defined as follows: given two
ranked lists x and y, consider the top K entries of each, which we denote xg and yg,
respectively. Then, the top K intersection similarity between x and y is defined as

K
isim (x,y) = 11{; o, ®)
where A is the symmetric difference operator between two sets and |S| denotes the
cardinality of the set S. When the sequences contained in x and y are completely
different, the intersection similarity between the two is maximum and equals 1. On
the other hand, when isimg (x,y) = 0 for all K, then the two lists are identical.

It happens sometimes that the two lists differ in the order, but not in the set of
labels of the nodes appearing in them. Behaviour of this type can be easily spotted
by looking at the quantity

Xk Ayk
lk(x,y) = %;

If ¢k (x,y) = O for some K we know that xx and yx are permutations of the same set
of nodes.

K=23,...

4 Numerical tests

We have tested the new algorithm on large scale data sets involving email, voice
call and on-line social interaction, and with various values of the parameter ¢.. Due
to space limitations we give representative results with the email data set Enron
[11]. Here, a directed edge from node i to node j indicates that at least one message
was sent from i to j in a one day period, including to, cc, and bcc. We have
information over 1138 days starting 11 May 1999 for 151 Enron employees, Many
of the adjacency matrices are empty, meaning that there are days during which no
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emails are sent. The largest spectral radius is p* = 4.17, thus the upper limit for o is
0.24.

We allowed for a number of nonzeros proportional to N = cn, where n = n +
ﬁ M ;nnz(AM) and ¢ = 10. This is motivated by our aim to work only with
matrices whose sparsity level is compatible with that of the individual network time
slices. Further testing has shown that the performance is not sensitive to c.

4.1 Adaptive Scaling

Before testing the performance of (4), in this subsection we discuss the effect of
including the multiplication by my. In Section 3 we argue that setting my; = 1 for
all k=0,1,...,M in (4) may lead to poor results. Clearly, this is not always the
case, but, as we will see here, this choice together with a compounding choice of
the downweighting parameter ¢, may result in a complete misplacement of the top
ranked broadcasters in the network.

We compute the broadcast centrality vector 0M1 and our approximation vector
QW 11 for seven different values of the downweighting parameter:

o 0.01 0.1 0.25 0.5 0.75 0.85 0.9

p*p*l p*p*’ pr prp*
Figure 1 displays the evolution of the intersection similarity between the top K =
1,2,...,20 entries of the vectors Q[M]l and Q[M]l versus K for the different values
of . The left plot contains the results when my = 1, while the right plot contains the
results when my, is adapted by setting it to be equal to the smallest nonzero entry of
the matrix | Q%11 + aAl) | g, at each iteration.

my =1 varying my,
1.2 0.2
1
= 0.15
& 08
= i
S 06 e 0.1
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Fig. 1: Evolution of the intersection similarity isimK(Q[M}l,é[M]l) versus K, for
different choices of the downweighting parameter . Left: m; = 1. Right: my is set
at each iteration as the smallest nonzero entry of |QF1(1 4+ aAl)] 6,- Note the
difference in vertical axis range.

These results show that when my = 1 the intersection similarity between the two
vectors can be maximum even when comparing only a few top ranked nodes for & as
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Table 1: Top 10 ranked nodes: exact, approximate and with aggregate out-degree.

oMy 48 67 147 73 1350 137 49 9 139
oMy 48 67 147 73 1350 137 49 9 139
out-degree|67 50 141 13 48 69 107 147 73 70

small as 0.5/p*. The right hand plot in the figure shows how an adaptive choice of
my can work successfully over a wide range of o choices.

4.2 Centrality Approximation

We now assess the effectiveness of iteration (4) at approximating the broadcast
centrality rankings. Using o = 0.01, the number of nonzero entries in the dynamic
communicability matrix is nnz(Q™!) = 21097. Note that n> = 22801, so the matrix
is 92.5% full. Figure 2 scatter plots the resulting approximation to the broadcast and
receive centrality vectors against OMI1 and 17 QM| respectively. We observe a good
linear correlation at the high end for both cases, indicating that our method correctly
identifies important nodes. The number of nonzeros in the final approximation matrix
Q[M I'is = 1676, so the level of sparsity has been reduced to around 7.4%.

] BROADCAST CENTRALITY ) RECEIVE CENTRALITY
10 : : : 10 ; ; .
10° 10° K
<
o' .
= LY S o
= 107 - & 107 =2
< o+ =¥ o
LRI 02 g
1073 102
103 102 10" 10° 10’ 1073 1072 10" 10° 10!
QM1 17 QM)

Fig. 2: Comparison of exact (horizontal) and approximate (vertical) centralities.

In Table 1 we list the top 10 ranked nodes according to the broadcast centrality.
The first row contains the true result, obtained by ranking the nodes according to
OMI1; in the second row we list the top 10 broadcasters according to the ranking
derived from @M] 1 and, finally, the last row displays the result obtained when the
nodes are ranked according to their aggregate out-degree: ZkMzoAV‘]l. As a — 0,
the ranking obtained using the dynamic communicability matrix approaches that
obtained using the aggregate out-degree; see, e.g., [4, 7]. Clearly, however, o = 0.01
is not close enough to zero for this effect to be observed.
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Tables 2-3 contain the values of isimg(Q™1,0M1) for K = 1,2,...,20 and
(x(OM11, Q1) for K = 2,3,...,20. We see that the new method correctly orders
the top 11 broadcasters in the network and correctly identifies the top 20.

Table 2: Intersection similarity between the top K = 1,2,...,20 ranked nodes in
0M11 and QM.

K 1 2 3 4 5 6 7 8 9 10
isimglf0O O 0 O O O O O O O

K 11 12 13 14 15 16 17 18 19 20
isimg | 0 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 3: Evolution of /¢ (Q™1, @M]l) for K =2,3,...,20.

K 2 3 4 5 6 7 8 9 10
lk 0O 0 0 0 0 0 0 0 O
K11 12 13 14 15 16 17 18 19 20
lk|0 0.08 0.150.14 0.07 0 0.06 0 0.05 0

5 Conclusions

Time-dependency adds an extra dimension to network science computations, po-
tentially causing a dramatic increase in both storage requirements and computation
time. In the case of Katz-style centrality measures, which are based on the solution
of linear algebraic systems, allowing for the arrow of time leads naturally to full
matrices that keep track of all possible routes for the flow of information. Such a
build-up of intermediate data can make large-scale computations unfeasible. In this
work, we derived a sparsification technique that delivers accurate approximations
to the full-matrix centrality rankings, while retaining the level of sparsity present in
the network time-slices. With the new algorithm, as we move forward in time the
storage cost remains fixed and the computational cost scales linearly, so the overall
task is equivalent to solving a single Katz-style problem at each new time point.
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Flows of Knowledge in Citation Networks

Benjamin Renoust, Vivek Claver and Jean-Francois Baffier

Abstract Knowledge is created and transmitted through generation. Innovation
is often seen as a generative process from collective intelligence, but how does
innovation emerges from the blending of accumulated knowledge, and from which
path an innovation mostly inherit? A citation network can be seen as a perfect example
of a generative process leading to innovation. Inspired by the notion of “stream of
knowledge”, we propose to look at the question of production of knowledge under
the lens of DAGs. Although many works look for the evaluation of publications,
we propose to look for production of knowledge within a framework for analyzing
DAGs. In this framework inspired by the work of Strahler, we can also account for
other well known measures of influence such as the #-index. We propose then to
analyze flows of influence in a citation networks as an ascending flow. We propose an
efficient dynamic algorithm for integration with modern graph databases, conducting
our experiment with the Arxiv HEP-TH dataset. Our results validate the use of DAG
flows for citation flows and show evidence of the relevance of the A-index.

1 Introduction

From the ancient times, knowledge passes from individuals to others leading at each
step to more discoveries and innovations. In modern times, with the industrialization
of research, it has become key to track this production of knowledge [16, 27]. Indeed,
it is important for the newly produced innovation to state on which ground it stands,
so peers can judge of the quality of the proposed innovation. An innovation must cite
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its influential sources to give credit to the work it was inspired from and to state its
differences with the competing methods. This is one principle at the heart of the peer
reviewing system enabling and validating the publication of new knowledge.

This process of citing sources is very important because it makes explicit the
transmission of knowledge from prior works to an innovation [5] — and we can
consider each new scientific publication as a container of an innovation. Thankfully,
this production of scientific knowledge can be easily captured in a citation graph. In
this graph, nodes are publications citing other publications. This citation relationship
is oriented and corresponds to a borrowing or derivation of knowledge, and we
suspect that the impact of a publication can be captured in this graph. The production
of knowledge would then be represented as a growing process in a dynamic network.

Key for countries and organizations in modern science, the study of the production
of knowledge is mostly considered from partial indicators to establish rankings and
compare scientists. This gave rise to the development of many measures deriving
from sociometrics [28] including age, field, and other cues. Three major indicators
are often used: the number of citations, the impact factor [25] (which is a time-
related average number of citations of a collection) and the A-index [19]. These are
popular indicators used for the evaluation of scientists, however they can be subject
to controversy [24] and are designed to reflect only the productivity of a scientist
rather than measuring the production of knowledge.

One reason these indicators’ popularity is their simplicity in terms of computing.
However, when previous network analysis was seen as too complex to deploy, modern
graph databases have now grown to ease the analysis of dynamic networks [7].
Inspired by the seminal work from Strahler [26] and from Hirsh [19] we propose
to bring a fresh look at the production of knowledge based on the analysis of flows
in Directed Acyclic Graphs (DAGs). This view is not limited to the production
of indicators but allows a more in-depth analysis of the process and diffusion of
knowledge. The traditional indicators are very effective and it is important that our
framework allows to establish them, while being easily extended.

We first introduce the Strahler numbers [26] and the #-index [19] in a generalized
flow framework, and how those two notions belong to one greater notion of flow, and
introduce our ascending flow — modeled on the notion of flow of knowledge. We
will then discuss parameters of this ascending flow to put it in relation with classical
measures. We propose a dynamic algorithm that allows for quick update. We finally
run experiments on a publicly available dataset, the ArXiv HEP-TH [15].

2 Related works

The study of the production and transmission of knowledge has attracted quite many
scholars in the domains of social and economical science [17], with for example
a focus on the population at the origin of production [29], and of transmission to
business [14]. These studies come a posteriori when observing controlled domains,
with well known sociometric indicators. We are instead interested in the modeling of
the production and diffusion of knowledge.
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Many interesting attempts for modeling the production and diffusion of knowledge
are actually focused on the producer of knowledge themselves, such as in multi-agent
simulation [9, 10]. In these models, the agents are actually interacting to produce
knowledge, and the properties of the resulting interaction network of agents are the
focus of analysis. The agents can actually be tuned to produce different resulting
networks, simulating real world policies [23]. Even on real social networks, the
topology of the networks of the people producing knowledge is the main focus of
complex network research [11], because the focus is often to maximize diffusion in
such network [1]. In contrast, our focus is on the information produced itself and
how it relates to previous works.

A good model for this is the citation graph. It mostly apply to academic research,
but have found its way in complex network research. Numerous works actually focus
on communities [8], and the characterization of the dynamics of the citation graphs
[15]. The closest to the spirit of our research would be the work by Hummon and
Dereian [21] who studied the main paths in the citation network in order to extract
backbones and areas of interest. The question of the efficient implementation of these
cues has been the focus of a previous contribution [4]. An extension of Hummon and
Dereian’s original work has actually been applied to the study of the development of
the h-index [22]. These methods are focused on the path produced by citations and
use them as a base for bibliometrics, without capturing the global flow of information.
We propose in contrast a natural interpretation of flows in DAGs that can easily
capture the same measures used for main path analysis.

One of the most cited work in scientometrics is the Hirsch index [19], globally
known as the h-index. It originally applies to the authors, and is designed to measures
both the quantity and the quality of the authors’ production. It was rapidly followed
by numerous variants and extensions [28]. The most famous possibly is the g-index
of Egghe [13] that is the largest number such that the g articles with the most citations
receive at least a total of g2, averaging the importance of each article. Hirsch [20]
proposes a more restrictive version called 4-index, normalized to domain or age.
Other variants could be mentioned (such as Bucur et al. [6]), but each is designed
with specific goals. All-in-all, h-index based measures are measures to analyze the
productivity of researchers, but do not allow for the in-depth analysis of production,
in contrary to main path analysis approaches.

Our work roots its contribution in the analysis of flows in DAGs. Traditional
max-flow approaches are quite far from what we define here, because nodes are
always sources of information and edges have infinite capacities — we may be
closer to multicommodity flows [2]. Instead, we mostly take our inspiration from
a different notion of flows, in river streams, as defined by Strahler [26]. Limited to
binary trees, this notion has seen a few extensions [3, 12, 18] with applications to
graph visualization. These versions use flows to highlight and extract most relevant
paths in DAGs and trees and relatively place elements one to another. We will use
this approach and adapt it to the production of knowledge.

In this work we propose to join the different views on knowledge production in
a recursive framework. In section 3, we place in this framework different measures
such as the h-index and Strahler number. Section 4 introduces our proposition of
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a flow that captures the production of knowledge: the ascending flow. Finally, we
provide experimental comparisons on the ArXiv HEP-TH dataset in section 5.

3 Preliminaries

We consider in our setting a citation graph G = (V,E) in which a node v € V
represents a publication, and a directed edge, hereafter an arc, e(a,b) € E is created
when the article a cites an article b. We consider the graph as being directed acyclic
(or DAG), although real-world data may introduce cycles, this is a marginal case that
we will discard in our study.

In this setting, an author, a journal, proceedings or books can be modeled as col-
lections of publications. Hence, by observing the collective impact of the collection
we can characterize the influence this set of publications. In other words, in our
citation graph formalism, collections are only sink nodes that can be sourced from
the publications themselves. In this work, we will focus on measuring the impact of
individual publications only, that can be trivially reported to authors and collections.

Definition 3.1. For a publication c, its neighborhood N(c) is the set of all the publi-
cations referring to c. The size of N(c) is simply its in-degree d~ (c).

From its definition, the s-index applies in general trees of depth 3 and can actually
be seen as a modified version of the Extended Strahler numbers [3], which generalize
Strahler numbers [26] — limited to binary trees — to general trees. In this modifi-
cation, a root node (e.g. an author) does not increase from his maximum valuated
nodes, but instead gets weighted by the maximum Extended Strahler number of his
direct descendants (i.e. the publications).

Strahler numbers have been designed to define the size of river streams based
on a hierarchy of dependent streams. Transmission of knowledge is very similar in
that sense with publications being tributary to prior works they inherit from, and
becoming in turn sources for later works — the h-index then captures the latter
quantity. However, we want a finer measure which could capture the impact of a
publication across all citations it generated.

We defined above our citations graphs to be DAGs, and fortunately, Strahler
numbers have also been extended to DAGs [12, 18]. Herman et al. [18] proposes
a generic framework to compute the importance K of nodes in DAGs — including
Strahler numbers — such as:

¢, ifNv)=0
F(K(s1),....K(sp)) si € N(v) o.w.

c designates a constant for terminal cases (leafs, often ¢ = 1), F is an application
of the neighborhood of v. s; represents the successors (or a; ancestors) of node v.
This framework is nothing but a generic recursive framework, but it allows us to
redefine in it other measures. In this context, counting the number of citations would
only require to modify the application F(N(v)), such as F(N(v)) = [N(v)| =d~ (v).
Similarly, the Strahler number of a node v is then defined as:

K(v) =K(N(v)) = e
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Fig. 1: Ascending flow algorithm: step by step

Lifd~(v)=0
F(N(v)) = p—1if all values K(s;) are equal

max(K(s1),...,K(sp))+
p —2 otherwise

@)
The application for the h-index then becomes:
0,if dt(v)=0
F(N(v))=4q Lifd"(v)=1 3)

max(K(ki),...,K(sp)) | [{K(sj)}| =n,withK(s;) =n

Strahler numbers, number of citations, and A-index impose a discrete limit in
depth which is conceptually an issue — there is no reason not to look for all the
extended consequences of a publication. Instead, Herman ef al. [18] propose in their
framework a Flow metric for DAGs to emphasize the distribution of information to
their successor such as:

Lifd (v)=0

Y. K(a;)/d (a;) o.w.
In which qa; represents the ancestors of v (instead of the successors k;). Note that
this defines a descending flow measure which captures how much information all
nodes in the network receive from a root node v, but does not give credit to v for

its production of information. In addition, weights are only initialized by the source
nodes, so no other node can bring to the flow.

F(N(v)) = “4)

4 Ascending flow in citation networks

We provide now a base measure called ascending flow and discuss its complexity. We
then extend it to several variants, such as one that is restricted in depth, hence that
fits better a dynamic context. Two natural definitions help defining our framework
and its integration with existing metrics.
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Definition 4.1 (Related). Two articles a and b are said to be related if and only if
there exist a path from a to b or from b to a. They are k-related if they are related
and if the shortest path between them is at most of length k.

Definition 4.2 (k-diffuse). A measure of a node v is k-diffuse when it limits its
computation to a subgraph composed of the k-related nodes of v

4.1 Ascending flow

We can now model the stream of knowledge as a flow in our citation network. Indeed,
each node — being a publication — produces some information and this production
of information gives credit to their ancestors (in history, or successors in the DAG)
as they refer to them. This translates into the framework as:

FIN(v)) =Y K(k)/d* (ki) + o Q)

Where o, represents the information: created by the publication v — in practice
we set oy = 1. Hence, the more a publication is influential the more credit it will
propagate to its ancestors. In contrast to the previous Flow metric, our ascendant
flow is not only applied to the reversed DAG, but is also equivalent to the sum of the
flows computed for each sub-DAG induced by each node.

The ascending flow, formalized above, can be implemented as algorithm 4. It is
important to notice that each arc is visited only once and that the total number of
visits of all nodes is also equal to the number of arcs. The time complexity of our
algorithm is then © (m) where m is the number of arcs. This key property is inherent
to the pseudo-DAG nature of our citation network. As described in section 3, citation
networks can be converted to DAG with minimum loss of information. However,
even a linear time complexity is often too costly for large dynamic network.

Algorithm 4 ascending flow

Input: A citation network with nodes (articles) and arcs (citations)
An empty dequeue Q (FIFO)
QOutput: The ascending flow on each node (article) and each arc (citation)
Initialize each article v a with flow value o, = 1
Color each arc in white
Add all leaves in Q
while Q is not empty do
v < pop_first(Q)
for each w son of v do
Color each (v,w) in blue
Oy 4 Oy + 0ty /d ™ (v)
if all incoming arcs of w are blue thens
O < push_last(w)
11: end if
12: end for
13: end while

R A B o

—_
e
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4.2 Depth restriction and dynamic graph

As discussed above, one issue of computing the ascending flow of a node v from
our definition is that it needs the computation of all successors own influence. Such
a constraint is expansive in the context of a dynamic network, for instance citation
networks — in the case of citation network, publication are usually added, not
removed. To adapt our previous algorithm, we first need to introduce an update
function starting from a single leaf (a new publication). We consider the network
initializes as in algorithm 4 but for the flow value on the nodes — that is kept between
the updates. We then propagate upwards the flow value in all the subgraphs defined
by the ancestors of this publication (Figure 1).

Recall the diffuse property in definition 4.2. Our base measures, the h-index and
the number of citations, are respectively 2- and 1-diffuse by definition, whereas the
ascending flow is co-diffuse. In the real-world, we can consider that a publication
that came a few generations after an original will relatively diverge from the original
one, and would marginally contribute to the influence of the previous publication.
The k-diffusion property can then take two forms: either we choose a generational
limit k& that cuts the added influence of nodes generated after k generations, or we
can set an evanescence coefficient that progressively attenuates the contribution of a
publication over its ancestors. In the case of a dynamic citation network, a k-diffuse
measure is very quick to compute when k is a small constant as in Figure 2b.

This depth parameter additionally allows us to reconnect with known measures.
For example, the h-index is 2-diffuse and it would not make sense to extend its
definition. In turn, the number of citations — which is also the in-degree (d~ (Vv)) —
is 1—diffuse. This can then be easily translated in a k-diffuse measure, the k-degree,
which would be the number of publications created until generation k. Then, an
co-degree would be the number of all publications seeded by v even indirectly.

5 Experimental results

We now study our framework on a real-world setting. We used an available citation
graph from 2003 KDD Cup: Arxiv HEP-TH[15]". It consists in an archive of 27,770
publications with 352,807 (internal) citations from the well-known ArXiv website of
pre-prints in the domain of high energy physics theory, archived between January
1993 to April 2003. The resulting graph (Figure 2a) is not acyclic due to the nature of
publications in ArXiv — some publications have been updated with cross-references
to others. We can however consider this graph as pseudo-acyclic because number
and size of the cycles are limited (a few cycles of size 2 and 1 cycle of size 3). In our
setting we simply remove those edges to keep the properties of a DAG. A resulting
excerpt of the graph is shown in Figure 2c.

As we have defined the generalized version of the number of citations in our
framework and the h-index, we compare these measures altogether. We compare the
Pearson and Spearman correlation coefficients of these measures together with the

! avaiable at: http://snap.stanford.edu/data/cit-HepTh.html



166 Benjamin Renoust, Vivek Claver, Jean-Frangois Baffier

2 —e—flow —m— Iflow
—e—2flow —+— Sflow

Speed

| 2%
0 10,000 20,000 30,000

R #Publications

(a) Arxiv HEP-TH (b) Speed comparisons (c) An example of the ascending flow metric

Fig. 2: (a) The main connected component of the ArXiv HEP-TH (high energy
physics theory) citation network with 27770 nodes (articles) and 352807 arcs (cita-
tions). (b) Speed comparisons of our algorithm in case of k-diffuse limitations. (c)
An example of the ascending flow metric in an excerpt of 22 nodes (60 edges) of our
dataset, rooted by a publication by Lorenzo Cornalba. The size of nodes corresponds
to their ascending flow in this subgraph. The color of nodes and edges (from blue
to red) is actually their ascending flow in the real global dataset — we can see that
Hong Liu’s publication has probably been a seed for more knowledge than of its
ancestor Lorenzo Cornalba. flows

Spearman

Pearson h-index ascending flow co-degree l-degreelz-degree 5-degree 10-degree 20-degree | 1-flow 2-flow 5-flow 10-flow 20-flow
h-index - 0.821 0.765 0.958 0.954 0.849 0.770 0.765 0.776 0.809 0.807 0.807 0.807
ascending flow 0.546 - 0.758 0.858 0.807 0.764 0.759 0.758 0.961 0.990 0.991 0.991 0.991
oco-degree 0.476 0.267 - 0.715 0.809 0.947 1.000 1.000 | 0.654 0.710 0.714 0.714 0.714
1-degree 0.768 0.648 0.265 - 0920 0.794 0.719 0715 | 0.856 0.863 0.860 0.860 0.860
2-degree 0.850 0.670 0.375 0.766 - 0.908 0.815 0.809 |[0.725 0.776 0.775 0.775 0.775
S-degree 0.626 0.347 0.856 0.367 0.546 - 0.952 0.947 0.657 0.714 0.716 0.716  0.716
10-degree 0.483 0.270 0999 0268 | 0.381  0.865 - 1.000 | 0.654 0.710 0.714 0.714 0714
20-degree 0.476 0.267 1.000 0.265 0.375 0.856 0.999 - 0.654 0.710 0.714 0.714 0.714
1-flow 0.637 0.694 0.330 0.904 0.638 0.367 0.332 0.330 - 0.987 0985 0985 0.985
2-flow 0.664 0.814 0337 0892 [ 0712 0.390 0.339 0337 0969 - 1.000  1.000  1.000
5-flow 0.656 0.823 0.341 0.879 0.704 0.392 0.344 0.341 0.964 0.999 - 1.000  1.000
10-flow 0.656 0.823 0.341 0.879 0.704 0.392 0.344 0.341 0.964 0.999 1.000 - 1.000
20-flow 0.656 0.823 0.341 0.879 | 0704  0.392 0.344 0.341 | 0.964 0.999 1.000 1.000

Table 1: Comparison of Pearson coefficients (bottom left, correlation of values) and
Spearman coefficient (top right, correlation of ranks) between all measures.

following assumption: if the ascendant flow can reconnect at least partially to the
notion of degree and A-index, we can then validate the relevance of our framework.
Results of the analysis are presented in Table 1 and Figure 3.

First, when comparing the i-index, the number of citations, and the total number
of publications produced by a work, we can notice a clear difference on our four basic
metrics: the number of citations (=1-degree), the number of publications generated
(= oo-degree), the h-index and the ascendant flow. We additionally varied the depth
of degree and flow in {1,2,5,10,20,0}. A second observation is that the limitation
in depth of our measure is consistent with what we observe when limiting the depth
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Fig. 3: Comparative distribution of ranks and values among 1-degree (i.e. number
of citations of a publications, co-degree (i.e. number total of generated publications),
h-index, and ascendant flow. The plots well illustrate the difference between what
those statistics are measuring.

of the k-degree (the most correlated i-flow for a j-degree is when i = j), and the
higher k for the k degree, the more it diverges from the k-flow.

Our main observation, is, by value, the h-index is most correlated to the 2-degree.
This makes complete sense, since the A-index is also limited in depth at 2 for which it
considers a subset of publications. In contrast, when it comes to rankings, the #-index
is most correlated to the 1-degree which is equivalent to the number of citations.
Interestingly, our ascending flow also shares most correlations with the 2-degree as
well and ranks with the 1-degree. This interesting effect may also be observed in
Figure 2c showing that most publications bringing influence to the source publication
has done it already in depth two. The link between the h-index and the degree is
further observable in Figure 3.

In terms of computation, from k = 2, the ranks obtained by the k-flow are .99
similar of those of the regular flow so when a gain of computation is needed, one can
use k-diffuse version of the algorithm (Figure 2b).

Now we can compare publications of a same h-index and published around the
same date which have very different flow measures. We took 2 publications with
very different ascending flows: the first one shows a flow at 11.23 (Figure 4a, left),
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(a) ascending flows (b) 2-flows

Fig. 4: Comparison of direct citations of four publications with s-index =6. The top
node is one original publication, and all other nodes its citing nodes (a) Comparison
of the general ascending flows with two extreme values: left ID920426 (flow=425.4),
right ID9201019 (flow=11.2) (b) Comparison of 2—flows with two extreme values:
left ID9201079 (2—flow=2.3), right ID9201058 (2—flow=21.6). Relative node size
(between couples of pictures) correspond to A-index values for each node. Node color
correspond to, (a) ascending flow, (b) 2-flow.

while the second one displays a flow measure at 425.44 (Figure 4a, right). Their
in-degree does not vary that much (21 vs. 16 for the most influential), however, the
2-degree makes the difference (151, vs. 707). That means in average, the publications
citing the most influential work produce more than four times more citations in turn —
average h-index is 3.2 vs. 10.6. Note also that our measure takes into account how
the information is spread out. In the first case, we have 390 citing edges out, while
we have 171 in the other case.

We repeated the same experiment with two varying 2-flow measures (h-index =6
and similar date of publication): the first one is 2.25 with 10 citations (Figure 4b, left),
and the second one is 21.59 with 20 citation (Figure 4b, right). The average h-index
in the least influential one is actually higher (3.45) than of the most influential (1.80).
However, the most influential has seeded 102 citations (2-degree) vs. 17 edges outs,
when the first one 68 citations for 182 citing out. The flow measures then capture
much more details of the graph of produced by citations than the A-index allows.

6 Discussion and conclusion

We have shown that the production and diffusion of knowledge can be modeled in a
recursive framework that studies flows in DAGs, with a natural interpretation of the
notion stream of knowledge. The framework allows for other known metrics to be
embedded, and for efficient computation on large dynamic graphs. We applied our
different flows and compared them with other known measures. By comparing the
ascendant flow with the s-index we clearly see a correlation. The A-index has been a
very popular indicator and useful for predictions and scientometrics. Our measure’s
interpretation is straightforward, and this correlation goes in favor of the relevance of
the A#-index. But we do not fully correlate with the #-index, and many cases that are
oversimplified by the A-index can be finer described by the ascending flow.
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We looked for differences in flow when the A-index gives a same value. We found
cases with large differences, and explain the differences as follows: the A-index
gives a rough estimation of a publication’s production of knowledge, but it does not
take into account how each citation refer to the original work. The flow measure,
even 2—diffuse, is reinforced by two factors. A first one is something similar to
a “community” effect in citations, i.e. when the citations produced also cite each
other in relative proportion, in comparison to citations “outside” that “community”
of citations. For example, this happens when a paper has an influence in developing
a community of research, the large the community, the greater the flow. The second
effect gets more relevant as the depth of diffusion is greater. It is somewhat close
to the hubs and authorities effect: the more citations a paper gets from influential
papers the more influential it will get.

The interpretation of flow we propose is much more flexible than the i-index,
and can fairly support a wide range of parameters for scientists to conduct further
experiments (such as additional weights, edge filtering, depth of influence, efc.). More
than a metric, when studying the influence of a work (or a collection of works), we
argue that the structure of the flow of knowledge it produces, i.e. the DAG generated
by a publication and its citations should be taken into account.

Although our study does not hold for an evaluation for which a comparison with
many other metrics and regression would have been necessary, we still have set
and validated the basis of our framework — in that it comprises well other known
measures. Now, this will allow to take our graphs to another level of complexity —
namely multiplex DAGs. H-index would apply with difficulty in a multiplex network,
but we are currently focusing our effort in studying the ascendant flow in a version
of our citation graphs where different routes could be considered in parallel (because
knowledge does not flow equally in all citation sources). Among our future work
is also the application to the analysis of news documents. Indeed, DAGs also apply
to the study of closely related documents — even if there is no citation relationship,
the time dependency between closely related documents can maintain the DAG
assumption. Extending our study to other databases, such as DBLP, we would like to
conduct case studies on authors and journals this time, to observe the influence of
Nobel prizes or high standard journals.
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Detecting Nestedness in Graphs

Alexander Grimm and Claudio J. Tessone

Abstract Many real-world networks have a nested structure. Examples range from
biological ecosystems (e.g. mutualistic networks), industry systems (e.g. New York
garment industry) to inter-bank networks (e.g. Fedwire bank network). A nested
network has a graph topology such that a vertex’s neighborhood contains the neigh-
borhood of vertices of lower degree. Thus —upon node reordering— the adjacency
matrix is stepwise, and it can be found in both bipartite and non-bipartite networks.
Despite the strict mathematical characterization and their common occurrence, it
is not easy to detect nested graphs unequivocally. Among others, there exist three
methods for detection and quantification of nestedness that are widely used: BIN-
MATNEST, NODF, and FCM. However, these methods fail in detecting nestedness
for graphs with low (NODF) and high (NODF, BINMATNEST) density or are
developed for bipartite networks (FCM). Another common shortcoming of these
approaches is the underlying asumption that all vertices belong to a nested compo-
nent. However, many real-world networks have solely a sub-component (i.e. not all
vertices) that is nested. Thus,unveiling which vertices pertain to the nested compo-
nent is an important research question, unaddressed by the methods available so far.
In this contribution, we study in detail the algorithm Nestedness detection based
on Local Neighborhood (NESTLON) [7]. This algorithm detects nestedness on a
broad range of nested graphs independently of their density and resorts solely on
local information. Further, by means of a benchmarking model we are able to tune
the degree of nestedness in a controlled manner and study its efficiency. Our results
show that NESTLON outperforms both BINMATNEST and NODF.
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1 Introduction

Two vertices are nested if the neighborhood of the one with larger degree contains
the neighborhood of the lower degree one. We call nested component of a graph the
maximum set of vertices that are nested. Following, a graph is nested if the extent
of the nested component is such that it embraces all vertices. This definition applies
in both bipartite and non-bipartite networks. Nested graphs include some common
topologies like fully-connected ones or stars. In real-world networks, some edges
violate the definition of pairwise nestedness given above; in this case, the lower the
number of these violations, the larger the degree of nestedness of the network.

In Ecology, as it was discovered in the last decade, mutualistic networks show
a pronounced degree of nestedness [4]. In Economics, e.g. the New York garment
industry including 10’000 manufacturers over a period of 18 years was found to
exhibit this property as well [15]. Among non-bipartite networks there are several
examples of networks that show large degrees of nestedness: like inter-bank networks
[13], and trade relations between countries [9].

Four methods have gained particular attention for detecting and quantifying
Nestedness in the last decade: Binary matrix nestedness temperature calculator
(BINMATNEST) [11], based on Nestedness Temperature Calculator (NTC) [2],
Nestedness metric based on overlap and decreasing filling (NODF) [1], and Fitness-
Complexity Metric (FCM) [14]. Nonetheless, these methods detect nestedness for
only a specific density range (BINMATNEST, NTC and NODF fail in detecting nest-
edness for high density networks) or a specific class of graphs (FCM was developed
for only bipartite ones).

All four methods assume that all vertices belong to a single nested component
but, in general, this is not necessarily true. Such component might include solely a
subset of vertices while the others lay outside it. Therefore, it is an important research
question to devise a method that identifies the individual vertices that belong to a
nested component. This question remains unaddressed by the methods available so
far.

The widely used BINMATNEST is based on NTC, which compares the focal
adjacency matrix with a “perfect ordered” matrix. The less these two matrices deviate
from each other, the more the graph is judged as nested. However, the matrix of
“perfect order” is a normative concept characterized by a static isocline [2] (i.e. matrix
is filled up to the secondary diagonal). Both methods judge graphs only as nested
if they have this particular ”perfect order”. They fail in detecting graphs that have
locally nested components. This static and normative concept of nestedness relies
only on global information (i.e. irrespective of local neighborhoods in the nested
components). For large datasets it is important to develop methods for detecting
nestedness that rely solely on local information, because they scale better [7].

In this contribution we review the method Nestedness detection based on Local
Neighborhood (NESTLON) that reliably detects nestedness irrespective of graph
density and network type (i.e. bipartite and non-bipartite networks) [7]. Although in
this contribution we focus on non-bipartite graphs (for the sake of simplicity), all the
results are easily extensible to bipartite ones.



Detecting Nestedness in Graphs 173

The remainder of the paper is organized as follows. In the next section section
we provide an overview about nestedness in graphs and the current methods for
detecting it. In ”Algorithm” section we review the alternative method NESTLON for
detecting nestedness. In ”Robustness Analysis” section we compare commonly used
algorithms with NESTLON on a benchmarking graph. The final section concludes
and discussed the main contributions of this Paper.

2 The Notion of Nestedness
2.1 Definition of Nestedness

We first give a colloquial definition of nestedness and later a proper mathematical
definition. In a nested graph the neighborhood of a vertex includes the neighborhoods
of vertices which have lower degrees !. Therefore, by sorting the adjacency matrix of
a nested graph by degree (i.e. the number of direct neighbors) we obtain a stepwise
matrix. For example, a star is nested and has a stepwise matrix. A star’s central
vertex has the highest degree (i.e. this vertex is connected every other vertex) and all
other vertices have degree one (i.e. they are all connected only to the central high
degree vertex) while the neighborhoods of all lower degree vertices are included in
the neighborhood of the high degree vertex. Therefore, the adjacency matrix of a star
has just one large step (i.e. from maximum degree to one-degree).

For a proper mathematical characterization we briefly recapture the nomenclature
for graphs. The adjacency matrix, A, characterizes the topology of a graph object G.
An non-zero entry in the adjacency matrix, a;; # 0, indicates an edge between the
two vertices i and j. Each vertex has a degree, k;, which is the number of neighbors it
is connected to. The total number of edges is e and the total number of vertices is n.
N is the set of all vertices and E is the set of all edges. A graph can be decomposed
by the concept of degree partition [10]:

Definition 2.1. Let G = (N, E) be a graph whose distinct positive degrees are k(;) <
ki) < ... <k and let k) = 0 (even if no vertex with degree 0 exists in G).
Further, define D; = {v € N : ky = k;} for i =0,...,m. Then the set-valued vector
D = (Do, Dy,...,Dy) is called the degree partition of G.

With this concept of degree partition a nested graph can be expressed as follows
[10]:

Definition 2.2. Consider a nested graph G = (N, E) and let D = (Do, Dy,...,Dp)
be its degree partition. Then the vertices N can be partitioned in independent sets D;,
i=1,...,[m/2], and a dominating set U} ,, »; | D; in the graph G = (N\Dy,E).
Moreover, the neighborhoods of the vertices are nested. In particular, for each vertex
ve D, i=1,...,m, we obtain the sets of vertices as
Nv:{u;_lpmHj ifi=1,...,[m/2];

Uz»:l@mﬂ,j\{v} ifi=m/2]+1,...,m. M

! This definition is for non-bipartite graphs, for bipartite graphs a similar definition holds [4].
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An adjacency matrix is stepwise if the following definition holds [5]:

Definition 2.3. A stepwise matrix A is a symmetric, binary (n X n) matrix with
elements a;; satisfying the following condition: if i < j and a;; = 1, then ap, = 1
whenever h < k < jand h <.

Thus, a nested graph has a stepwise adjacency matrix and its degree partition can be
separated into an independent and a dominating sets.
A measure for determining the filling of an undirected graph is the density.

Definition 2.4. The density of an undirected graph is given by
2-e
n-(n—1)

In the following we propose a measure for counting the number of holes in a
graph. We compare the neighborhoods of two vertices i and j. If the lower degree
vertex j has a neighbor /, which is not neighbor of i, we will count a hole (because it
appears as such in the sorted adjacency matrix). From there, the density of holes can
be computed [7]

Ya = 2

Definition 2.5. The total number of holes in an unweighted graph is given by
~ YijenO(ki—kj) Lien(1 —an) - aij

L jen @k — k) min(n — ki &)
with @ (x) the Heaviside function:

3

0ifx<O;
O(x)= %ifx:O;
1ifx>0.

2.2 Detecting and Measuring Nestedness

In this section we briefly discuss three commonly used methods for quantifying
nestedness in graphs. These measures are BINMATNEST (based on the NTC),
NODF, and FCM.

Binary matrix nestedness temperature calculator (BINMATNEST)
NTC performs insufficiently if the number of holes in a graph is high. Therefore,
BINMATNEST uses a genetic algorithm that reorders rows and columns so that
the packing of the matrix increases. The matrix temperature 7 is a measure of how
equally the edges are distributed across the matrix. If all edges are in the upper left
corner the temperature is minimal (7 — 0). If all edges are equally distributed in the
matrix the temperature is maximal (7 — 100). The normalized temperature of the
adjacency matrix is given by the following expression [6]:
100—-T

100 @
If gy = 1 (0) the matrix temperature will be minimal 7 = 0 (resp. maximal 7 =
100).

UBIN =
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Nestedness metric based on overlap and decreasing filling (NODF)

NODF was developed for bipartite networks of ecological systems [1] but it is
applicable to square matrices, too. This method is independent of row and column
order since it computes the paired nested degree for each pair of both columns and
rows. However, in contrast to BINMATNEST this method does not reshuffle the
matrix. For the whole matrix the sum of nestedness degrees of all paired rows and
columns is the total nestedness normalized by the number of all pairs. The NODF
metric assigns a value Ml-’}l- to each neighboring pair of vertices ij:

yH — 0, itk =k; 5
0y ﬁ”k», otherwise &)

The total number of common edges among the two vertices i and j is given by n;;.
The procedure is carried out for rows (MS») and columns (M{}) analogously. Finally,

the total nestedness for square matrices is then given by [12]:

P A
i< jMij+ Yic jMij
tvopr = =~ 2,n(n_l)l<j (6)

n
An advantage of NODF is its independence of matrix shape because it goes
through both rows and columns [12]. However, this method fails in detecting nested-
ness for nested graphs of low and high density because it cancels out all terms for
vertices of same degree.

Fitness-Complexity Metric (FCM)

FCM ranks vertices in an iterative and non-linear process [14]. The iteration process
couples a fitness term to a complexity term. Since FCM was solely developed for
bipartite networks, we will not use it as a benchmark in this contribution.

2.3 Benchmark Graphs

We require a solid benchmarking framework for comparing robustness and reliability
among different nestedness detection methods. A benchmark graph needs to differ in
its network characteristics (i.e. degree distribution, graph density, vertex centrality,
etc.) but keep a certain level of nestedness. The authors of [8, 9] propose a coherent
formation process for generating nested graphs with a single exogenous parameter
« that influences the topology of the generated graphs fundamentally. This network
formation process has two contrasting dynamics, edge creation and severance. First,
the edge creating dynamics allows each vertex to create an edge to the most central
vertex in its second-order neighborhood (i.e. the neighbors of its own neighbors)
with a probability o.. Second, each vertex may severe the edge to the least central
neighbor in its first-order neighborhood with the complementary probability 1 — o.
By changing o we can tune a nested graph between two limiting cases. On the
one hand, we obtain a star topology for o — 0 and, on the other hand, we obtain a



176 Alexander Grimm and Claudio J. Tessone

fully-connected graph for oo — 1. A first-order phase transition exists at the critical
value oo = 1/2 [8].

The degree partition for the independent set of the nested graph is given by the
following definition [9]:

Definition 2.6. For 0 < a < 1/2 and n — oo the asymptotic expected proportion of
vertices ny, in the independent set with degrees k =0, 1,....k* if given by

B k
nk:l 2a< o ) 7

l—-a \1—-«a
where
In (lfia)n
K (n,0) = G ®)

In this contribution we utilize this network topology to create benchmark graphs.
In addition, it is possible to weaken the perfectly nested topology by an incremental
increase of random rewiring of edges. This process works as follows. First, for a
randomly chosen vertex we determine all of its next neighbors. Second, a connection
to a randomly chosen neighbor is cut and the focal vertex is connected to another
vertex to which it previously was not connected to. If a vertex is isolated or is
connected to all nodes in the network, nothing happens. The total number of rewired
edges e,y is given by the parameter p,.,. These two quantities are linked in the
following way: €, = Prew - 1. The higher p,.,, the more edges get randomly rewired.
This process can be seen as a simplification of other rewiring mechanisms in nested
networks [3].

3 Algorithm

In this section we briefly review the algorithm NESTLON as a method for detecting
a nested component in graphs and its constituents [7]. The simple main concept
behind the algorithm is to follow the definition of nestedness closely. NESTLON
judges whether the neighborhood of a vertex includes the neighborhood of lower
degree vertices in an iterative manner. A vertex belongs to the nested component if it
respects the local definition of nestedness to an acceptable degree.

The method iterates through the connected component of a graph starting with the
highest degree vertex and, therefore, is applicable on both bipartite and non-bipartite
graphs. The procedure is analogous for either in-degree or out-degree (for simplicity
we refer to the term degree in the following). We use the algorithm on a graph that is
sorted by degree centrality. The algorithm performs the following steps subsequently:

Algorithm: Nestedness detection based on Local Neighborhood (NESTLON)
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Conventions:
n Number of vertices in the graph.
ki Degree of vertex i.

NEI) First-order neighborhood of vertex i.
N Extended first-order neighborhood of vertex i (Nl( Dy {l}) .

G Number of positive confirmations that the neighborhood of vertex i
includes the neighborhoods of its first-order neighbors.
List of candidates (i.e. vertices that might belong to nested component).
| Number of elements in a set.

- >

Input:

A Adjacency matrix of the graph object.

6.0n Confirmation parameter of neighborhood similarity-

0,.es: Parameter for counting focal vertex to nested component.

Output:
Vies: Elements of nested component (i.e. vertices that belong to nested component).

Algorithm NESTLON

L2 Viest < {}

2: A+ {i*};i*/kﬁ :max(ki)
3: while A # 0 do

4: foric A do

5 Ci +~0

6: for j € NEI) do
N

7. if W > 6., then

J U i

8: G+ G+l

9: A~ AULY

10: end if

11: end for

12: if Niz) > Besr then

13: Vnest — Vm’st U {l}

14: end if

15: end for

16: end while

The outcome of the algorithm is a set of vertices that belong to the nested compo-
nent V.. Dividing the number of nested vertices by the highest degree of the graph
is then a measure of the size of the component:
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|Vnest |

= ,withie N 9
UNEST max(ks) with i € )

This method has several important features. It is independent on the adjacency
matrix shape and size. In contrast to NODF it calculates nestedness for rows and
columns independently. Compared to NODF and BINMATNEST it can detect nested
graphs irrespective of their density. We will investigate the robustness of the algorithm
in the next section.

4 Robustness Analysis

A robust algorithm can detect the nested component independently of degree distri-
bution, graph density, matrix shape and matrix size. Such a robust algorithm should
identify all vertices that fulfill the criterion of nested neighborhoods (i.e. a higher
degree vertex includes the neighborhood of a lower degree vertex). Therefore, we
can evaluate an algorithm’s robustness on such a benchmark graphs, in which all
vertices belong to a single nested component. We create these graphs with the net-
work formation process, which we already discussed in section “The Notion of
Nestedness”.

4.1 Calibration of NESTLON

Before we compare the values of robustness among the algorithms we need to
calibrate the two exogenous parameters of the NESTLON algorithm (i.e. 6,,, and
Oyest)- The parameter 6., is the confirmation threshold of neighborhood similarity
and the parameter 6, is the threshold for counting a focal vertex to the nested
component.

Calibration of NESTLON: Variation of 6., and 6,

In fig. 4.1 we show the values of Nestedness for the NESTLON algorithm under
variation of both parameters 6., and 8,.;. The number of vertices the algorithm
counts as nested does not differ for 6,,,, < 1 but decreases for 6., > 0.5. Because
we deal with a perfectly nested graph (i.e. benchmark graph with &t = 0.49, Py, =
0) both parameters shall be set so that NESTLON measures full nestedness (i.e.

!
Unest = 1). Thus, we choose 6,,, < 1 and 6,4 < 0.5 as reasonable for detecting
nestedness.

Calibration of NESTLON: Adding Noise

In fig. 2 we show the NESTLON’s ability in detecting the nested component on a
benchmark graph with added noise (i.e. random rewiring of edges). In absence of
rewiring (i.e. Prey = 0) the algorithm includes all vertices as members of the nested
component. For increasing random rewiring (i.e. P > 0) the algorithm counts
fewer vertices as part of the the nested component. This behavior is expected because
the graph looses its nested structure with an increasing number of edge rewiring.
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Fig. 1: Values of Nestedness
for the NESTLON algorithm
under variation of both ex-

=

- ogenous parameters 6,,, and
0 - 0,e5:- We perform the compu-

o .
tation on a benchmark graph
=3 e of size n = 500 and o = 0.49.
L —6— Boon=1 A Thus, all vertices belong to
E iy o ingle nested t
3 B — 0.8 e a single nested component.
Boon=0.7 » As we can see in the figure
S Bcon = 0.6 % the thresholds are too rigid

—7— Oon=0.5 %
% for 6,,, = 1 and 6,,.,; > 0.5.
A

= Therefore, we choose 0., <

i = 0e £ L L 1 and 6,.; < 0.5 as reason-

able detection thresholds.

Fig. 2: Adjacency matrices of the benchmark graphs with additional noise: pye, = 0.0
(top left), prew = 1.0 (top center), Preywy = 2.0 (top right), Prewy = 3.0 (bottom left),
Prew = 5.0 (bottom center), Py, = 7.0 (bottom right). The vertices that are counted
towards to the nested component by NESTLON are indicated by a yellow dot.

Robustness Analysis: Filling Matrix
In fig. 3 we show the values of robustness measured among the three methods
BINMATNEST, NODF and NESTLON on the benchmark graphs. By increasing o
the matrix filling (i.e. network density y,) will increase, too. The benchmark graphs
are nested by definition for every value of a € [0, 1].

Although every benchmark graph is perfectly nested, BINMATNEST misses to
detect all vertices as belonging to the nested component beyond the phase transition
(i.e. o > 1/2). For a fully connected network its genetic algorithm can not establish a
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better packing by reordering rows and columns. NODF fails in detecting nestedness
for graphs with low (i.e. @ < 1/2) and high density (i.e. @ > 1/2). Because this
method cancels out all rows and columns of same degree it has a strong bias towards
low nestedness for both low and high density graphs. However, NESTLON indicates
an entirely nested network for every graph density (i.e. Uyest = 1 for every value of
o €[0,1)).

Robustness Analysis: Adding Noise

In fig. 4 we compare the measured values of robustness among the three algorithms
for increasing random rewiring py,,. In absence of rewiring (i.e. P,y = 0) the graph
is still perfectly nested and, thus, we expect nestedness close to it = 1. For increasing
rewiring (i.e. Py > 0) we expect that the nestedness decreases because the density
of holes increases. BINMATNEST and NESTLON count all vertices to the nested
component for P, = 0, whereas NODF recognizes only less than half of the vertices.
By increasing noise NESTLON is significantly more parsimonious than the two other
methods in judging vertices as nested. NODF has even a minimum at py, =~ 4.5.
Beyond this minimum NODF detects a larger fraction of nested vertices although the
graph increasingly converges to a random graph.
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< o
o™ o~
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e 0 0 e '
0.2 04 O 06 08 0 2 4 Prew 6 8 10

Fig. 3: Robustness in detecting the nested
component among BINMATNEST,
NODF and NESTLON on a benchmark
graph. By definition all realizations of the
benchmark graph are nested for all values
of a. We perform the computation on a
graph of size n = 200. The graph density
(i.e. ¥y) increases with o, whereas the
density of holes (i.e. ) stays zero.

Fig. 4: Robustness in detecting the nested
component among BINMATNEST,
NODF and NESTLON on a benchmark
graph with added noise. With increasing
random rewiring Py, the nested structure
of the benchmark graph dissolves (i.e.
increasing density of holes 7). We
perform the computation on a graph
of size n = 200 and with o = 0.45 (i.e.
Ya = 0.029).
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Conclusion

In this contribution we reviewed the novel method termed NESTLON for detecting
a nested component in graphs. As shown, widely-used algorithms such as BIN-
MATNEST and NODF compute unreasonable low values of nestedness on bench-
mark graphs with either low density (i.e. 7; < %), NODF, or high density (i.e. 77 > %),
NODF and BINMATNEST. The method NESTLON overcomes these limitations and
is applicable on both bipartite and non-bipartite graphs. The algorithm is purely based
on the mathematical definition of nestedness and utilizes, thus, only local information.
For the robustness analysis we created benchmark graphs with a network formation
process. This network formation process allows us to tune the degree of nestedness
in a controlled manner. In future work, we want to extend NESTLON to graphs with
more than a single nested component.
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Clustering of Paths in Complex Networks

Mareike Bockholt and Katharina A. Zweig

Abstract While network analysis is more than 70 years old, the analysis of paths in
complex networks is yet almost negligible. Here, we introduce different measures of
computing the pairwise similarity of paths, either simply based on the elements in
the paths, their sequence, on the graph in which they are embedded, or incorporating
all three features. Based on ground-truth in a data set concerning how people solve a
one-player puzzle, we show that the classification of the paths using the similarity
measures in a hierarchical clustering approach performs best for the similarity mea-
sures which integrate all three features. We thus give first evidence that path similarity
measures provide another dimension to mine and analyze complex networks.

1 Introduction

The analysis of complex networks has become a large and active field in which a
broad variety of results has been published. In many cases, entities use the network
as environment and move from node to node. The most obvious example is human
navigation in spatial networks, travels in a transportation network, users surfing the
WWW, but also game players exploring the problem space of the game, or students
using an e-learning environment by following different paths through interlinked
documents and media. In all these examples, the entities move on paths (or trails or
walks) through the network which are usually neither the shortest path nor totally
random (we will use the term path, if not explicitly stated otherwise, it includes
walks and trails). But while there has been research concerned with human mobility
patterns in a broad sense [4, 6], there has been almost no work which considers the
actual paths taken. Consider for example the network shown in Figure 1 which shows
which paths humans have taken in it. All humans navigating in this network started
in the leftmost node and aimed at reaching the nodes in the bottom-right corner
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(a) (b) Problem space and human navigation

Fig. 1: (a) An example for a Rush Hour board. The red car needs to be removed from
the board. A legal move consists of horizontal (vertical) move of one horizontally
(vertically) placed car. (b) Each node represents one state of a puzzle and two states
are connected by an edge if there is a legal move between them; some states represent
the solution of the puzzle. The width of an edge is proportional to the number of
users that made this move. Paths from a distinct starting state of the puzzle are called
solving when they reach one of the states representing the solution of the puzzle.

of the picture. The thickness of the edges corresponds to the number of humans
who used this edge in their path. It is astonishing that there are some paths in the
network which are used more often than others although they are not necessarily the
shortest ones. A human eye can also recognize that there are some paths which are
more similar to each other than others. Also in other cases, it makes sense not to
treat every path as a single path, but to find groups of similar paths and use these
groups for further analysis. This can help to find common or distinguishing patterns
in the paths and reduces the large amount of taken paths into representative groups.
If such a clustering procedure is able to partition given paths into groups such that
the paths within one group share elementary structural commonalities, it can be used
in different application scenarios. By clustering paths of students in an e-learning
environment, one might be able to identify different learner types and structure the
materials accordingly. Grouping paths of players solving a puzzle can be used to find
different strategies to solve the game. Clustering paths in a road network can lead to
a procedure for identifying different means of transportation.

However, such a clustering requires a similarity measure. A similarity measure
needs to be able to incorporate the most essential information contained in a path
and weight them in an appropriate way. Therefore, the question arises of how to
quantify the similarity of paths. It is surprising that there has been no approach
proposed to measure the similarity of paths in complex networks and to group paths
by similarity. Thus, in this paper, we: (i) provide seven first similarity measures for
paths in networks which are either based on the elements contained in the paths, or
on their sequence, on their embeddedness in the network, or on all three features,
(ii) compute the proposed similarity measures for all pairs of paths of a benchmark
data set with more than 13000 paths from 20 different networks (of the same kind),
and (iii) for each of the networks, we cluster all paths with a hierarchical clustering
approach with each of the proposed measures, and (iv) evaluate the results with
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respect to a property of the paths that we set as ground-truth. It is crucial to note that
this work does not the aim at developing a classifier that partitions the paths according
to the ground truth. This could be easily achieved by using other path-features or
external features. The main goal is rather to evaluate the proposed similarity measures
whether they are able to distinguish between structurally different paths.

The article is hence structured as follows: Section 2 gives an overview of research
from other fields. Seven similarity measures for paths are introduced in Section 3.
Section 4 gives the details of our approach for clustering paths, including the used
data set (Sec. 4.1), the used ground truth and evaluation methods (Sec. 4.2), and the
results (Sec. 4.3). Section 5 summarizes the findings of the article.

2 Related Work

While we know of no articles that proposed a similarity measure of paths in a complex
network using their embeddedness in it, work that is related to the presented can be
found in several different areas of research: In applications like video surveillance
systems, it is desirable to track moving objects through consecutive video frames
and to extract their trajectories. In order to automatically recognize anomalous
movements of objects, a system needs to be able to distinguish between regular
and anomalous trajectories. For this reason, there are several approaches how to
compare and group trajectories of moving objects [1, 3, 15, 19]. The most often used
similarity measures are the length of the longest common subsequence [3, 19] and the
Hausdorff distance [12]. In the analysis of trajectories created from tracking moving
individuals by (GPS) sensors, the Frchet distance has been extensively studied and
applied [7], for example for detecting recurring patterns in trajectories [2]. In the
context of web mining, it is beneficial to cluster similar user web sessions, for example
for commercial or didactic interest, which is why there are several approaches to
cluster sequential data. While Wang and Zaiane propose a clustering method for web
sessions based on sequence alignment [20], Kumar proposes a new similarity metric
for sequential data [13]. For comparing general sequential data, Moen, Mannila
and Das presented several approaches [16, 17, 18] which use a measure similar to
the longest common subsequence and eventually incorporates the similarity of the
contained events themselves. Clustering of sequences has also been applied in order
to make predictions, for example by Laasonen on routes of mobile phone users [14].
However, although some of these approaches can be adapted to paths, they do not
consider the complex network in which the paths are embedded in. Taking into
account the underlying complex networks is additional information which—as we
will show in the following—will yield better results when finding groups of similar
paths. Additionally, a systematic evaluation of possible similarity measures of paths
has been not provided yet.
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3 Similarity Measures for Paths

Definitions Let G = (V,E) with V = {v|,...,v,} and E CV x V denote a simple,
connected, undirected, and unweighted graph. We define a path P in G as finite
sequence P = (p1,ep,,P2s---,Pi—1,€p, - P¢) With p; € V forall i € {1,...,¢} and
ep, = (pi,pir1) € E foralli e {1,...,£—1}. Note that we do not require the edges
or nodes of a paths to be distinct. Some authors would thus call P a walk. Since the
considered graphs are simple, a path is uniquely determined by its node sequence and
the notation can be simplified to P = (p1, p2, ..., p¢) which is used in the following.
Let V(P) = {p1,...,p¢} and E(P) = {ep,,...,ep, , } denote the set of nodes and
edges which are contained in a path P, respectively. The length |P| = ¢ — 1 of a path P
is defined as the number of (not necessarily distinct) edges. It holds that |P| > |E(P)|.
Furthermore, let I(P) = {1,...,£ — 1} be the set of node indices of path P. For
two nodes v,w € V, we define the distance of v and w as the length of the shortest
path between v and w. If there is no path from v to w, it is set d(v,w) := co. In the
remainder of this article, we assume that G is a connected graph, hence d(v,w) < oo
for all vyw € V. For a path P and a node v € V, we define the distance of v and P as
d(v,P) = min {d(v,w)|w e V(P)}.

In the following, we assume that we have a graph G and a set of paths P(G) of
valid paths in that graph. The research question is how to cluster these paths into
coherent groups, given a suitable similarity measure ¢ : P(G) x P(G) — R. In order
to derive meaningful similarity and distance measures for paths, the most essential
information contained in them needs to be determined. There are three obvious pieces
of information contained in any path: (i) the elements contained in the paths, i.e., its
nodes and edges, (ii) the order of the contained elements, and (iii) the position of
the contained elements in the graph, i.e., their distance to the elements of the other
path. Thus, as a first approach to determine the similarity of two paths, they can
either be modeled as sets and existing measures for comparing sets can be used, or
they can be modeled as sequences and existing measures for comparing strings or
sequences can be used. Finally, paths can be considered as objects in the network,
which allows incorporating the distance of the path’s nodes in the graph into the
similarity measure.

Element-based measures If a path is represented as a set of nodes or as a set of
edges, well-known similarity measures for sets can be used, such as the number
of common nodes or edges, or—as its normalized version—the Jaccard index [9].
The measures (normalized) node set similarity Gy (G,Il\;s) and (normalized) edge set
similarity 0,5 (62%) for two given paths P,Q € P(G), are then defined accordingly
(cf. Table 1).

Order-based measures If a path is understood as a sequence of nodes, similarity
measures for sequences can be used, for example the longest common subsequence
of the two paths [8]. For a path P = (p1,p2 ... pr—1pe), a subsequence of P is defined
as any sequence of nodes which can be obtained by deleting nodes from P. Note that
a subsequence of a path in a graph is not necessarily a valid path in that same graph
anymore. For two paths P, Q, let Ics(P,Q) denote the length of their longest common
subsequence. The corresponding LCS similarity 0j., is as defined in Table 1, the
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normalized similarity measure is obtained by dividing Ics(P, Q) by the length of the
longer path (see Table 1).
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Table 1: Definitions of the similarity and distance measures for paths P,Q. ¢ and
o” denote unnormalized and normalized measure in the first and second columns,
respectively, similarly for distance measures 0.

Position-based measures While the previously proposed similarity measures only
take into account nodes or edges contained in the paths or their order, we also propose
four measures which consider the position of the paths in the network. The motivation
is that even two paths that do not share a single edge can be close or distant within
the graph they are embedded in. For example, if two people drive from the same
city to the same other city, but one on a highway and one on country roads next to
the highway, the two paths should be rated as more similar than if one drives from
north to south and the other from east to west. The idea of the following measures is,
thus, to calculate the distance in the graph from each node in P to a corresponding
node in Q and to calculate the average of these node distances. A position-based
distance measure for two paths P and Q is defined as §(P, Q) = Yici(p) d(Pi,96(i))
for a mapping function G : I(P) — I(Q) which determines the counterpart for each
node. The main problem is to find the appropriate counterpart of each node. A first
naive proposal for G constraints the distance measure to paths with equal length
and matches the i-th nodes of the paths with each other. For two paths P,Q with
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|P|=10]=¢—1,Gissetto Gyy(i) =iforalliec {l,...¢—1}}. This yields the
(normalized) simple average distance as defined in Table 1. The simple average
distance is a distance metric, but has two main deficiencies: it is only applicable to
paths of equal length, and the matching function G might not be a good choice in
many cases. For these reasons, we also consider the matched average distance which
matches each node of P onto the node of Q which is closest by its graph theoretic
distance. Since it seems reasonable to map each node of the longer path onto a node
of the shorter path, we get for two paths P and Q with |P|=¢—1and |Q| =k — 1 the
measure 8,44, as defined in Table 1. The normalized matched average distance 5n’:'a d
is obtained by dividing by the length of the longer path. For this distance measure, the
corresponding mapping function is thus G4 (i) = j such that d(p;,q;) is minimal.
Note that with this mapping, it might happen that there are nodes in the shorter path
which are not matched at all, although it is the shorter path of the two. Furthermore,
while the simple average distance takes into account the order of the nodes in the
path by the restrictive mapping Gy, this quality is lost by weakening the restrictions
to the node mapping. By mapping each node of P onto its closest node in Q (or vice
versa), the mapping allows for example that the last node of P is mapped onto the
first node of Q. It follows directly that this measure does not satisfy coincidence
since two paths with identical node sets, but where the nodes occur in different order
will have a matched average distance of 0 although they are not identical.

In order to avoid this, we require G to be a surjective function which considers
the order of the nodes: we say that G : I(P) — I(Q) is order-preserving if for all
i,i’ € I(P), it holds that i <i' < G(i) < G(7’). Let Scomappar (P, Q) be the set of all
functions G : I(P) — I(Q) with these properties. The corresponding distance measure
called (normalized) CoMapPal distance Ocomappai (for COnsecutive MAPping of
PAths) is then obtained by taking the least expensive of these mappings (see Table 1).
Note that Geomappal (P,Q) = 0 if |P| < |Q|. A dynamic programming approach can
be used to compute this measure in O((|P| —|Q|+ 1) - |Q|) assuming that the graph
distances are precomputed.

The last distance measure to be introduced is a refinement of the CoMapPal
distance leading to the CoMapPa?2 distance measure. The CoMapPal distance mea-
sure exhibits an asymmetry because the longer path (P) is mapped onto the shorter
path (Q): while each node of P is mapped onto exactly one node of Q, several nodes
of P may be mapped onto one node of Q. In order to fix this issue, let Geomappa2 be
the set of all relations G C I(P) x I(Q) which are left-total, right-total, and order-
preserving (where a relation G is order-preserving, if for all (i, j),(7,j') € G, it
holds that i < i’ & j < j"). The corresponding distance measure, i.e., the (normal-
ized) CoMapPa2 distance Seomappa2 (8)y4ppa)» 18 then defined as in Table 1. For
two paths P and Q, this measure can be computed in O(|P| - |Q|) using a dynamic
programming approach, assuming the graph distances are precomputed.

Having these seven similarity and distance measures at hand, a data set of more
than 13000 paths in 20 different networks is used to evaluate the proposed measures
and give the proof of concept that clustering paths into groups is a viable way of
mining complex networks.
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4 Using the Measures for Clustering Paths

In Section 3, seven similarity (and distance) measures for paths are proposed (we
will stick to the term similarity measure, if not explicitly stated otherwise, this term
includes also the position-based measures although they are distance measures). The
following approach clusters paths of a given data set by a hierarchical clustering
approach, separately for each of the proposed similarity measures. We will give
evidence that the similarity measure which incorporates information of the underlying
complex network and the order of the nodes in the paths, i.e., the CoMapPa2 distance
yield the most intuitive results for finding functional groups of paths. We start by
providing information about the used data set before the method, the evaluation
scheme, and the results are described.

4.1 Data

The networks of the data set are problem spaces of a board game such that the paths
represent solutions of players. We consider the board game Rush Hour (invented by
Nob Yoshigahara, distributed by ThinkFun Inc. and HCM Kinzel (Germany)) which
is a one-player block sliding puzzle (see Figure 1a). It takes place on a board of 6 x 6
cells with one designated exit on which blocks are placed horizontally or vertically
which represents a parking lot with parking cars. The blocks can have a length of 2
or 3 cells and a width of 1 cell. The goal of the game is to find a sequence of moves
which allows a particular car to exit the board through the designated exit. A legal
move is to move a car an arbitrary number of cells forwards or backwards, but not
sideways. We call the exact positions of all cars a configuration of the game. We
generate a graph G¢ = (V¢ E€) from a Rush Hour start configuration ¢ by taking all
configurations reachable from the start configuration by legal moves as node set V¢,
and the legal moves between them as edge set E€. This graph is called the problem
space associated to configuration c¢. We consider a Rush Hour game instance as
solved when the cars on the board are in such positions that the particular car can
be removed from the board with one additional move. We call such configurations
solution states. With the concept of the problem space, solving a Rush Hour game
instance can be understood as finding a path from c to a solution state. Such a path is
called a solving path. In the optimal case, the found path is as short as possible.

Source The data set used for analysis was collected by Peldnek and JaruSek [11]
who developed a problem solving tutor (available under tutor.fi.muni.cz) which is a
web-based tool for learning by problem solving and is used in educational contexts. A
detailed description is provided by JaruSek [10]. Among others, the system contains
Rush Hour game instances of different degrees of difficulty. Twenty exemplary
configurations with a sufficient amount of played paths were selected for analysis.
Let C denote this set of start configurations of the game instances. The data set
contains the log data of all users of the system how they solved (or attempted to
solve) the instances. It is important to note that users can also skip to the next game,
if they feel they cannot solve the puzzle (or lose interest).
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Preprocessing For each configuration ¢ € %, the associated problem space G¢
is computed' The problem spaces of the selected games are of the order of several
thousands of nodes each. Any user who attempts to solve a game instance creates
a path in the problem space of the configuration. For each user, each configuration
and each attempt, the generated path is extracted from the log data. Any move
which is done after a solution state was reached is not considered anymore, but
the path is considered as solving path. Let P, denote the set of extracted paths for
the configuration c. The table available under the given link also contains for each
configuration how many paths were extracted (between 156 and 2934 paths) as well
as the information of how many nodes of the problem spaces were actually visited
by any of the players. Surprisingly, in average only 10 % of the nodes were visited
by at least one player.

Clustering For each of the configurations, for all pairs of paths from P, x P, all
of the seven similarity measures are computed. For computing the simple average
distance, the paths were cut to equal length for each configuration. However, in
preceding studies for evaluating all similarity measures on the paths cut to equal
length, the simple average distance has less promising results than the other distance
measures. Thus, and because the simple average distance will be too restrictive for
any application, the results for the simple average distance are omitted, and we only
discuss the analysis of the complete uncut paths. The values of all unnormalized
measures were scaled to the interval [0, 1], the values of the similarity measures
were then transformed by 1 — (V) (P, Q) to result in a distance measure. For each
configuration, the matrices with the similarity values for all pairs of paths are the
input for an hierarchical clustering algorithm with either complete, average linkage
methods or by Ward’s clustering criterion [21]. The results for all three clustering
methods show the same qualitative results and differ very little quantitatively; we
thus only discuss the results of the clustering with complete linkage.

4.2 Ground Truth and Evaluation of the Results

For interpreting the results of the clustering procedures and to evaluate the differ-
ent similarity and distance measures for paths, an evaluation criterion is necessary.
For this, we use a very simple ground truth: a clustering procedure with an appro-
priate similarity measure as input should be able to distinguish between solving
and non-solving paths. It is important to note that the goal of this work is not
the development of a classifier which is able to distinguish between solving and
non-solving paths. This could be done easily by other methods. The primary aim
is to evaluate the presented similarity measures whether they are able to distin-
guish between structurally similar and dissimilar paths. In order to evaluate this,
the semantic feature of the paths of being solving or non-solving is used: a well-

' A detailed description of the data set and the problem spaces can be found online under
http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf.


http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf

Clustering of Paths in Complex Networks 191

Normalized —— Unnormalized -
CoMapPal == EdgeSetSimilarity MatchedAverage Distance
CoMapPa2 = LCSS NodeSetSimilarity
Game 19 Game 578
1.0 - 1.0
T
= S
= L - r’J/_
0.9 2 2 R
il g el 09 ‘_r” i
Il | I
o [
£ 08 nkh |
E [
(=) 0.8-
S i
=07 | I
‘i e i e issiai i s s . ]
= 0 200 400 600 0 250 500 750
gx Game 765 Game 906
£ = — 1.0 —
© — ——
Boss o =
£ = L
ke = ! i
@ H
Z090- T, 08l
I
0.85- }
I' =T 0.8
080- i i
|
[0 e o e O PSS SRR e e e e
0 100 200 300 40 500 1000 1500 2000

0 0
Number of clusters

Fig. 2: Weighted average purity of the clustering results for some exemplary configu-
rations, i.e., the Games 19, 578, 765, and 906.

designed similarity measure should at least distinguish between paths of these two
classes. Hence, for each path of a configuration ¢, we define the binary attribute
q: P, — {0, 1} which yields a 1 for a solving path, and a 0 for a non-solving path.
A given cluster Y = {p1,...,pm} C P is then called pure if all paths in 7 are either
solving or non-solving. Since the requirement that a cluster should be pure, is a
very strict one, we rather consider its purity. The purity of a cluster ¥ is defined
as purity(y) = |—;‘ max{Y.,.cyq(pi); Y| = Lp,eyq(pi)}, i-e., the maximum of the two
fractions of paths in ¥ which are solving or non-solving. Note that purity(y) > 0.5
always holds. Let g(P.) = ﬁ max{} ,cp.q(p),|Pc| =X ,cp. q(p)} denote the frac-
tion of paths for conﬁguratioh ¢ which are solving or non-solving.

For a given partition I" = {y,..., %} of P., the average purity of all groups can
be used as an evaluation criterion for the given partition. However, an unweighted
average of the purities has the effect that the average purity is higher if I" contains
many singletons because they contribute with a purity of 1.0 each. We therefore
consider a weighted average purity for I' where the purity of each cluster from I"
contributes proportionally to its size to the average. The weighted average purity for a
set of clusters I is defined as purity,,(I') = m Yyer ¥ purity(y:). However,
the optimal number of clusters is not known. We thus consider the weighted average
purity of all possible number of clusters. For a configuration ¢, the number of possible
clusters ranges from 1 to |P|. The weighted average purity for any configuration ¢
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and for any similarity measure is 1.0 for |P.| many clusters, and g(P.) for 1 cluster.
The behaviour between these extremes can then be used as evaluation criterion and
means of comparison between the proposed similarity measures, for example to find
out which similarity measure reaches the highest average purity with the smallest
numbers of clusters.

4.3 Results

For each start configuration ¢ and each similarity measure, the weighted average
purity is computed for each number of clusters between 1 and |P.|. Figure 2 shows
the results for some exemplary configurations. The possible number of clusters (i.e.,
the number of paths) is drawn on the x-axes, the corresponding weighted average
purity of the clusters on the y-axes. Note that the weighted average purity is always
larger than ¢(P.) which is indicated by the dashed line. The first observation is
that clustering with any of the similarity measures yields partitions with a weighted
average purity considerably higher than the corresponding g value. Furthermore,
the CoMapPal and CoMapPa2 distance measures perform clearly better than the
purely set- or order-based measures. With these two measures, it is possible to obtain
a weighted average purity close to 1 with only a few clusters. This observation is
supported by Table 2 which presents the weighted average purity for the clustering
results for all similarity measures for some graphs, if the number of clusters is fixed
to 5, 10, 20, or 302. For each game and for each x € {5,10,20,30}, the highest p, is
highlighted. Table 2 reveals that for almost all games, the CoMapPal and CoMapPa2
distance obtain the highest weighted average purity, often close to 100 %. This is even
achieved for game 723 where the number of solving and non-solving paths are almost
equal. Nevertheless, clustering the 2704 paths with CoMapPal and CoMapPa? yields
almost pure clusters when only choosing 5 clusters. Figure 2 also indicates that the
CoMapPal and CoMapPa2 measures perform almost equally well when using the
normalized or unnormalized version of the measure. This is not the case for the
set-based and order-based measures: here, the unnormalized measures consistently
yield less good results.

In order to show that these observations are not only artifacts of single games, we
adapt the idea of considering the area under the curve of the corresponding weighted
average purity line. Informally, for a given sequence of weighted average purities
(one entry per possible number of clusters) for one game and one similarity measure,
we consider the area between the corresponding curve and the corresponding g
line. Dividing this value by the size of the area of the “ideal” curve which reaches
a weighted average purity of 100 % with 2 clusters, yields the relative AUC. The
relative AUC is computed for every similarity measure and every game. The results
are shown in Figure 3 (left). The observations made for single games can be confirmed
here. The relative AUC is consistently higher for all games for the CoMapPal and

2 The table with the results for all configurations is contained in the supplementary material available
under http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf
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Table 2: The weighted average purity for each of the six similarity measures for a
fixed number of clusters. For each game, results for the unnormalized measure are
presented in the first line, results for the normalized measure are presented in the
second line. p, denotes the weighted average purity of the clustering when choosing
x clusters. For each game and each x € {5,10,20,30} the highest p, is highlighted.
q(P.) is denoted by ¢ and gives the fraction of solving or non-solving paths of all
paths for the configuration. All values are percentages. Because of lack of space, the
table only shows the results for a few games. The full table is available online under
the given link.

Ouss Olss Oles Snad Scomappal Ocomappa2
P5 P10 P20 P30|P5 P10 P20 P30|Ps P10 P20 P30|P5 P1o P20 P30| P5_Plo P20 P3o| Ps Pio P20 P3o| 4

Game 19 69 69 78 84|69 74 81 8168 71 71 71|87 87 88 89| 85 88 89 90| 85 85 87 88 67.82

79 79 84 84|68 68 81 84|84 84 84 85|84 86 89 89| 85 85 92 94| 92 96 96 96

99
Game 357 72 82 82 87|75 75 81 81|74 81 82 85(90 91 95 95| 99 99 100 100{ 93 98 99 99 7171

87 87 87 8982 83 88 89|80 84 87 89|85 90 90 91| 95 95 98 100| 99 100 100 100

Game 723 55 56 66 74|55 57 58 63|55 57 65 79|95 95 96 96| 99 99 99 99| 99 99 99 99 s4.44

74 90 94 94|55 56 58 61|81 84 93 94(95 95 96 96| 96 99 99 99| 99 99 99 99

Game 765 76 78 79 79|76 78 78 82|76 77 77 80|86 86 89 91| 86 88 95 95| 86 86 99 99 76.41

77 80 85 85|76 76 79 86|78 79 84 86|84 89 91 91| 82 90 96 96| 87 94 98 99

CoMapPa2 measure, regardless whether the normalized or unnormalized version is
used. The relative AUC for all other measures is smaller and there are high differences
between the normalized and unnormalized versions. When considering the results
shown in Figures 2 and 3 (left), it is striking that the unnormalized versions of the
set- and order-based measures yield clusters with a considerably smaller weighted
average purity than the normalized version. There is the possibility that the similarity
measures only distinguish between shorter and longer paths (because clearly, a
solving path needs to have a certain length while non-solving paths can be short)
and reach high average purity by this effect. Therefore, Figure 3 (right) shows the
relative AUC of the resulting clusters, if for each game, only paths at least as long
as the shortest solving path are considered. The gap between the normalized and
unnormalized versions of the measures clearly decreases, but the general trend of the
previous results is confirmed. Thus, clustering the paths with the proposed similarity
measures can distinguish quite well between solving and non-solving paths. This
implies that solving and non-solving paths show structural differences that can be
detected by such simple similarity measures.

5 Conclusion

In this paper we have shown on a first benchmark data set and a simple ground truth,
that already very simple quantifications of the similarity of paths in complex networks
yield interesting insights into this new dimension of analyzable data. We have shown
that—using a simple clustering algorithm—the measures which incorporate the
underlying graph and the traversal order of the paths, contain the most information to
categorize the paths representing the solving attempts of games into those that finally
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Fig. 3: Relative AUC of the weighted purity for all paths of all configurations (left)
and when only sufficiently long paths are considered (right).

solve it and those that do not, to a quite high degree. The results imply that similarity
measures which take into account the underlying network structure are best-suited
to find groups of similar paths. However, the results are currently only valid for one
specific data set which is why future work should aim at generalizing and validating
the proposed measures on further data sets. In general, we believe that there is a
wealth of data contained in the paths actually taken in a complex network rather than
in the ones imposed by, e.g., centrality indices that always assume that either random
walks or shortest paths are used. In another paper, Dorn, Lindenblatt and Zweig
showed that centralities based on actual path data are also less prone to artifacts than
classic centrality indices [5]. Thus, an important task for the community in network
analysis should be to obtain such data and to publish it—preferably with ground truth
regarding clusterings, centrality of nodes in the paths, external parameters like time
taken or time stamps at the single nodes, etc.—to mine and analyze it together with
the underlying network structures.
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Complexity Analysis of “Small-World Networks”
and Spanning Tree Entropy

Raihana Mokhlissi, Dounia Lotfi, Joyati Debnath and Mohamed EI Marraki

Abstract The number of spanning trees of a network is an important measure re-
lated to topological and dynamic properties of the network, such as its reliability,
communication aspects, and so on. However, obtaining the number of spanning trees
of networks and the study of their properties are computationally demanding, in
particular for complex networks. In this paper, we introduce a family of small-world
networks denoted Gy ,, characterized by dimension k, we present its topological
construction and we examine its structural properties. Then, we propose the de-
composition method to find the exact formula for the number of spanning trees of
our small world network. This result allows the calculation of the spanning tree
entropy which depends on the network structure, indicating that the entropy of low
dimensional network is higher than that of high dimensional network.

Key words: number of spanning trees, complex network, small world network,
decomposition method, spanning tree entropy.

1 Introduction

In nature, networks are everywhere around us. Owing to their relevance to many
real systems, some of them are called complex networks. In recent years, they have
been studied mainly focusing on fractals, scale free, small world [1, 13]... It could
be applied to some real-world networks such as the world-wide web [6], social
networks [9], mathematics, physics, etc... These networks contain a hierarchical
property: “self-similarity” [11] which replicate their structure and their dynamics.
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To analyze these complex networks, we need theories to understand their inherent
and emergent properties [8]. We need new formal models of these networks so that
we can predict accurately their performance, assert the guarantees of reliability, and
ensures the survivability and the accessibility of communication. The graph theory
has a powerful combinatorial tool to understand the relationship between the structure
and the function of networks. This tool can be represented by a Spanning tree [14]
which is one of the most important varieties of sub-networks to characterize the
complex network constructions and understand their dynamical processes. It provides
useful insights about the analyzing of the mechanism of self-similarity in complex
networks. The notion of spanning tree is defined as a subgraph without cycle in other
words a tree that has the same vertex as the main graph and some or all its edges. The
applications of spanning trees of a network are often in computer networking. For
example, if we have a redundant topology, the presence of loops generates broadcast
storms that paralyze the network. To avoid routing loops, the spanning trees disable
redundant links and restore the connection between the network nodes. In this work,
Our goal is to determine the number of spanning trees of a network or what is called
the complexity of a network [12]. The benefit of calculating this number is to evalu-
ate the complexity of a network and to analyze its reliability [5]. This number can
be obtained by computing the determinant of a submatrix of the Laplacian matrix
corresponding to the network (Kirchhof’s matrix-tree theorem [3]). However, for a
large and complex network, the evaluation of this determinant is very difficult and
even impossible. Most of the recent works have tried to nd some alternative methods
in order to avoid the tedious calculations of the largest determinant as needed by the
algebraic method and enumerate the spanning trees for large and complex networks.

In this paper, we rely on the principle of a process of “Divide and Conquer” which
divides a problem recursively in sub-problems, solves each of this sub-problems and
then merges the partial results for a general solution. An example of this technique
is the decomposition method: to calculate the number of spanning trees of a wide
planar network, first, we represent it as graph and we cut it in two, three, ..., n
subgraphs. Then, we calculate the number of spanning trees of each of subgraphs.
Finally, we collect the results to obtain the complexity of the main graph. The use of
this technique is due to its ease to discover the spanning trees of a complex network.
In order that this method is relevant, we must investigate how we reduce the main
graph and we have several possibilities to do it. In this work, we study the case where
subgraphs are connected by one vertex (cut following one vertex).

In this article, we introduce a class of small world networks denoted Gy, where k is
its dimension and # is the current iteration. This type of small world networks(SWNs)
is a new model structures, which arises in the complex systems.Much attention
has been paid to the study of this kind of SWNs, especially for the dimension
k = 3, because it plays a notable role in the analysis of real-life complex systems
[13], including the Internet, social networks, protein networks in the cell, tensor
networks [10]... First, we present the construction of two models of SWNs: A
particular case of the Small World Network G3 ,, having the dimension 3 and a general
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case of the Small World Network Gy, having the dimension k. Then, we analyze
their structural properties and we evaluate their complexity. Finally, we compute the
entropy of their spanning trees which depends on their structure indicating that the
entropy of low dimensional network is higher than that of high dimensional network.

2 Related work

The enumeration of spanning trees of a planar graph is not always easy, especially
for a large graph. In order to facilitate this calculation, we propose a combinatorial
technique which is based on the decomposition of graphs. This method aims to cut a
graph in different parts or subgraphs satisfying certain constraints and optimizing
a certain objective function. This partitioning problem has many applications such
as clustering of documents, design electronic integrated circuits, load balancing for
parallel machines and image segmentation. In this section, we define the decompo-
sition method of a graph and its various combinatorial properties and we quote the
main theorems which we needed to calculate the number of spanning trees for our
network.

Definition 2.1. Let G = C| o C; be a planar graph obtained by connecting C; and C;
with one vertex vy. i.e., C1 and C; are connected subgraphs which intersect exactly
in one vertex v (see Figure 1).

= G
articulation point

Fig. 1: AgraphG=Cie(,

Property 2.1. Let G be a planar graph of type G = C; ¢ Cy:

e Cy and C, have a common vertex v; and a common face (the external face).
o V5= VC| +VC2 —1,Eg= EC] +EC2 and Fg = FC] +FC2 —1.
o If we remove the vertex v of the graph G, the resulting graph is not connected.

Theorem 2.1. If we have a planar graph G such that G = C| @ Cy. Then, the number
of spanning trees of G is given by:
T(G) =1(C10Cy) = 1(Cy) X T(Cy). Q)
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Proof. Each path that connects a vertex of C; to a vertex of C; must pass through v;.
The Laplacian matrix associated with a graph G = C ¢ (; is as follows:

* * ¥ ¥ f 1] ) () W (&3]

Y i I_C ) —

(] ] () 1) ¥ . g #
() 0 ( ] ¥ ¥ % ¥

After deleting the row and the column of the vertex v{, we obtain this matrix:

Mnl nl 0
0 MnZ,nZ

In calculating the determinant, we obtain: 7(G) = t(Cy) X 7(C).

Theorem 2.2. (Generalization of Theorem 2.1) Let G be a chain of planar graphs
defined by G =C1eC,e...0C, (one of the following graphs in Figure 2). The number
of spanning trees in G is given by the following formula:

#(6) = [ =(C. @
=1

Fig. 2: Star graph and chain graph
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3 The particular case of the Small World Network G3 ,, having
the dimension 3

In this section, we introduce a most known kind of small world networks G3 ,, having
the dimension 3. It has been extensively used quantum walks [2, 7], tensor net-
works [10]... G35, is a particular case of a class of SWNs. We present its construction,
determine their structural properties and analyze its complexity.

3.1 The construction and the structural properties of the Small
World Network G5,

A class of small world networks denoted by G3, with n is the current iteration is
constructed as follows: At n = 0, we have a simple node. At first iteration, G3 1 is a
simple triangle. For n > 1, each node in the graph of the previous iteration is replaced
by a new triangle. Thus, each of the newly appeared triangles contains exactly one
node of the graph of the previous iteration. The growth process to the next iterations
continues in a similar way. For illustration, in Figure 3, we present 4 iterations of
G3Jl'

o
G Gs31 G3p
Q909
Gs3
Q9 O9 Q9 O9Q

Fig. 3: A class of Small World Networks Gs ,, having the dimension 3
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The structural properties of the small world network G3 ,, are presented as:

e The number of nodes of G3 ; is calculated as follows: From Figure 3, we notice:
VG&,n = 3VG3,»H = 32VG3¢172 = 33‘/631»173 == 3n71VGs,1 = 3HVG3,0'
So the number of nodes of G3 , is: Vg, , = 3".

o The number of edges of G3 , is calculated as follows: From Figure 3, we notice:
Eg,, = 3EG,, , +3
EG3.n71 = 3EG3,n72 +3
EGs, , = 3EGs, 5 +3

EG372 = 3EG311 +3

EGS,I = 3EG3,0 +3
We multiply the equation of Eg, , , by 3, the equation of Eg;, , by 3* and so on
until the last equation E, ; which will be multiplied by 3"~ Summing all the ob-
tained equations, we can find: Eg,, = 3"E30+ (3 x3°+3x 314+ +3x3"71).

So the number of edges of G3 , is: Eg,, =3 X L{l

e The number of faces of G3, is calculated as follows: From Figure 3, we notice:
Fg,, =3Fg,, , —1
FGS.n—l = 3FG3,n72 -1
FG3,/172 = 3FG3,/173 -1

EGS,Z = 3FG3‘1 —1

Eg,, = 3Fg,, — |
We multiply the equation of F,, , by 3, the equation of Fg,, , by 32 and so on
until the last equation Fg,, which will be multiplied by 31, Summing all the
obtained equations, we can find: Fg,, = 3" — (3% +3! +32 ... 4372+ 3°1),
So the number of faces of G3 , is: Fg,, = 3" — L;l

3.2 Evaluation of the Complexity of the Small World Network G ,
having the dimension 3

The complexity of a complex network is very difficult to determine since classical
approaches, such as the calculation of the determinant or the eigenvalues of the
Laplacian matrix, are infeasible or even impossible for a large small world network.
Therefore, we use the decomposition method that facilitate this computation to obtain
the exact analytical expression for the number of spanning trees of the particular case
of the small world network G3 ;.



Complexity Analysis of “Small-World Networks” and Spanning Tree Entropy 203

Theorem 3.1. : Let G3 , denote a class of small world networks having the dimension
3. The complexity of G3,, is given by the following formula:

31

T(Gyp) =377

3

Proof. From the Figure 3, we see that G3, contains several subgraphs as triangles
G3. Using Theorem 2.2, we obtain:7(G3 ,) = 15 7(G3) = T(G3)T3’" with T3 ,, is
the number of triangles in G3 ,,. From our network, we see:
By,=3xT,-1+1
By 1=3xT3, ,+1
Byo2=3xT,3+1

Bpo=3xT3;+1

I3 =3xTp+1
We multiply the equation of 73,1 by 3 , the equation of 73 ,_> by 32 and so
on until the last equation 73 1 which will be multiplied by 3"~ Summing all the
obtained equations, we can find: T3, = 3° +3' + 324 ...+ 372+ 371 So the

number of triangles in G3 ,, is: T3, = 3}12—_1 We replace it in the equation of 7(G3 ),
. 31
hence we obtain: 7(G3,) =372 . O

4 The general case of the Small World Network G , having the
dimension k

In this section, we study the general case of a class of small world networks Gy , hav-
ing the dimension k. We examine its construction, analyze its topological properties
and evaluate its complexity.

4.1 The construction and the structural properties of the Small
World Network Gy,

A family of small world networks denoted by Gy , is characterized by two parameters
k and n, where k stands for the dimension of the cyclic graph and n for the current
generation. The construction of Gy , is presented as follows: At n = 0, we have a
simple node. At first iteration, Gy ; is a simple cyclic graph with k nodes. For n > 1,
each node in the graph of the previous iteration is replaced by a new cyclic graph
with k nodes. Thus, each of the newly appeared cyclic graphs contains exactly one
node of the graph of the previous iteration. The growth process to the next iterations
continues in a similar way: Connecting a cyclic graph with k nodes to each node of
the graph in the previous generation one gets the graph of the next generation. In
Figure 4, we illustrate 4 iterations of Gy, with k = 5.
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Fig. 4: A class of Small World Networks Gs , having the dimension k =5

The structural properties of the small world network Gy ,, are presented as:

e The number of nodes of Gy , is calculated as follows:From Figure 4, we notice:
VGk‘,n = kVkan_] = sz(;k’n_2 = k3VGk,n—3 =..= knilVGk"] = anGk,O'
So the number of vertices of Gy, is: Vg, , = k".

o The number of edges of Gy, is calculated as follows: From Figure 4, we notice:
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EGkﬁn =kx EGk.n—l +k
EGk,n—I =kx EGk,n—z +k
EGsz—Z =kx EGk,n—S +k

EGk,Z =k X EGk‘1 +k

EG,, =kXEg,,+k
We multiply the equation of Eg,, , by k, the equation of Eg, , , by k? and so
on until the last equation Eg, , which will be multiplied by k"', Summing all
the obtained equations, we can find: Eg,, = Ex KO+ kx k! +... +kx k1,

So the number of edges of Gy, is: Eg,, =k x ¥=1.

e The number of faces of Gy, is calculated as follows: From Figure 4, we notice:
Fg, = kxFg,, , — (k—2)
FG,, , = kFg,, , —(k—2)
FGk,n—z = kFGk,n—3 - (k -2)

E(;k‘2 = kFGk?] — (k— 2)

Eg,, = kFg,— (k— 2)
We multiply the equation of Fg, , | by k, the equation of Fg, , , by k? and so on
until the last equation Fg, , which will be multiplied by kK"~!. Summing all the
obtained equations, we find: Fg, , = k" — (k—2)[kO+k' +k> + ...+ k"2 k" 1.

So the number of faces of Gy , is: Fg,, = k" — (k—2) kk":ll .

4.2 Evaluation of the Complexity of the Small World Network Gy,

According to the structural topology of the small world network Gy ,,, we can apply
the decomposition method following one node to obtain its number of spanning trees.

Theorem 4.1. : Let Gy, be a class of small world networks having the dimension k.
The complexity of Gy, is given by the following formula:

2(Grp) = KT @)

Proof. From the Figure 4, we see that Gy, contains several cyclic subgraphs Gy .
Using Theorem 2.2, we obtain: 7(Gy,) = [T ©(Gy) = T(Gk)T"-" with T, is the
number of cyclic subgraphs in G3,. From the figure 4, we see:
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Tk,n =kx Tk,nfl +1
Tin1=kxXTpo+1
Tk,r172 =kx Tk,n73 +1

Tip=kxT1+1

Tin =kxTo+1
We multiply the equation of T ,_; by k , the equation of 7} ,_» by k? and so
on until the last equation 7; ; which will be multiplied by k"', Summing all the
obtained equations, we can find: Ty, = k® + k' + k% + ...+ k"2 +k"~!. So the number
of subgraphs in Gy, is: Ty , = % We replace it in the equation of ‘L'(ka,,) and

. 1
7(Gk) = k, hence we obtain: 7(Gy,) =k &1 . O

Note: The small world network Gy , has the same number of nodes and edges as
the dual Sierpinski gaskets [4], but they don’t have the same complexity. This is due
to the repositioning of nodes and how they are connected.

5 The entropy of spanning trees of a class of Small World
Networks.

The asymptotic complexity or the entropy of spanning trees of a network G is a
quantitative measure that compares the number of spanning trees of networks having
the same average degree of nodes [9]. When 7(G): the spanning trees number of G
grows exponentially with its number of vertices as Vi — oo, there exist a constant:
In|7(G)| .
Vg—ro |VG|

Let pg, , be the entropy of spanning trees for Gy ,. This real number is an interest-
ing quantity characterizing the network structure. With the same average degree of
the nodes < z > for a network, the bigger the entropy value, the more the number
of spanning trees compared with other networks having the same average degree.
We calculate and we compare the entropy of spanning trees of our SWN with other
networks having the same average degree in order to determine the most reliable
network with the strongest heterogeneous topology.

In(k)

Corollary 5.1. : The entropy of spanning trees of Gy is: PG, =

Proof. From the equation 4 and 5, and Vg, , = k", we obtain:

k-1
. In(k k=1 .
PG, = lim il o ) — lim
k,n Vv, Kk Vv,
Gk,n*)m G, 114)Do

K'(1=gr)  In(k In(k
e X TE])’ hence, pg,, = TE 1)'

According to the found formula of pg, ,, we see that this entropy is the same as
that of Flower network, even if they don’t have the same complexity. This result
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Fig. 5: The spanning trees entropy of Gy ,

shows that our model of SWN and the Flower network are similar in the limit k — oo
and they have similar behavior in this limit.

From Figure 5, we notice that the entropy of spanning trees of Gy, varies with the
dimension k which shows that the spanning trees entropy depends on the basis of the
self-similarity of our SWN (the network structure). Figure 5 also shows the increasing
of the dimension k leads to decrement the entropy of spanning trees of Gy ,. This
indicates that the increase of the self-similarity dimension in our SWNs significantly
decrease the number of spanning trees. To prove this result, we can compare the
entropy of spanning trees of our SWN with different values of k& with the entropy of
other networks having the same average degree: The entropy of our SWN with k =2
is (0,693) the highest reported for networks having the same average dregree. The
entropy of our SWN with k = 3 is (0,549) the same value that the entropy of the Hanoi
networks [15]. The entropy of our SWN with k£ = 5 is (0.402) the lowest among all
other networks having the same average dregree 3, which means the entropy of low
dimensional network is higher than that of high dimensional network. This reflects
the fact that the low dimensional network of our SWN has more spanning trees than
the high dimensional network. According all these results, we conclude that our class
of small world networks Gy , having low value of dimension & is more robust and its
structural topology has stronger heterogeneous than Gy, having high value of k.

6 Conclusion

Complex networks are an emerging and powerful tool that can be used in real-life
complex systems. They are applied in communication networks, social networks,
epidemiology, synchronization, etc... In this paper, we drew on ideas from graph
theory to analyze structural properties and the complexity of a classe of small world
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networks. We found its number of spanning trees by using the decomposition method.
The knowledge of this number allows to calculate its spanning tree entropy indicating
that the entropy of low dimensional network is higher than that of high dimensional
network.
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Graph Structure Similarity using Spectral
Graph Theory

Brian Crawford, Ralucca Gera, Jeffrey House, Thomas Knuth and Ryan Miller

Abstract In understanding an unknown network we search for metrics to determine
how close an inferred network that is being analyzed, is to the truth. We develop a
metric to test for similarity between an inferred network and the true network. Our
method uses the eigenvalues of the adjacency matrix and of the Laplacian at each
step of the network discovery to decide on the comparison to the ground truth. We
consider synthetic networks and real terrorist networks for our analysis.
Keywords: graph comparison metrics, Laplacian, eigenvalue distribution,

Kolmogorov-Smirnov Test.

1 Introduction and Motivation

The successful discovery of a network is of great interest to the Network Sciences
community. Many algorithms have been proposed for network discovery. But when
have we discovered enough of the Network? For a given network G, we utilize
its subgraphs representing consecutive snapshots G, (1 <n < N with Gy = G), as
G is discovered through monitor placement that light up the network. By lighting
up G, we mean that certain nodes and edges of G are being discovered by using
monitors on the nodes (monitors light up the node, its incident edges and adjacent
vertices as defined in [6], while the remaining of the network is unknown as shown
in Figure 1 for Boko and Noordin Top networks described in this paper. We compare
consecutive snapshots (subgraphs) G, at step n in the inference as the network is
being inferred (1 < n < N). We present an analysis of the sequence of G, to the
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SCREENCAST(®)MATIC  ©

Fig. 1: Lighting up two dark networks: Boko and Noordin Top (click on the picture
for the movie)

ground truth network G = Gy, which provides information about when enough of
the network has been discovered. We develop a comparison metric using Sequential
Laplacian and Adjacency Matrix Eigenvalue Distribution Comparisons. Four case
studies, mixing synthetic and real terrorists networks, are explored in this paper to
test the viability of the comparison metric. The first case study examines a synthetic
network and the remaining case studies examine real terrorist (or dark networks)
including Noordin Top [14], Boko Haram [4], and Fuerzas Armadas Revolucionarias
de Colombia (FARC) [5].

2 Background

In mathematics, an established metric for graph comparison is isomorphism. Two
labeled graphs G and H are isomorphic if there exists a one-to-one correspondence
¢ from V(G) to V(H) such that uv € E(G) if and only if ¢(u)¢(v) € E(H) [2].
Comparing graphs based on isomorphism has a binary outcome: the graphs are either
exactly the same (isomorphic), or they are different (non-isomorphic). However,
in practice we prefer a measure that yields a range of similarity values for the
non-isomorphic ones, and converges to 1 as we approach isomorphism.

Many method were introduced to compare graphs: the original network recon-
struction in systems theories started in the 1960s [10]. Intuitive approaches consider
the percent of nodes and edges discovered during the inference of the network [6].
That is, they measure the percent of a network G that has been discovered at step

V(G |E(Gn)]

n in network G, through tracking ViG] and EG)] - But these don’t capture the
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cardinality of sets of nodes and edges discovered, but not so much the network.
The website http://faculty.nps.edu/rgera/projects.html [8] can be used to visualize the
lighting up of the networks, and algorithms can be tested live on preloaded networks
or custom networks, as desired by the user. The movie in Figure 1 was created using
this website.

Other common metrics for measuring similarity use comparison of degree dis-
tributions, density, clustering coefficient, average path length, Maximum Common
Subgraph, Graph Edit distance, number of spanning trees, and Hamming Distance.
Many graphs have the same degree distribution, or clustering coefficient, and so on.
Individually, none of these metrics comprehensively assesses topological similarity,
rather each is some measure of node matching between networks. Methods that
integrate all of these measures are desired. Similar efforts have been explored by
mapping networks to vectors of the above properties, and then clustering the vectors
based on naive distance methods. However, the choice of features (and their weights
if desired) is done manually which is not optimal.

Other methods to include Graph Kernels [9] which miss exactly the features
presented above and more, such as community structures. Counting Graphlets [13]
has been explored, but this is a computationally intensive technique. Other com-
plementary techniques include Best-effort Pattern Matching [17], DeltaCon [11],
Spectral analysis [19], and structural similarity of local neighborhoods [20]. A new
research direction uses genetic algorithms and machine learning [1].

In this research we introduce two metrics to compare the topology of the networks
using the eigenvalues of the Adjacency matrix and of the Laplacian. The question
of interest in the network discovery problem is whether we have discovered the
entire network. In general we cannot answer this question as it requires knowledge of
”ground truth.” However, it is always feasible to compare a sequence of discovered
sub-graphs and analyze the similarity of neighbors in any sequence of sub-graphs.
Spectral graph theory is concerned with understanding the structural properties of
the graphs using the spectra or eigenvalues and eigenvectors of the graph. Eigenvalue
analysis is used to describe the behavior of a dynamic system [18], and in our case,
the behavior of a network representing the system. To see its relevance in comparing
networks, note that eigenvalues measure the node cluster cohesiveness or community
structure that has widely been studied in network science. Moreover, the eigenvalues
represent the algebraic connectivity of the graph [7] and thus the spectra captures the
topology of the graph. The largest eigenvalue and its corresponding eigenvector are
of particular interest capturing the eigenvector centrality of nodes in a graph [3].

In spectral graph theory, Fan Chung [3] examined the distribution of eigenvalues
of the graph. Most of this research is focused on the correlation of the range of the
distribution of eigenvalues to the type of graph [3]. However, some research has
been conducted on the behavior of the distribution of the eigenvalues of the graph.
Mihail [12] suggests that there is a correlation between the power law distribution of
the nodes of the graph and the distribution of the eigenvalues. In his analysis of several
real graphs, including the Internet, he found that if the degrees of the graph d;...d,
were power law distributed, then there is a high probability that the eigenvalues of
the graph will be power law distributed and take on the values v/d;...\/d, [12].
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Of special interest for our analysis are eigenvalues the Laplacian L =D — A,
where D is the degree matrix, and A is the adjacency matrix. Fan Chung supports the
idea that the distribution of the eigenvalues of the Laplacian is more closely linked
to the structure of the graph than only using the eigenvalues of the adjacency list [3].
The Normalized Laplacian (hereafter Laplacian) contains the degree distribution as
well as the adjacency matrix information from the graph. While spectral analysis was
previously use to cluster similar trees and synthetic graphs [19], we use the spectra
with a different methodology.

Nonparametric statistical tests can capture whether two graphs are similar without
actually knowing the true network. We compare two samples (subgraphs) and test
the assumption they came from the same distribution (network). The alternative
hypothesis is there is some type of change between the two samples, such as inferring
more of a network. Ruth and Koyak introduce a new nonparametric test where the
first m of N observations Xj - - - X,,, - - - Xy are assumed to follow distribution F; and
the rest are from F;. This allows us to see a “shift point” at X, ; where our samples
are no longer from the same distribution [15].

3 Methodology: Eigenvalue Distribution

One perspective on network discovery is to consider any subgraph as one of many
possible outcomes from some discovery process, given a true underlying graph. For
a simple graph G(V,E), with |V(G)| = n, and |E(G)| = a, there are 2% possible
subgraphs on N vertices. In real-world applications, say if a = 1200, the count of
possible subgraphs is grows rapidly: 212% is on the order of 10%%°. Any discovered
subgraph is one of many possible random outcomes. we search to determine how can
we determine whether one collection of discovered nodes and edges is very similar
to the underlying graph.

Let G, be a sequence of graphs recorded while lighting up some given graph G,
where, if n < m, then G,, was discovered before G,,, and G, C G,,, Vn <m < N.
Let A, be the list (or vector) of ordered eigenvalues for G,,, and let A be the vector
of eigenvalues from the (true) underlying graph G. Note these are not eigenvectors
- each is a vector of eigenvalues. Then if Gy = G, it follows Ay = A. During the
process of discovering the network, we will not achieve Ay = A, but we expect that
A, — A as nincreases. Similarly for the vector of eigenvalues of the Laplacian.

We conduct a numerical experiment to test whether we observe convergence of the
K test p-value in practice. We choose a graph, and using the Network Visualization
Tool [8] we run a discovery algorithm as our method of establishing the sequence
of nodes and edges discovered as shown in Figure 1. The algorithm is not relevant:
it merely creates the sequence of subgraphs. We chose Fake Degree Discovery, a
degree greedy algorithm that discovers the network using the degree of undiscovered
nodes [16], see https://github.com/Pelonza/Graph_Inference/blob/master/. As discov-
ery progresses, we obtain a sequence of graphs that get more similar to the ground
truth, and can be used to validate our methodology.


https://github.com/Pelonza/Graph_Inference/blob/master/Clean_Algorithms/FDD.py

Graph Structure Similarity using Spectral Graph Theory 213

We apply the Kolmogorov-Smirnov (KS) test, the nonparametric analog of the
well-known chi-square test, to compare a sample of data to a known distribution
and measure the “goodness of fit.”” We assume the distribution of eigenvalues for
each graph snapshot G; arises randomly from a process driven by the structure of
an underlying graph, rather than assuming observations are drawn from the same
distribution.

We test the null hypothesis A, = A, for n < m. For large steps values n and m, we
expect that when the difference between n and m is small, that we would fail to reject
this hypothesis. This leads to the conclusion that the subgraphs are similar. Note that
failure to reject the null hypothesis does not imply the hypothesis is explicitly true.
Rather, it means we have no evidence that it is false. Thus we should not conclude
A, = A when we fail to reject the null hypothesis.

4 Results and Analysis

We discuss our experiments using a synthetic network in Section 4.1, and verify them
by using our methodology on real terrorist networks in Subsection 4.2.

4.1 Numerical Experiment Qutcomes on Synthetic Networks

We apply our algorithm to the base case graph: a randomly generated Erd6s-Rény
graph with 350 nodes and 3068 edges. When applying the Fake Degree Discovery

Percentage of Network Discovered Eigen Value KS Test (n, n+1)
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Fig. 2: Erd6s-Rény: (a) Comparison of the Sequential Steps Plotting the Percent of
Nodes/Edges (b) Comparison of the p-values of Sequential Steps (n against n+ 1)
using the Adjacency Eigenvalue Distribution

algorithm to this network, the maximum number of monitors placed to discover the
whole network is 210, which is used as the*“terminal” step for our plots. The first plot
of Figure 2 shows the percent of nodes and edges discovered during this process.
In practice, network discovery is a sequential process and the true underlying
graph is not available for comparison as done so far. Therefore we do not have the
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luxury to compare against ground truth, and so we need to determine whether the
KS test is useful when comparing sequential inferences. The second plot of Figure 2
shows that when only a few monitors are placed, many vertices and edges may be
discovered in the graph, and thus p oscillates at first, being sensitive to the change
in network from step n to step n+ 1. While later in the discovery process, when a
monitor discover little new information, the KS test has a high p-value, meaning the
consecutively discovered graphs are very similar. The erratic behavior of the KS test
p-values rapidly stabilizes through the inference, and remains high as expected.

In Figure 3 we plot the distribution of the adjacency matrix’ eigenvalues for the
graph obtained at step 20 alongside the graph at step 170, with each overlaid on the
eigenvalue distribution at the terminal step. The x-axis is the index n of the eigenvalue
A; of the adjacency matrix (notice that the eigenvalues are ranked in a non-increasing
order, and the index is in an increasing order). Notice the difference in distributions
between the two different time frames. Yet, the second plot shows almost identical
distributions for a time frame closer to ground truth.
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Fig. 3: Erd6s-Rény: Comparing the Adjacency Eigenvalue Distribution in the Dis-
covery (at Step t = 20 and at Step t = 170) Against Ground Truth

The same comparisons for the Laplacian eigenvalue distributions for the same
steps are shown in Figurse 4. This dissimilarity is larger than the one obtained using
the Adjacency matrix. This is due to a Laplacian matrix’ capacity to capture more
information about a graph’s topology than an adjacency matrix. What is similar
between the two graphs is the progressive convergence the early and late steps
demonstrate. We will see that even for real networks, the late step is much closer
than the early step to being aligned with the final graph.

Our final plots of the section shown in Figure 5 demonstrate the behavior of the
KS test throughout the network discovery process against ground truth. In the first
plot we see the adjacency matrix eigenvalue distribution is judged not to be similar
until approximately step 150. Here we see a rapid climb from p-values near zero to p-
values near one. The Laplacian eigenvalue distribution in the second plot shows very
similar behavior, but the steep ascent of the p-values from zero to one occurs later, at
step 190, as it is more sensitive to change due to the extra information captured by
the Laplacian. At step 180 and step 190, 100% of nodes have been discovered. At
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Fig. 4: Erd6s-Rény: Comparing the Laplacian Eigenvalue Distribution Late in the
Discovery (at Step t = 170) Against Ground Truth
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Fig. 5: Erd6s-Rény: Adjacency Matrix and Laplacian Matrix Comparison of the
Discovery Steps Against the Ground Truth

step 180, 88.8% of edges have been discovered, and at step 190, this rises to 90.8%
of edges. Consider the impact of a missing edge when comparing the subgraph to
the full underlying graph. In the adjacency matrix, a missing edge equates to two
missing entries of value 1. But in the Laplacian, in addition to these missing entries,
two diagonal entries representing the degrees of the nodes also differ from the full
graph Laplacian. This explains why the KS test using the Laplacian is less likely
to agree that the graphs are similar: there are additional sources of disagreement
between the Laplacians not found in the adjacency matrices. We will compare the
real networks to these plots, and analyze the similarities and dissimilarities.

4.2 Application to terrorist networks

We apply the methodology of Section 3 to three terrorist networks: Noordin Top [14],
Boko Haram [4], and Fuerzas Armadas Revolucionarias de Colombia (FARC) [5].
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4.2.1 Application to Noordin Top

Noordin Top Network (Figure 6) is the aggregation of 14 different relationship
types amongst 139 terrorists for a total of 1499 edges. This network captures the
relationships of five major terrorist organizations that operate in Indonesia. Noordin
Top is the key broker between these organizations and exercises his influence to
conduct large scale terrorist training events and operations. In this case, monitor
placement during degree discovery process is representative of new information that
is gained about the terrorist network. The plot of Figure 6 shows the node and edge
progression of the discovery algorithm for a quick intuition of discovery.

b g LR e ¥ AN Noordin Percentage of Network Discovered
% x 100% M
o ¥ > . 20% r—"’——
» . . ’
N, £ ao%
\ £ f
* g
: |‘
* ® 0%
7
Pl
¥
N 20% f
4 e+ Nodes
i v—» Edges
X Begn 0% " L
10 20 30 40 &0 0 80 an
2

50
Discovery Step

Fig. 6: Noordin Top and Its Inference: Comparison of the Percent of Nodes/Edges
Discovery Steps Against the Ground Truth

Similar to Figure 5, we present the KS tests for the Noordin Top Network in the
plot of Figure 7 and see the same behaviour. The second plot of Figure 7 also shows
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Fig. 7: Noordin Top Inference: (a) Comparison of the Laplacian and Adjacency
Matrix Eigenvalues Steps Against the Ground Truth (b) Comparison of the p-values
of Sequential Steps (n against n+ 1) using the Laplacian and Adjacency Matrix

that consecutive graphs become more similar as the inference progresses, with more
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noise than the synthetic network. The main differences are in the spikes seen in the
both KS plots potentially due to the real network being disconnected.

4.2.2 Application to Boko Haram

The Boko Haram Network of Figure 8 and is the aggregation of 9 different relation-
ship types (73 edges) amongst 105 terrorists. This network captures the relationships
of an Islamic extremist organization that primarily operates in Nigeria. The plot in
Figure 8 shows the node and edge progression of the discovery algorithm.
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Fig. 8: Boko Haram and its Inference: Comparison of the Percent of Nodes/Edges
Discovery Steps Against the Ground Truth

The KS tests plots for the Boko Haram Network against the ground truth and

Boko Haram Laplacian and Eigen Value KS Test Boko Haram Laplacian and Eigen Value KS Test (n, n+1)
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Fig. 9: Boko Haram Inference: (a) Comparison of the Eigenvalues Adjacency and
Laplacian Matrix Steps Against the Ground Truth (b) Comparison of the p-values
of Sequential Steps (n against n+ 1) using the Adjacency and Laplacian Matrix

sequentially, for both adjacency and Laplacian matrices are shown Figure 9. Boko
Haram is a disconnected network, with over 60 nodes of degree 0. When very few
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nodes on this network are discovered, the p-value jumps very quickly. The drop in
p-value at step 13 corresponds to a large discovery in the network that is less visible
but detected in the edge and node discovery in Figure 8; and the p-value quickly
stabilizes after.

4.2.3 Application to FARC

In applying our methodology to the FARC Terrorist Network for additional verifica-
tion, we obtained similar results. The FARC Network is visualized as a network in
Figure 10 and includes the aggregation of 10 different relationship types amongst 142
terrorists operating in Colombia, and a total of 1527 edges [5]. The plot in Figure 10
shows the node and edge progression of the discovery algorithm. We also plotted
the KS tests for the FARC Terrorist Network in Figure 11. Here we note volatility
in both the Laplacian and Adjacency KS test plots. This differs from the previous
cases where we observed more stable convergence. We investigate this further to find
an explanation.

FARC Percentage of Network Discovered
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Fig. 10: FARC network and its Inference: Comparison of the Percent of Nodes/Edges
Discovery Steps Against the Ground Truth

In the depiction of FARC in Figure 10 one observes two large, dense clusters,
and several outlying clusters. We note that the FARC network is different from the
other networks in what seems to be a crucial way: The clustering coefficient for this
network is very high, at 0.91. The discovery algorithm focused on the big clusters
at first (which can be seen in the plot of Figure 10 as the nodes get discovered
quickly and then they plateau while only edges are being discovered), and then
when nodes in a different cluster are discovered. The KS test detects and reports
a “setback” in the confidence till the entire network has been discovered. Figurell
shows that in the beginning the discovered graph is very dissimilar to the whole
network as it has only a few edges discovered. The second plot of Figure 11 strengthen
that explanation by showing that consecutive discoveries look more similar if the
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eigenvalue of the Adjacency matrix is use, but the sensitivity of the Laplacian depicts

the dissimilarities as it is more sensitive to changes in the graphs compared.
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Fig. 11: FARC Inference: (a) Comparison of the Laplacian and Adjacency Matrix
Eigenvalues Steps Against the Ground Truth (b) Comparison of the p-values of
Sequential Steps (n against n+ 1) using the Laplacian and Adjacency Matrix

4.3 Conclusions

Our numerical experiments show what we anticipated: Using the p-value from a
KS test as a measure of similarity, the distribution of eigenvalues from neighboring
sub-graph adjacency matrices are not always similar statistically, but this similar-
ity measure stabilizes rapidly. Further, comparisons using this metric to the true
underlying graph tend to 1 as the discovery unfolds.

When a representative portion of a graph has been discovered, the p value tends
to stabilize. We base this statement on the rapid climb in the p-value for the KS test
at some critical point, in each of the networks. Since the plots of the p-value, when
comparing sequential steps of the inferred graph, show a steep climb in p-value at
this critical point, which is the point to find a similar graph to ground truth.

We find this same very steep transition occurs much later for the Laplacian. There
are also some known results on the distribution of eigenvalues from the Laplacian,
including characterizations of graphs based solely on normalized eigenvalues. The
Laplacian eigenvalue distribution comparison method is slower to conclude graphs
are similar as it is armed with more information. We found that this delay is due
to the structural differences in the adjacency matrix and the Laplacian. Thus for
the purpose of similarity, the adjacency matrix can give a broad similarity measure,
while the Laplacian is more exact in measuring similarity.

The rapid stabilization of the KS test when comparing consecutively discovered
sub-graphs may offer some utility when comparing graphs in the setting where the
true underlying graph remains unknown or unknowable. The advantage of such a
metric is that it is self-referential: nothing needs to be assumed beyond what has
been discovered. The desirable property of early stabilization can be put to use when
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it fails: After the KS test measure on neighbors stabilizes, and discovery continues,
a break in stability marks a major discovery. For example, if a bridge is discovered
there is a clique on the other end of the bridge, then one can be sure the KS test
p-value will drop. Whether it drops significantly will depend on the relative number
of nodes and edges discovered in the next step compared to the number already
discovered. We observed that when there is a high clustering coefficient, this leads to
increased volatility in our similarity of measure.

We conclude that the use of sequential Adjacency and Laplacian matrix eigen-
value distribution comparisons based on the Kolmogorov-Smirnov Test p-values
is a promising method to guide network discovery. Further work is necessary to
explore and more fully describe the properties observed in this study. Particularly this
method would not differentiate graphs that have the same graph spectrum (isospec-
tral/cospectral graphs) as a theoretical study, as well as more choices of synthetic
models.

Continuing the current research has great potential for comparing graphs and
inferring networks when information is incomplete. A comparison to the Kullback-
Leibler’s (KL) divergence test can also be performed.
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A genetic algorithm-based approach to mapping
the diversity of networks sharing a given degree
distribution and global clustering

Peter Overbury, Istvan Z. Kiss and Luc Berthouze

Abstract The structure of a network plays a key role in the outcome of dynamical
processes operating on it. Two prevalent network descriptors are the degree distribu-
tion and the global clustering. However, when generating networks with a prescribed
degree distribution and global clustering, it has been shown that changes in structural
properties other than that controlled for are induced and these changes have been
found to alter the outcome of spreading processes on the network. This therefore begs
the question of our understanding of the potential diversity of networks sharing a
given degree distribution and global clustering. As the space of all possible networks
is too large to be systematically explored, a heuristic approach is needed. In our
genetic algorithm-based approach, networks are encoded by their subgraph counts
from a chosen family of subgraphs. Coverage of the space of possible networks is
then maximised by focusing the search through optimising the diversity of counts by
the Map-Elite algorithm. We provide preliminary evidence of our approach’s ability
to sample from the space of possible networks more widely than some state of the
art methods.

1 Introduction

Almost all complex systems can be modelled, to varying levels of detail, using
networks whereby components of the system can be reduced down to nodes and to
edges connecting them. Such an approach often makes it possible to pick out global
behaviours dependent on the connections and/or relationships between different
elements of the system that either would not have been noticed in isolation or
could not be detected within large data sets [15]. The relationship between network
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structure and behaviour is the subject of much research in many areas such as
epidemiology [3, 9, 18], social media [1] and neuroscience [12]. Where analytically-
tractable mathematical models are needed, two main network descriptors stand out:
degree distribution and global clustering. Interestingly, while there are now effective
and analytically-tractable mathematical models that can handle the degree distribution
well [3, 9, 18], when clustering is also considered, most models will break down or
only operate for networks constructed in particular ways, e.g., networks with non-
overlapping triangles [22]. This sensitivity to how networks are constructed highlights
the fact that, as shown by [4, 8, 10, 19] among others, many network-generating
algorithms introduce changes in structural properties other than that controlled for,
thus undermining both model accuracy and inference of any causal role for the
properties of interest. How to create network null models, i.e., where the properties
of interest are fixed and all other properties are sampled in an unbiased manner, is an
open question. One major step towards realising such goal would be to get a greater
understanding of the space of networks satisfying a given set of requirements, e.g.,
a given degree distribution and a given global clustering coefficient. For networks
of non-trivial size