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Preface

The International Workshop on Complex Networks & their Applications was first
held in 2012. It was initially conceived as a forum to bring together researchers from
a wide variety of fields ranging from Computational Social Science, to Economic
Complexity, up to Bioinformatics to review current scientific work and formulate new
directions in network science. The tradition has continued with an annual single-track
meeting that has become one of the leading international events in the field. Fuelled
by the skills and expertise of participants from these diverse research fields, this
workshop allows for cross-fertilization between fundamental and applied research. It
offers a unique opportunity for reflection on the current state of the field, unanswered
but critical questions, and potential future directions.

This volume of proceedings provides an opportunity for readers to engage with
a selection of papers presented during the Fifth edition, hosted by the University
of Milan (Italy), from November 30 to December 02, 2016. Although, they do not
provide a fully comprehensive coverage of the field, the 65 papers selected by the
Scientific Committee reflect the interdisciplinary nature of the scientific areas covered
by the workshop. They have been organized in 11 sections reflecting multiple aspects
of complex network research:

• Network models
• Network measures
• Community structure
• Network dynamics
• Diffusion, epidemics and spreading processes
• Resilience and control
• Network visualization
• Social and political networks
• Networks in finance and economics
• Biological and ecological networks
• Network analysis

A very encouraging response has been received by COMPLEX NETWORKS 2016
in terms of submissions. The 204 contributions that we received from 47 countries
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vi Preface

around the world reflect the great vitality and diversity of the complex network
community. All the submissions have been peer reviewed from at least 3 independent
reviewers from our strong international program committee in order to ensure high
quality of contributed material as well as adherence to the conference topics. After
the review process, 65 papers were selected to be included in the proceedings.

Each edition of the workshop represents a challenge that cannot be successfully
achieved without the deep involvement of numerous people and institutions. We
address sincere thanks to all of them for their support, and to the University of Milan
for making us so welcome.

We are very grateful to our keynote speakers for their plenary lectures covering
different areas of the conference. The talk of Guido Caldarelli (IMT Lucca - Italy)
focused on the origins of instability in financial networks. The presentation given by
Raissa D’Souza (U. C. Davis - USA) dealt with the steering and controlling systems
of interdependent networks. Renaud Lambiotte (University of Namur -Belgium)
gave a talk on “Burstiness and spreading on networks: models and predictions” and
Yamir Moreno (University of Zaragoza - Spain) presented the talk “On the structure
and dynamics of multilayer networks”. The talk given by Eiko Yoneki (University
of Cambridge - UK) was about “Efficient large-scale graph processing” and Ben
Y. Zhao (U. C. Santa-Barbara - USA) covered the link prediction issue from an
empirical perspective. Their support of the workshop is without a doubt one of the
reasons of the success of COMPLEX NETWORKS 2016.

Two speakers gave very illuminating tutorials that drew many conference partici-
pants. These talks, held on November 29, 2016 were accessible to a general audience
of graduate students. Ernesto Estrada (University of Strathclyde Glasgow - UK)
gave a lecture on “Consensus dynamics on networks. Theory and applications” and
Bruno Gonçalves (New York University - USA) delivered a practical introduction to
machine learning (with Python).

We record our thanks to our fellow members of the Organizing Committee:
Chantal Cherifi (University of Lyon2 - France) and Antonio Scala (CNR - Italy), the
poster chairs, for arranging the poster session program and the editing of the book
of abstracts; Bruno Gonçalves (New York University - USA), the publicity chair,
for his work in securing a substantial input of papers from both Asia and America
and in encouraging participation from those areas; and all the session chairs for their
outstanding participation. We would also like to record our appreciation for the work
of the Local Arrangement Committee. In particular, Carlo Piccardi (Politecnico di
Milano - Italy) and Fabio Della Rossa (Politecnico di Milano - Italy) in making all
the excellent logistical arrangements for the conference. We also acknowledge the
important contributions of the members of the Computer Science Department of the
University of Milan. In particular, the team of the NPTLab ( University of Milan)
led by Gian Paolo Rossi. We thank him for his unwavering support. Many thanks
to its junior members, Matteo Zignani and Christan Quadri for the incredible work
they have done in the organization and the editing of the proceeding. We extend our
thanks to Matteo Re and Giorgio Valentini, their efforts made a great contribution to
the success of the workshop.
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We are also indebted to our partners, Alessandro Fellegara and Alessandro Egro
along with their team (Tribe Communication) for their passion and patience in
designing the visual identity of the workshop. Our gratitude must also be extended to
our sponsors, Blogmeter, Celi and Shaman, for supporting the workshop.

We would also like to express our deepest appreciation to all those who have
helped us for the success of this meeting. Sincere thanks to the contributors, the
success of the technical program would not be possible without their creativity.
Finally, we would like to express our most sincere thanks to the Program Committee
members who have so generously volunteered their precious time to support the peer
review process.

We hope that this volume makes a useful contribution to issues surrounding the
fascinating world of complex networks and that you enjoy the papers as much as we
enjoyed organizing the conference and putting this collection of papers together.

Milan, Hocine Cherifi
November 2016 Sabrina Gaito

Walter Quattrociocchi
Alessandra Sala
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Part I
Network models



Abstract Understanding edge formation represents a key question in network analy-
sis. Various approaches have been postulated across disciplines ranging from network
growth models to statistical (regression) methods. In this work, we extend this ex-
isting arsenal of methods with a hypotheses-driven Bayesian approach that allows
to intuitively compare hypotheses about edge formation on attributed multigraphs.
We model the multiplicity of edges using a simple categorical model and propose to
express hypotheses as priors encoding our belief about parameters. Using Bayesian
model comparison techniques, we compare the relative plausibility of hypotheses
which might be motivated by previous theories about edge formation based on pop-
ularity or similarity. We demonstrate the utility of our approach on synthetic and
empirical data. This work is relevant for researchers interested in studying mecha-
nisms explaining edge formation in networks.

1 Introduction
Understanding edge formation in networks is a key interest of our research commu-
nity. For example, social scientists are frequently interested in studying relations
between entities within social networks, e.g., how social friendship ties form between
actors and explain them based on attributes such as a person’s gender, race, political
affiliation or age in the network [18]. Similarly, the complex networks community
suggests a set of generative network models aiming at explaining the formation of
edges focusing on the two core principles of popularity and similarity [15]. Thus,
a series of approaches to study edge formation have emerged including statistical
(regression) tools [10, 23] and model-based approaches [6, 15, 24] specifically estab-
lished in the physics and complex networks communities. Other disciplines such as
the computer sciences, biomedical sciences or political sciences use these tools to
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Fig. 1: Example: This example illustrates an unweighted attributed multigraph. (a)
Shows a multigraph where nodes represent academic researchers, and edges scientific
articles in which they have collaborated together. (b) Shows the adjacency matrix of
the graph, where every cell represents the total number of edges between two nodes.
(c) Decodes some attribute values per node. For instance, node D shows information
about an Austrian researcher who started his academic career in 2001.

answer empirical questions; e.g., co-authorship networks[12], wireless networks of
biomedical sensors [19], or community structures of political blogs [1].
Problem Illustration. For illustration, consider Fig. 1; nodes represent authors, and
(multiple) edges between them refer to co-authored scientific articles. Node attributes
provide additional information about the authors, e.g., their home country and gender.
An exemplary research question could be: “Can co-authorship be better explained
by a mechanism that assumes more collaborations between authors from the same
country or by a mechanism that assumes more collaborations between authors with
the same gender?”. These and similar questions motivate the main objective of this
work, which is to provide a Bayesian approach for understanding how edges emerge
in networks based on some characteristics of the nodes.

While several methods for tackling such questions have been proposed, they
come with certain limitations. For example, statistical regression methods based on
QAP [5] or mixed-effects models [20] do not scale to large-scale data and results
are difficult to interpret. For network growth models [15], it is necessary to find the
appropriate model for a given hypothesis about edge formation and thus, it is often
not trivial to intuitively compare competing hypotheses that sometimes might even
go beyond simple popularity and similarity mechanisms. Consequently, we want
to extend the methodological toolbox for studying edge formation in networks by
proposing a first step towards a hypotheses-driven generative Bayesian framework.
Approach and methods. We focus on understanding edge formation in node-
attributed multigraphs. We are interested in modeling and understanding the multi-
plicity of edges based on node attributes. Our approach follows a generative storyline.
First, we define the model that can characterize the edge formation at interest. We
focus on the simple categorical model, from which edges are independently drawn
from. Motivated by previous work on sequential data [21], the core idea of our
approach is to specify generative hypotheses about how edges emerge in a network.
These hypotheses might be motivated by previous theories such as popularity or
similarity [15]—e.g., for Fig. 1 we could hypothesize that authors are more likely
to collaborate with each other if they are from the same country. Technically, we
elicit these types of hypotheses as beliefs in parameters of the underlying categorical

(a) Multigraph (b) Adjacency Matrix (c) Node Attributes
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model and encode and integrate them as priors into the Bayesian framework. Using
Bayes factors with marginal likelihood estimations allows us to compare the relative
plausibility of expressed hypotheses as they are specifically sensitive to the priors.
The final output is a ranking of hypotheses based on their plausibility given the data.
Contributions. Our main contributions are: (i) We present a first step towards a
Bayesian approach for comparing generative hypotheses about edge formation in
networks. (ii) We provide simple categorical models based on local and global
scenarios allowing the comparison of hypotheses for multigraphs. (iii) We provide
guidelines for building hypotheses based on node attributes. (iv) We demonstrate
the applicability of our approach on synthetic and empirical data. (v) We make an
implementation of this approach openly available1 on the Web.

2 Background
We start by introducing the underlying concepts of our approach.
Attributed Multigraphs. In this paper, we focus on multigraphs with attributed
nodes and unweighted edges without own identity. That means, each pair of nodes
can be connected by multiple indistinguishable edges, and there are features for the
individual nodes available.

We formally define this as: Let G = (V,E,F) be an unweighted attributed multi-
graph with V = (v1, . . . ,vn) being a list of nodes, E = {(vi,v j)} ∈V ×V a multiset of
either directed or undirected edges, and a set of feature vectors F = ( f1, . . . , fn). Each
feature vector fi = ( fi[1], ..., fi[c])T maps a node vi to c (numeric or categorical) at-
tribute values. The graph structure is captured by an adjacency matrix Mn×n = (mi j),
where mi j is the multiplicity of edge (vi,v j) in E (i.e., number of edges between
nodes vi and v j). By definition, the total number of multiedges is l = |E|= ∑i j mi j.

Fig. 1a shows an example unweighted attributed multigraph: nodes represent
authors, and undirected edges represent co-authorship in scientific articles. The
adjacency matrix of this graph—counting for multiplicity of edges—is shown in Fig.
1b. Feature vectors (node attributes) are described in Fig. 1c. Thus, for this particular
case, we account for n = 4 nodes, l = 44 multiedges, and c = 6 attributes.
Bayesian Hypothesis Testing. Our approach compares hypotheses on edge forma-
tion based on techniques from Bayesian hypothesis testing [11, 21]. The elementary
Bayes’ theorem states for parameters θ , given data D and a hypothesis H that:

posterior︷ ︸︸ ︷
P(θ |D,H) =

likelihood︷ ︸︸ ︷
P(D|θ ,H)

prior︷ ︸︸ ︷
P(θ |H)

P(D|H)︸ ︷︷ ︸
marginal likelihood

(1)

As observed data D, we use the adjacency matrix M, which encodes edges counts. θ

refers to the model parameters, which in our scenario correspond to the probabilities
of individual edges. H denotes a hypothesis under investigation. The likelihood

1 https://github.com/lisette-espin/JANUS

https://github.com/lisette-espin/JANUS
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Fig. 2: Multigraph models: This figure shows two ways of modeling the undirected
multigraph shown in Fig. 1. That is, (a) global or graph-based model models the
whole graph as a single distribution. (b) Local or neighbour-based model models
each node as a separate distribution.

describes, how likely we observe data D given parameters θ and a hypothesis H. The
prior is the distribution of parameters we believe in before seeing the data; in other
words, the prior encodes our hypothesis H. The posterior represents an adjusted
distribution of parameters after we observe D. Finally, the marginal likelihood (also
called evidence) represents the probability of the data D given a hypothesis H.

In our approach, we exploit the sensitivity of the marginal likelihood on the
prior to compare and rank different hypotheses: more plausible hypotheses imply
higher evidence for data D. Formally, Bayes Factors can be employed for comparing
two hypotheses. These are computed as the ratio between the respective marginal
likelihood score. The strength of a Bayes factor can be judged using available
interpretation tables [7]. While in many cases determining the marginal likelihood
is computationally challenging and requires approximate solutions, we can rely on
exact and fast-to-compute solutions in the models employed in this paper.

3 Approach
In this section, we describe the main steps towards a hypotheses-driven Bayesian
approach for understanding edge formation in unweighted attributed multigraphs. To
that end, we propose intuitive models for edge formation (Section 3.1), a flexible
toolbox to formally specify belief in the model parameters (Section 3.2), a way of
computing proper (Dirichlet) priors from these beliefs (Section 3.2), computation
of the marginal likelihood in this scenario (Section 3.3), and guidelines on how to
interpret the results (Section 3.4). We subsequently discuss these issues one-by-one.

3.1 Generative Edge Formation Models
We propose two variations of our approach, which employ two different types of
generative edge formation models in multigraphs.
Global model. First, we utilize a simple global model, in which a fixed number of
graph edges are randomly and independently drawn from the set of all potential edges
in the graph G by sampling with replacement. Each edge (vi,v j) is sampled from

(a) Global (b) Local
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Fig. 3: Prior belief: This figure illustrates the three main phases of prior elicitation.
That is, (a) a matrix representation of belief B1, where authors are more likely to
collaborate with each other if they are from the same country. (b) B1 normalized
row-wise using the local model interpretation. (c) Prior elicitation for κ = 4; i.e.,
αi j =

bi j
Z ×κ +1.

a categorical distribution with parameters θi j,1 ≤ i ≤ n,1 ≤ j ≤ n,∀i j : ∑i j θi j =
1: (vi,v j) ∼ Categorical(θi j). This means that each edge is associated with one
probability θi j of being drawn next. Fig. 2a shows the maximum likelihood global
model for the network shown in Fig. 1. Since this is an undirected graph, inverse
edges can be ignored resulting in n(n+1)/2 potential edges/parameters.
Local models. As an alternative, we can also focus on a local level. Here, we model
to which other node a specific node v will connect given that any new edge starting
from v is formed. We implement this by using a set of n separate models for the outgo-
ing edges of the ego-networks (i.e., the 1-hop neighborhood) of each of the n nodes.
The ego-network model for node vi is built by drawing randomly and independently
a number of nodes v j by sampling with replacement and adding an edge from vi to
this node. Each node v j is sampled from a categorical distribution with parameters
θi j,1 ≤ i ≤ n,1 ≤ j ≤ n,∀i : ∑ j θi j = 1: v j ∼Categorical(θi j). The parameters θi j
can be written as a matrix; the value in cell (i, j) specifies the probability that a new
formed edge with source node vi will have the destination node v j. Thus, all values
within one row always sum up to one. Local models can be applied for undirected
and directed graphs (cf. also discussion in Section 6). In the directed case, we model
only the outgoing edges of the ego-network. Fig. 2b depicts the maximum likelihood
local models for our introductory example .

3.2 Hypothesis Elicitation
The main idea of our approach is to encode our beliefs in edge formation as Bayesian
priors over the model parameters. As a common choice, we employ Dirichlet distri-
butions as the conjugate priors of the categorical distribution. Thus, we assume that
the model parameters θ are drawn from a Dirichlet distribution with hyperparameters
α: θ ∼ Dir(α). Similar to the model parameters themselves, the Dirichlet prior (or
multiple priors for the local models) can be specified in a matrix. We will choose the
parameters α in such a way that they reflect a specific belief about edge formation.
For that purpose, we first specify matrices that formalize these beliefs, then we
compute the Dirichlet parameters α from these beliefs.

(a) Belief matrix B1 (b) Normalized B1 (c) Prior κ = 4
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Constructing Belief Matrices. We specify hypotheses about edge formation as
belief matrices B= bi j. These are n×n matrices, in which each cell bi j ∈ IR represents
a belief of having an edge from node vi to node v j. To express a belief that an edge
occurs more often (compared to other edges) we set bi j to a higher value. In general,
users have a large freedom to generate belief matrices. However, typical construction
principles are to assume that nodes with specific attributes are more popular and thus
edges connecting these attributes receive higher multiplicity, or to assume that nodes
that are similar with respect to one or more attributes are more likely to form an edge,
cf. [15]. Ideally, the elicitation of belief matrices is based on existing theories.

For example, based on the information shown in Fig. 1, one could “believe” that
two authors collaborate more frequently together if: (1) they both are from the same
country, (2) they share the same gender, (3) they have high positions, or (4) they are
popular in terms of number of articles and citations. We capture each of these beliefs
in one matrix. One implementation of the matrices for our example beliefs could be:

• B1 (same country): bi j := 0.9 if fi[country] = f j[country] and 0.1 otherwise
• B2 (same gender): bi j := 0.9 if fi[gender] = f j[gender] and 0.1 otherwise
• B3 (hierarchy): bi j := fi[position] · f j[position]
• B4 (popularity): bi j := fi[articles]+ f j[articles]+ fi[citations]+ f j[citations]

Fig. 3a shows the matrix representation of belief B1, and Fig. 3b its respective
row-wise normalization for the local model case. While belief matrices are identically
structured for local and global models, the ratio between parameters in different rows
is crucial for the global model, but irrelevant for local ones.
Eliciting a Dirichlet prior. In order to obtain the hyperparameters α of a prior
Dirichlet distribution we utilize the pseudo-count interpretation of the parameters
αi j of the Dirichlet distribution, i.e., a value of αi j can be interpreted as αi j − 1
previous observations of the respective event for αi j ≥ 1. We distribute pseudo-
counts proportionally to a belief matrix. Consequently, the hyperparameters can be
expressed as: αi j =

bi j
Z ×κ +1, where κ is the concentration parameter of the prior.

The normalization constant Z is computed as the sum of all entries of the belief
matrix in the global model, and as the respective row sum in the local case. We
suggest to set κ = n× k, k = {0,1, ...,10}. A high value of κ expresses a strong
belief in the prior parameters. A similar alternative method to obtain Dirichlet priors
is the trial roulette method [21]. For the global model variation, all α values are
parameters for the same Dirichlet distribution, whereas in the local model variation,
each row parametrizes a separate Dirichlet distribution.

3.3 Computation of the Marginal Likelihood
For comparing the relative plausibility of hypotheses we use the marginal likelihood.
This is the aggregated likelihood over all possible values of the parameters θ weighted
by the Dirichlet prior. For our set of local models we can calculate them as:
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P(D|H) =
n

∏
i=1

Γ (∑n
j=1 αi j)

Γ (∑n
j=1 αi j +mi j)

n

∏
j=1

Γ (αi j +mi j)

Γ (αi j)
(2)

Recall, αi j encodes our prior belief connecting nodes vi and v j in G, and mi j are
the actual edge counts. Since we evaluate only a single model in the global case, the
product over rows i of the adjacency matrix can be removed, and we obtain:

P(D|H) =
Γ (∑n

i=1 ∑
n
j=1 αi j)

Γ (∑n
i=1 ∑

n
j=1 αi j +mi j)

n

∏
i=1

n

∏
j=1

Γ (αi j +mi j)

Γ (αi j)
(3)

Equation (3) holds for directed networks. In the undirected case, indices j go
from i to n accounting for only half of the matrix including the diagonal. For a
detailed derivation of the marginal likelihood given a Dirichlet-Categorical model
see [22, 25]. For both models we focus on the log-marginal likelihoods in practice to
avoid underflows.
Bayes Factor. Formally, we compare the relative plausibility of hypotheses by using
so-called Bayes factors [7], which simply are the ratios of the marginal likelihoods
for two hypotheses H1 and H2. If it is positive, the first hypothesis is judged as more
plausible. The strength of the Bayes factor can be checked in an interpretation table
provided by Kass and Raftery [7].

3.4 Application of the Method and Interpretation of Results
We now showcase an example application of our approach featuring the network
shown in Fig. 1, and demonstrate how results can be interpreted. For that purpose
and due to space limitations, we focus on the local models variant.
Hypotheses. We compare four hypotheses (represented as belief matrices) B1, B2,
B3, and B4 elaborated in Section 3.2. Additionally, we use the uniform hypothesis
as a baseline. It assumes that all edges are equally likely, i.e., bi j = 1 for all i, j.
Hypotheses that are not more plausible than the uniform cannot be assumed to
capture relevant underlying mechanisms of edge formation. We also use the data
hypothesis as an upper bound for comparison, which employs the observed adjacency
matrix as belief: bi j = mi j.
Calculation and visualization. For each hypothesis H and every κ , we can elicit
the Dirichlet priors (cf. Section 3.2), determine the aggregated marginal likelihood
(cf. Section 3.3), and compare the plausibility of hypotheses compared to the uni-
form hypothesis at the same κ by calculating the logarithm of the Bayes factor as
log(P(D|H))− log(P(D|Huni f orm)). We suggest two ways of visualizing the results,
i.e., ploting the marginal likelihood values (Fig. 4a) or showing the Bayes factors
(Fig. 4b) on the y-axis. In both cases, the x-axis refers to the concentration parameter
κ . While the visualization showing directly the marginal likelihoods carries more
information, visualizing Bayes factors makes it easier to spot smaller differences
between the hypotheses.
Interpretation. Every line in both figures represents a hypothesis. In Fig. 4a, higher
evidence values mean higher plausibility. Similarly, in Fig. 4b positive Bayes factors
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Fig. 4: Ranking of hypotheses for the introductory example. Rankings can be
visualized using (a) the marginal likelihood or evidence (y-axis), or (b) Bayes factors
(y-axis) by setting the uniform hypothesis as a baseline to compare with; higher values
refer to higher plausibility. The x-axis depicts the concentration parameter κ . For this
example, authors from the multigraph shown in Fig. 1 appear to prefer to collaborate
more often with researchers of the same country rather than due to popularity (i.e.,
number of articles and citations). Note that all hypotheses outperform the uniform,
meaning that they all represent reasonable explanations of edge formation for the
given graph.

mean that for a given κ , the hypothesis is judged to be more plausible than the
uniform baseline hypothesis; here, the relative Bayes factors also provide a ranking.
If evidences or Bayes factors are increasing with κ , we can interpret this as further
evidence for the plausibility of expressed hypothesis as this means that the more we
believe in it, the higher the Bayesian approach judges its plausibility. As a result for
our example, we see that the hypothesis believing that two authors are more likely
to collaborate if they are from the same country is the most plausible one (after the
data hypothesis). In this example, all hypotheses appear to be more plausible than
the baseline, but this is not necessarily the case in all applications.

4 Experiments
We demonstrate the utility of our approach on both synthetic and empirical networks.
Due to space limitations, we only showcase the local model results.

4.1 Synthetic Attributed Multigraph
We start with experiments on a synthetic attributed multigraph. Here, we control the
underlying mechanisms of how edges in the network emerge and thus, expect these
also to be good hypotheses for our approach.
Network. The network contains 100 nodes where each node is assigned one of
two colors with uniform probability. For each node, we then randomly drew 200
undirected edges where each edge connects randomly with probability p = 0.8 to a

(a) Evidences (b) Bayes Factors
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Fig. 5: Ranking of hypotheses for synthetic network. In (a), we show the adjacency
matrix of the 2-color random multigraph with a node correlation of 80% for nodes
of the same color and 20% otherwise. One can see homophily based on more
connections between nodes of the same color; the diagonal is zero as there are no self-
connections. In (b), we show the ranking of hypotheses based on Bayes factors when
compared to the uniform hypothesis. As expected, the homophily hypothesis explains
the edge formation best (positive Bayes factor), and the heterophily and selfloop
hypotheses show negative Bayes factors—i.e., they provide no good explanations for
edge formation.

different node of the same color, and with p = 0.2 to a node of the opposite color.
The adjacency matrix of this graph is visualized in Fig. 5a.
Hypotheses. In addition to the uniform baseline hypothesis, we construct two intu-
itive hypotheses based on the node color that express belief in possible edge formation
mechanics. First, the homophily hypothesis assumes that nodes of the same color
are more likely to have more edges between them. Therefore, we arbitrary set belief
values bi j to 80 when nodes vi and v j are of the same color, and 20 otherwise. Second,
the heterophily hypothesis expresses the opposite behavior; i.e., bi j = 80 if the color
of nodes vi and v j are different, and 20 otherwise. An additional selfloop hypothesis
only believes in self-connections (i.e., diagonal of adjacency matrix).
Results. Fig. 5b shows the ranking of hypotheses based on their Bayes factors com-
pared to the uniform hypothesis. Clearly, the homophily hypothesis is judged as the
most plausible. This is expected and corroborates the fact that network connections
are biased towards nodes of the same color. The heterophily and selfloop hypotheses
show negative Bayes factors; thus, they are not good hypotheses about edge formation
in this network. Due to the fact that the multigraph lacks of selfloops, the selfloop
hypothesis decreases very quickly with increasing strength of belief κ .

4.2 Empirical Attributed Multigraph
Here, we focus on a real-world contact network based on wearable sensors.

(a) Adjacency Matrix (b) Bayes Factors
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(a) Adjacency Matrix (b) Bayes Factors
Fig. 6: Ranking of hypotheses for Kenya contact network. (a) Shows the adja-
cency matrix of the network with node ordering according to household membership.
Darker cells indicate more contacts. (b) Displays the ranking of hypotheses based
on Bayes factors, using the uniform hypothesis as baseline. The same household
hypothesis (people are more likely to contact people from the same household) ranks
highest. While the similar age hypothesis also provide positive Bayes Factors, the
same and different gender hypotheses are less plausible than the baseline (uniform
edge formation). Results are consistent for all κ .

Network. We study a network2 capturing interactions of 5 households in rural Kenya
between April 24 and May 12, 2012 [9]. The undirected unweighted multigraph
contains 75 nodes (persons) and 32 643 multiedges (contacts) which we aim to
explain. For each node, we know information such as gender and age (encoded
into 5 age intervals). Interactions exist within and across households. Fig. 6a shows
the adjacency matrix (i.e., number of contacts between two people) of the network.
Household membership of nodes (rows/columns) is shown accordingly.
Hypotheses. We investigate edge formation by comparing—next to the uniform
baseline hypothesis—four hypotheses based on node attributes as prior beliefs. (i)
The similar age hypothesis expresses the belief that people of similar age are more
likely to interact with each other. Entries bi j of the belief matrix B are set to the
inverse age distance between members: 1

1+abs( fi[age]− f j [age]) . (ii) The same household
hypothesis believes that people are more likely to interact with people from the same
household. We arbitrarily set bi j to 80 if person vi and person v j belong to the same
household, and 20 otherwise. (iii) With the same gender hypothesis we hypothesize
that the number of same-gender interactions is higher than the different-gender
interactions. Therefore, every entry bi j of B is set to 80 if persons vi and v j are of the
same gender, and 20 otherwise. Finally, (iv) the different gender hypothesis believes
that it is more likely to find different-gender than same-gender interactions; bi j is set
to 80 if person vi has the opposite gender of person v j, and 20 otherwise.
Results. The results shown in Fig. 6b indicate that the same household hypothesis
explains the data the best, since it has been ranked first and it is more plausible than
the uniform. The similar age hypothesis also indicates plausibility due to positive

2 http://www.sociopatterns.org/datasets/kenyan-households-contact
-network/

http://www.sociopatterns.org/datasets/kenyan-households-contact-network/
http://www.sociopatterns.org/datasets/kenyan-households-contact-network/
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Bayes factors. Both the same and different gender hypotheses show negative Bayes
factors when compared to the uniform hypothesis suggesting that they are not good
explanations of edge formation in this network. This gives us a better understanding
of potential mechanisms producing underlying edges. People prefer to contact people
from the same household and similar age, but not based on gender preferences.
Additional experiments could further refine these hypotheses (e.g., combining them).

5 Related Work
We provide a broad overview of research on modeling and understanding edge for-
mation in networks; i.e., edge formation models and hypothesis testing on networks.
Edge formation models. A variety of models explaining underlying mechanisms of
network formation have been proposed. Here, we focus on models explaining linkage
between dyads beyond structure by incorporating node attribute information. Promi-
nently, the stochastic blockmodel [6] aims at producing and explaining communities
by accounting for node correlation based on attributes. The attributed graph [16]
models network structure and node attributes by learning the attribute correlations in
the observed network. Furthermore, the multiplicative attributed graph [8] takes into
account attribute information from nodes to model network structure. This model
defines the probability of an edge as the product of individual attribute link formation
affinities. Exponential random graph models [17] (also called the p∗ class of models)
represent graph distributions with an exponential linear model that uses feature-
structure counts such as reciprocity, k-stars and k-paths. In this line of research, p1
models [4] consider expansiveness (sender) and popularity (receiver) as fixed effects
associated with unique nodes in the network [3], in contrast to the p2 models [17]
which account for random effects and assume dyadic independence conditionally to
node-level attributes. While many of these works focus on binary relationships, [27]
proposes an unsupervised model to estimate continuous-valued relationship strength
for links from interaction activity and user similarity in social networks.
Hypothesis testing on networks. Previous works have implemented different tech-
niques to test hypotheses about network structure. For instance, the work in [13]
proposes an algorithm to determine whether two observed networks are significantly
different. Another branch of research has specifically focused on dyadic relationships
utilizing regression methods accounting for interdependencies in network data. Here,
we find the state-of-the-art Multiple Regression Quadratic Assignment Procedure
(MRQAP) [10] and its predecessor QAP [5] which permute nodes in such a way
that the network structure is kept intact; this allows to test for significance of effects.
Mixed-effects models [20] add random effects to the models allowing for variation to
mitigate non-independence between responses (edges) from the same subject (nodes)
[26]. Based on the quasi essential graph the work in [14] proposes to compare two
graphs (i.e., Bayesian networks) by testing and comparing multiple hypotheses on
their edges. Recently, the generalized hypergeometric ensembles [2] have been pro-
posed as a framework for model selection and statistical hypothesis testing of finite,
directed and weighted networks that allow to encode several topological patterns
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such as block models where homophily plays an important role in linkage decision.
In contrast to our work, neither of these approaches is based on Bayesian hypothesis
testing, which avoids some fundamental issues of classic frequentist statistics.

6 Discussion
Next, we discuss some aspects and open questions related to the proposed approach.
Inconsistency of local model. For directed networks, the local ego-network models
can assemble a full graph model by defining a probability distribution for the degrees
of the source nodes of edges. For undirected networks, this is not directly possible
as e.g., the ego-network model for vA generated an edge from vA to vB, but the
ego-network model for node vB did not generate any edge to vA. Note that this does
not affect our comparison of hypotheses as we characterize the network.
Sparse data-connections. Most real networks exhibit small world properties such
as high clustering coefficient and fat-tailed degree distributions meaning that the
adjacency matrices are sparse. While comparison still relatively judges the plausi-
bility, our hypotheses do not approximate the data curve as shown in Fig. 6b. As
an alternative, one might want to limit our beliefs to only those edges that exist in
the network, i.e., we would then only build hypotheses on how edge multiplicity
varies between edges. Ultimately, our models also warrant extensions to adhere to the
degree sequence in the network, e.g., in the direction of multivariate hypergeometric
distributions as recently proposed in [2].
Other limitations and future work. The main intent of this work is the introduction
of a hypotheses-driven Bayesian approach for understanding edge formation in
networks. To that end, we showcased this approach on simple categorical models
that warrant extensions, e.g., by incorporating appropriate models for other types of
networks such as weighted or temporal networks. We can further investigate how to
build good hypotheses by leveraging all node attributes, and infer subnetworks that
fit best each of the given hypotheses. Moreover, there can be alternatives for non-
attributed networks. For instance, one could use other networks (same nodes, different
connections) to verify whether edges from a specific network can be explained by the
mechanisms of other networks. In the future, we also plan an extensive comparison
to other methods such as MRQAP, mixed-effects models and p∗ models.

7 Conclusions
In this paper, we have presented a Bayesian framework that facilitates the understand-
ing of edge formation in attributed multigraphs. The main idea is based on expressing
hypotheses as beliefs in parameters (i.e., multiplicity of edges), incorporate them
as priors, and utilize Bayes factors for comparing their plausibility. We proposed
simple local and global Dirichlet-categorical models and showcased their utility on
synthetic and empirical data. For illustration purposes our examples are based on
small networks. We tested our approach with larger networks obtaining identical
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results. In future, our concepts can be extended to further models such as models
adhering to fixed degree sequences. We hope that our work contributes new ideas to
the research line of understanding edge formation in complex networks.

Acknowledgements This work was partially funded by DFG German Science Fund research
projects “KonSKOE” and “PoSTs II”.
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Abstract Research on generative models plays a central role in the emerging field
of network science, studying how statistical patterns found in real networks can be
generated by formal rules. During the last two decades, a variety of models has been
proposed with an ultimate goal of achieving comprehensive realism for the generated
networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore
how models can be fitted to an original network to produce a structurally similar
replica, and (c) aim for producing much larger networks than the original exemplar. In
a comparative experimental study, we find ReCoN often superior to many other state-
of-the-art network generation methods. Our design yields a scalable and effective tool
for replicating a given network while preserving important properties at both micro-
and macroscopic scales and (optionally) scaling the replica by orders of magnitude
in size. We recommend ReCoN as a general practical method for creating realistic
test data for the engineering of computational methods on networks, verification,
and simulation studies. We provide scalable open-source implementations of most
studied methods, including ReCoN.

1 Introduction
Context. When engineering algorithms, the ability to create good synthetic test data
sets is valuable to estimate effectiveness and scalability of the proposed methods. A
shortage of real data for this purpose can for example arise if they are proprietary,
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sensitive, or unavailable in different scales. In the context of developing network
analysis algorithms, realistic synthetic graphs allow us to produce experimental
results that are representative for what can be observed for real data. Among the main
use cases are obfuscation (replacing restricted real data with similar synthetic data),
compression (storing only a generator and its parameters instead of large graphs), as
well as extrapolation and sampling (generating data at larger or smaller scales).
Problem definition. We envision two usage scenarios: Given an original (or real)
network O = (V,E) (no = |V |, and mo = |E|) that cannot be freely shared, we would
like to be able to create a synthetic network R (with nr nodes) that matches the
original in essential structural properties, so that computational results obtained from
processing this network are representative for what the original network would yield.
We refer to R as a replica. We assume that whoever creates the replica has access to O
and can pass it to a model fitting algorithm which uses it to parametrize a generative
model.

More importantly, in addition to producing scale-1 replicas (where nr = no), in
the second scenario we want to use the generative model for extrapolation: We want
to parametrize it so that it produces a scaled replica Rx that has nr = x · no nodes,
where x is called the scaling factor. The structural properties of Rx should be such
that they resemble a later growth stage of the original (also see Sec. 2). This should
enable users of the replica to extrapolate the behavior of their methods when the
network data is significantly scaled.

Finally, with respect to performance, we would like the generator algorithm and
implementation as well as the fitting scheme to be efficient enough to produce large
data sets (on the order of several millions of nodes and edges) quickly in practice.
State of the art. Many generative models for complex networks exist. We point the
interested reader to a survey [12] for a more comprehensive overview. A widely used
model intended for model fitting uses exponential random graph models (ERGM), cf.
e. g. [25]. Unfortunately, ERGM are so expensive that graphs with tens of thousands
of nodes are already considered big for these models [3].

Other generative models admit fast generators and are thus in our focus. Among
those models are RMAT [6], BTER [16], and Hyperbolic Unit Disk Graphs
(HUDG) [17]. Initially, they can fit only few properties of the original network
by design, though. A previous fitting scheme by Leskovec et al. [20] for RMAT
graphs is quite time-consuming already for medium-sized networks [28, 29].

Editing models create a synthetic network by editing the original network. The
MUSKETEER generator [14] implements a multiscale editing model and is effective
for obfuscation purposes. However, its current implementation [13] is not fast enough
to generate sufficiently scaled replicas of large graphs.
Outline and contribution. In this paper we develop and evaluate a sufficiently fast
generator that focuses on creating realistic scaled replicas of complex networks.

We point out in Section 2 which criteria we consider important for calling a
(scaled) replica realistic. In particular we conceptualize realism in two ways: (i)
matching an original graph in a set of important structural properties, and (ii) match-
ing the running time behavior of various graph algorithms.
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Our new generator ReCoN, short for Replication of Complex Networks and
described in Section 3, uses and extends ideas of LFR, a generator used for bench-
marking community detection algorithms. Using the original degrees and a found
community structure we are able to capture a much-more detailed signature of the
network than a parametrization of the LFR generator. In Section 4 we discuss the
generative models that we use for comparison (among them RMAT, HUDG, and
BTER) and develop model fitting schemes for them.

Our comparative experimental study in Section 5 indicates that ReCoN performs
overall quite well and usually better than other generators in terms of realism. We
can also conclude that the ReCoN implementation is fast, as it is capable of creating
realistic scaled replicas on the scale of 108 edges in minutes. The ReCoN code is
publicly available in the open-source network analysis package NetworKit [31].

2 Realistic Replicas
We consider a generative model realistic if there is high structural similarity between
the synthetic graphs produced and relevant real-world networks. It is neither our
goal nor generally desirable to obtain an exact correspondence between original and
replica. First, this would exclude the use case of obfuscation. Secondly, obtaining
an isomorphic graph is rarely required for generalizable experiments. Note that we
consider a single “realism score” for each model inappropriately reductionist. Rather,
we quantify diverse aspects of realism in our experimental evaluation and leave it to
the reader to decide about their relative importance.

For 1-scale replicas (with the same size as the original), we measure the similarity
in terms of a set of commonly used metrics: Sparsity (number of edges vs number of
nodes); degree distribution (more precisely its Gini coefficient); maximum degree
as a proxy for the connectedness of hub nodes; average local clustering coefficient
to measure the local presence of triangles; diameter to monitor the small-world
effect; number of connected components and number of communities as additional
non-local features. These metrics cover both local and global properties and are
deemed important characteristics of networks [23].

How can we extend the notion above regarding realism to scaled replicas of a
network? To answer this question, let us look at the scaling behavior of a set of 100
Facebook social networks [32]. These networks were collected at an early stage of
the Facebook online social networking service in which networks were still separated
by universities. Fig. 1 plots basic structural measures of these Facebook networks
against the number of nodes n, as well as a regression line and confidence intervals
(shaded area) to emphasize the trend. While linear regression may not always seem
completely appropriate for these data, the general trend is still captured.

We can observe from Fig. 1 a growth of the number of edges m that is linear in
n, an increase in the skew of the node degree distribution as measured by the Gini
coefficient, a growing maximum node degree, a slightly falling average local cluster-
ing coefficient, a nearly constant small diameter of the largest connected component,
and a slightly growing number of connected components (which can be explained
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Fig. 1: Scaling behavior of 100 Facebook networks; from left to right and top to
bottom: number of edges, maximum degree, Gini coefficient of degree distribution,
average local clustering coefficient, diameter, number of components, number of
communities found by PLM

by some small connected components that exist in addition to a giant component).
We detect communities using PLM (Parallel Louvain Method), a modularity-based
community detection heuristic [30], and report the number of communities minus
the number of these small connected components. It can be observed that the number
of non-trivial communities grows slightly.

While we do not propose that these scaling laws are universal, the trends repre-
sented here are commonly observed [4, 5, 27]. Thus, we use them to define desired
scaling properties for the remainder of the study as follows: m grows linearly with n;
the diameter does not change significantly, preserving the “small world property”;
the shape of the degree distribution remains skewed; the maximum node degree in-
creases; the number of connected components may grow; the number of communities
increases slightly.

Recall that one use case for our generator is testing of graph and network analysis
algorithms. Since the running time is an essential feature in such tests, we also
consider a realistic replication of running times important. To this end, we select
a set of graph algorithms that (i) compute important features of networks and are
thus frequently used in network analysis tasks and that (ii) cover a variety of patterns
of computation and data access, each of which may interact differently with the
graph structure. The set consists of algorithms for connected components (essentially
breadth-first search), PageRank (via power iteration), betweenness approximation
(according to Geisberger et al. [11]), community detection (PLM, [30]), core decom-
position (according to [9]), triangle counting (according to [15]), and spanning forest
(essentially Kruskal’s algorithm without edge weights).



Generating Scaled Replicas of Real-World Complex Networks 21

3 The Generation Algorithm ReCoN
We introduce ReCoN, a generator for replicating and scaling complex networks. Its
input is a graph and a community structure on it. For fitting a given graph without
given community structure, we use PLM [30] in order to detect a community structure
first. The basic idea of ReCoN is to randomize the edges inside communities and
the edges between communities while keeping the node degrees. This happens
separately such that each community keeps as many edges as it had before. For
scaling a graph, we first create as many disjoint copies of the graph as desired and
then apply the aforementioned steps. During the randomization of the edges between
the communities the copies usually become connected with each other.

The idea of randomizing graphs inside and between communities is inspired
by the LFR generator, a benchmark graph generator for community detection al-
gorithms [19]. There the basic building blocks are also a random subgraph per
community and a global graph. However, in the LFR generator the degrees and
communities are not given but generated using a power law degree distribution and
a power law community size distribution with nodes assigned to communities at
random, while ReCoN uses the given graph as input for them.

For randomizing graphs while preserving the degree sequence we use random edge
switches where two edges {u,v}, {y,z} chosen uniformly at random are changed
into {u,z}, {y,v} if the resulting graph is still simple, i. e. does not contain any
duplicate edges or self-loops. Similar to the edge switching implementation provided
by [33] we use 10 times the number of edges as the number of random edge switches.
Previously performed experiments (e. g. [22]) have shown that this is enough to
expect the resulting graph to be drawn uniformly at random from all graphs with the
given degree sequence.

For an original graph O= (V,E) with no = |V | nodes and a desired scaling factor x,
ReCoN executes the following steps:

1. Detect a community structure C= {C1, . . . ,Ck} on O using PLM.
2. Create H as the disjoint union of x copies of O. The community structure is

also copied such that the new community structure D= {D1, . . . ,Dx·k} consists
of x · k communities, i. e. each copy of O gets its own copy of the community
structure that is aligned with the structure of the copied graph.

3. For each community Di, 1≤ i≤ x ·k, randomize the edges of the subgraph H[Di]
that is induced by the community Di while keeping the degree distribution using
random edge switches.

4. Randomize the remaining edges, i. e. all edges in H that are not part of one of
the subgraphs H[Di] using random edge switches. Note that afterwards some
edges that were not in one of the H[Di] can now be inside a community. In order
to avoid this, rewiring steps are performed by executing edge switches of such
forbidden edges with random partners. A similar step is also used in the LFR
generator where it was observed that in practice only few rewiring steps are
necessary [18].

Note that it is not necessary to start with the original graph in step 3 and 4.
Using any graph with the same degree sequence is enough as the result is random
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anyway. Therefore, it is enough to know a community structure (as opposed to
the whole original graph) and for each node the internal and external degree, i. e.
how many neighbors it has inside and outside its community, respectively. For our
implementation we choose this alternative. Further, we execute step 3 in parallel for
all communities as the subgraphs are disjoint.

In addition to replicating important properties with high fidelity, the randomization
in step 3 and 4 naturally produces random variance among the set of replicas.

4 Fitting Generative Models to Input Graphs
Parametrized generative models require fitting schemes for learning parameters from
the original network. Because, usually, such schemes are not unique, exploring them
would be important future work. For this study, we have chosen one scheme per
model, parameters of which are summarized in Table 1 in the full version of this
paper [28]. Below we discuss a fitting scheme for power law degree distributions,
and briefly describe the generative models that are compared with ReCoN.
Fitting power law degree distribution (PLD). We apply our custom power law
fitting scheme. A practical replication of a network requires preserving the original
average (otherwise, the density will be changed) as well as minimum and maximum
degrees (applications can be sensitive to such fundamental properties as degree-1
nodes and the distribution of hubs). In general, it is assumed (and implemented in
many algorithms [8]) that PLD only holds starting with a minimum degree and that
for smaller degrees, the distribution might be different. As the LFR generator only
generates a plain PLD, we cannot apply this assumption. Therefore, we fit the PLD
exponent such that, with the given minimum and maximum degree, the average
degree of the real network is expected when a degree sequence is sampled from
this PLD. Using binary search in the range of [−6,−1], we repeatedly calculate the
expected average degree until the power law exponent is accurate up to an error of
10−3.
Erds–Rnyi, Barabasi-Albert, Chung-Lu and ESMC. Erds–Rnyi random graphs
(ER) [24] are fundamental and an important baseline with the edge probability
parameter that we set to produce the same edge-to-node ratio as in O. The Barabasi–
Albert model (BA) [2] implements a preferential attachment process by which a PLD
emerges, which has been claimed to be a typical feature of real complex networks.
In BA, we set the number of edges coming with each new node to fit the original
edge-to-node ratio. The Chung-Lu (CL) model [1] recreates a given degree sequence
in expectation. The Edge-Switching Markov Chain Generator (ESMC) generates a
graph that is randomly drawn from all graphs with exactly the given degree sequence
(see e.g. [22], [26]). In both CL and ESMC we use the original degree sequence. To
generate larger networks, x copies of this sequence are concatenated, multiplying the
number of nodes by x while keeping the relative frequency of each degree.
RMAT. The Recursive Matrix (RMAT) model [7] was proposed to recreate various
properties of complex networks, including an optional power-law degree distribution,
the small-world property and self-similarity. The RMAT model can only generate
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graphs with 2s nodes, where s is an integer scaling parameter. In order to target a
fixed number of nodes nr, we calculate s so that 2s > nr and delete 2s−nr random
nodes. The choice of other parameters as well as the running time of fitting are
discussed in [28].
Hyperbolic Unit Disk Graphs (HUDG). The random hyperbolic graph model em-
beds nodes into hyperbolic geometry and connects close nodes with higher proba-
bility [17]. The unit-disk variant HUDG we use in this paper connects only nodes
whose distance is below a certain threshold. We are focussing on the unit-disk variant
to be able to use a very fast generator for this model [21]. The model has been shown
to replicate some properties observed in real networks, such as a power-law degree
distribution. This method receives as parameters the desired number of nodes, the
average degree of the original network and a power law exponent which is fitted as
described above. As the given power law exponent must be larger than 2, we supply
at least an exponent of 2.1.
BTER. This method receives a degree distribution and the desired clustering co-
efficient per degree, i.e., for each degree to be realized the number of occurrences
and the average clustering coefficient per degree. For scaled replicas we scale the
occurrences of all degrees by the scaling factor. This leads to the target number of
nodes while also preserving the general shape of the degree distribution. In order to
retain the distribution of the clustering coefficients, we leave them unchanged while
scaling the network.
LFR. LFR was designed as a benchmark graph generator for community detection
algorithms [19]. Apart from the number of nodes it requires parameters for power law
distributions of the node degrees and the community sizes, and a mixing parameter
that determines the ratio between intra- and inter-cluster edges. We detect communi-
ties using PLM [30] and fit the parameters for the two power law distributions as
described above using the original degree sequence and the found community sizes.
The mixing parameter is set to the ratio between intra- and inter-cluster edges of the
found communities. The details are described in [28].

5 Computational Experiments
Our implementations of ReCoN and the various fitting methods are based on Net-
worKit [31], a tool suite for scalable network analysis. It also contains many of
the generators we use for comparison and provides a large set of graph algorithms
we use for our experiments. NetworKit combines C++ kernels with an interactive
Python shell to achieve both high performance and interactivity, a concept we use
for our implementations as well. All implementations are freely available as part
of the package at https://networkit.iti.kit.edu. This also includes a
faster and parallel implementation of the LFR generator (compared to the original
implementation [10]).

Our experimental platform is a shared-memory server with 256 GB RAM and
2x8 Intel(R) Xeon(R) E5-2680 cores at 2.7 GHz, using the GCC 4.8 compiler and
the openSUSE 13.1 OS. More technical details are available in [28].

https://networkit.iti.kit.edu
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Fig. 2: Scaling behavior of the different generators on the fb-Caltech36 network.
From left to right and top to bottom: number of edges, max. degree, Gini coefficient
of the degree distribution, average local clustering coefficient, diameter, number of
components, number of communities.

As described in Section 2, we are interested in how well the different generators
replicate certain structural features of the original networks as well as the running
times of various graph algorithms. The results are described subsequently.
Scaling behavior of the generators. The following experiments consider the scaling
behavior of generative models. Given the parametrization discussed before, we look
at the evolution of structural features with growing scale factor x up to x = 32. We
consider the same basic scalar features as for the real networks in Sec. 2 and, due to
space constraints, point to [29] for more results.

In Figure 2, we show the results of the scaling experiments for the fb-Caltech36
network. The number of edges of the replicas is increased almost linearly by all gen-
erators to ≈ 5 ·105 edges which approximately corresponds to 32 times the edges of
the original network. Therefore, all generators seem to keep the average degree of the
original network, which is expected as it is a parameter of all considered generators.
Surprisingly, the maximum degree strongly increases up to 10 or 15 thousand with
HUDG and BA generators, respectively. The original maximum degree is 248, so
that the new value is even significantly higher than the scaled maximum degree (i. e.
248 · 32). Actually, from the scaling study in Sec. 2, we could expect an increase,
but rather in a lower range, so the degree distribution of BA and HUDG generators
are not realistic. Concerning the Gini coefficient, one can clearly see that ER does
not generate a skewed degree distribution at all. All generators that get the exact
degree sequence as input keep the Gini coefficient constant, which is expected and
also relatively realistic from our scaling study.

The original average local clustering coefficient of 0.43 is almost exactly repro-
duced by BTER in which it is an input parameter. The HUDG method increases it
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Fig. 3: Running time replication of a set of network analysis algorithms. Running
times are in edges per second, i.e., higher is faster.

to 0.8, most others obtain very small values. Our new ReCoN generator is less far
off with 0.25 and a slightly decreasing clustering coefficient; the latter is actually
realistic as we saw in Sec. 2. LFR is able to generate a clustering coefficient above 0.2
initially. Other generators produce much lower clustering coefficients. The original
diameter of 6 is almost exactly kept by ReCoN, all other generators except BTER
produce networks with slightly lower diameters, while BTER generates networks
whose diameter is almost twice bigger. All generators show a slight increase of the
diameter when the networks are larger, which is consistent with our scaling study.
While most generators produce networks with just a single connected component,
CL and BTER generate a large number, RMAT and ReCoN a moderate number
of connected components. In the case of CL, BTER and RMAT, this is probably
due to a large number of degree-0 nodes. The original network consists of a giant
component and 3 small components; ReCoN scales them linearly, which is due to its
parametrization. The original network is split into eight non-trivial communities, that
number should increase slowly according to Sec. 2. Only in the networks generated
by BTER, ReCoN and LFR, PLM can find a significant and increasing amount of
communities. While PLM finds over 100 non-trivial communities in the network
generated by BTER, there are fewer communities detectable in the networks gener-
ated by ReCoN and even less in the ones generated by LFR. Overall, ReCoN is the
only generator that keeps the degree distribution, and produces a realistic clustering
coefficient and a small diameter while keeping the graph connected and preserving
a moderate number of communities. All other generators are either unable to keep
the diameter or the connectivity or the number of communities. It is part of future
work to investigate whether the full hyperbolic random graph model can alleviate the
weaknesses of the unit-disk case.
Replicating running times of graph algorithms. Synthetic graphs are frequently
used in algorithm engineering to estimate the running time of an algorithm assuming
that this time will be similar on real networks. We examine if this is indeed the case
with the generative models we consider. Using the previously described generators
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Fig. 4 Fitting and generating:
processing speed measured in
edges/s (size of replica graph /
total running time, measured
on 100 Facebook graphs)

and fitting schemes, we generate replicas of 100 Facebook networks and test a variety
of graph algorithms (see Sec. 2) on both the original and replica sets.

Our experiments demonstrate (see Fig. 3) that the running times on the replica
sets often do not match those on the original set. The gray segments of the box plots
represent the distribution of running times measured on a set of original networks.
Ideally, the distribution on the synthetic networks would be identical. The difference
is statistically nontrivial, though. Small variance between the models exists for
connected components and spanning forest computations, since their running time is
nearly constant per edge. Other algorithms exemplify how much running time can
depend on network structure, especially community detection, core decomposition,
triangle counting and PageRank. In general, the running time measurements obtained
on ReCoN match the originals closely in most cases. An exception is community
detection, where PLM seems to profit from ReCoN’s explicit model of communities.
BTER shows close matches, too.
Generator running times. In Fig. 4, we show the running times of parameter fitting
and generating a replica for all methods. Processing speed is given in the number
of edges per second. The entire set of Facebook networks was used to produce the
measurements, so generated replicas range from about 15000 to 1.5 million edges.
For all models, generating the graph takes up the vast majority of time. BTER’s
MATLAB-based implementation is slowest, while the ER and HUDG generators
are the fastest. Our implementations of LFR and ReCoN are not among the fastest
generators, but fast enough to produce millions of edges in minutes.

6 Conclusion
We have presented a new generator, ReCoN, for replicating and scaling existing
networks. In an extensive experimental evaluation (not all results could be shown due
to space constraints, see [28, 29] for more results) we have shown that ReCoN is
capable of generating networks which are (i) similar to the original network in terms
of important structural measures and (ii) lead to similar running times of many graph
and network analysis algorithms. Using ReCoN it is possible to realistically replicate
an existing network, and to scale the synthetic version by orders of magnitude, e. g., in
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order to test algorithms on larger data sets where they are not available. Furthermore,
it allows to create anonymized copies of such networks that can be distributed freely
and allow to conduct representative experiments on them. While other generators
sometimes perform better concerning certain criteria, none of the other generators is
capable of approximately reproducing such a wide range of properties and running
times.
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Abstract To study the underlying organizing principles of various complex systems,
designing an efficient graph-based model for data representation, is a fundamental
aspect. As the topological structure of the network changes over time, it is a challeng-
ing task to design a communication system having ability to respond to randomly
changing traffic. We are interested to find out the suitable and fair traffic flow rates
to each system for getting optimal system utility using dynamic complex network
model. In this context, we design and simulate a growth model of the data commu-
nication network based on the dynamics of in-flowing links which is motivated by
the concept that newly added node will connect to the most influential nodes already
present in the system. The connectivity distribution of the evolved communication
networks follows power law form, free from network scale. We analyze Kelly’s
optimization framework for a rate allocation problem in communication networks
at different time instants, and optimal rates are obtained with the consideration of
arbitrary communication delays.

Key words: Complex Networks, Dynamic Networks model, Communication Pro-
cesses, System Utility

1 Introduction
Systems such as social, telecommunication, computer, biological, citation, etc. can
be modeled as a graph considering distinct elements represented by nodes and
there is a connection (links) between them. The graph has nontrivial topological
properties, connections between elements are neither purely regular nor purely
random. These systems are very large, can be modeled in the form of a network,
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helps us to understand the behavior of the system, called complex networks. Complex
networks are currently being studied across many fields of science systems in nature.
In complex networks [2, 11, 15, 16], links often exhibit various features: they can be
directed, have different weights assigned to it, be active only at certain times. The
demographic features of random graphs using the probabilistic approach in network
structure analysis was developed by Erdos and Renyi (ER), they investigated random
network model [6].

Watts and Strogatz (WS) have proposed a model, which generates complex net-
work having small world properties [22]

The more complex network model, Scale-free model was proposed by Barabasi-
Albert ([1]). The model is defined in two steps:

• Expansion: Starting with a small number (n0) of nodes, at each instant of time a
new node appears with a(≤ n0) links which are connected to the existing nodes
in the system.

• Preferential connection: The Π probability that a newly added node will be
attached to node i only when the value of influential parameter (ki) of that node
is maximal.

Π(ki) =
ki

∑ j k j

After time t, the network will contain total n = t +n0 nodes and at links. Network
evolves into a scale invariant case and hence the scaling exponent is independent of a
total number of links a.
Limitations of BA model are as follows:

• Both invariant, expansion and preferential connections are compulsory.
• It is assumed that new connection is established only when new nodes are added

to the system. But, in real life, connections are made continually.
• In some systems, re-association or rewiring of the existing links can happen, and

they are also following preferential connection, but if reattachment dominates
over expansion, then this will destroy the behavior, i.e., the power-law scaling in
the system.

To make the network dynamic, an important ingredient of the dynamics is a preferen-
tial connection of links (outflowing/inflowing). Tadic [20] has focused on outflowing
links and shown that both the outflowing and inflowing links follow a heavy-tailed
distribution with distinct exponents. Momentary alteration of the outflowing links
inside the networks effect on both the outflowing and inflowing links. After estab-
lishing a correlation between the outflowing and inflowing links, it is shown that
the local structure of the network is qualitatively different compared to the case
without an update. The expansion, as well as update, are taking place at unique time
scale, a new node n(= t) appears in the network (expansion), and a number X(t)
of new links are scattered. There is an increasing interest in investigating not only
the process dynamics on networks [18, 19] but also the dynamics of networks [7].
There is a need to extend the basic network concept to include time relations between
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nodes arose, leading to many models for Time-Varying Graphs (TVGs) [5, 10, 21].
Although the nodes are placed in the space randomly, network structure depends on
the distribution of links.
The structure of connections has an immediate impact on the accessibility of partic-
ular node, and it is the backbone for the stability of the network. If the number of
connected components increases, then there must be at least one path between each
pair of the node. Social networks are one of the examples of dynamic network where,
people are represented by nodes and if two people are connected then, there will be a
connection between them. Contacts are not static, it is temporal and depends on the
state(active/inactive) of nodes. Some activity parameter is used to generate temporal
links and an adaptive network is formed by incorporating memory effect to know
about past connections. In [3], reciprocal action of individual activity and network
structure are shown. State of the node determines the dynamic activity of human
interaction and states are also decided by the connection between nodes.
Another example is communication networks, which can respond to randomly chang-
ing traffic flow rates by reassigning traffic routes and by reallocating resources. As
expansion and updates, both are happening at unique time scale, so the design and
control of such kind of network is a challenging task. Topology is changing at each
time-stamp. Due to change in topology, the performance of the network is also
affected [12]. The exponent is independent of a total number of links a.
Modern communication networks are faced with multiple challenges at different
layers and modeling their rate control behavior [9, 13, 14, 17] with volatile and
dynamic connectivity setting is a prominent issue. Real life network settings are ex-
tremely volatile, and still communication takes place albeit with degraded quality and
possible setback in performance. There is a new kind of thinking to understand the
underlying reasons for volatile spatiotemporal behavior and how one can re-engineer
them for optimal performance for this change.

Rather than closing our eyes to these kinds of hard technical difficulties, a frame-
work is proposed to model arbitrarily changing directed networks in both space and
time with the help of proposed mathematical models in [1, 20]. It is shown that the
degree distribution of the networks follows the power law and hence scale free in
nature. We analyze Kellys optimization framework for a rate allocation problem in
communication networks at different time instants, and optimal rates are obtained
considering user’s willing to pay and network cost.
Section 2 states about mathematical modeling of the network, Section 3 provides a
real life mobile communication network examples with arbitrary link changes by
maintaining certain set of rules and followed by algorithmic steps, Section 4 presents
a numerical example illustrating the algorithm and Section 5 describes the conclusion
and explains the future directions of this work.

2 Mathematical model and related work
In this section we give a brief description about rate allocation problem. We con-
template a network with a set E of links and a set of R users. Let Ce be the capacity
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of the link, where, e ∈ E. For each user k ∈ R, a route rk has been assigned for a
particular time instant ti ∈ T , where ti | 1≤ i≤ τ contains a nonempty subset of E. A
zero-one matrix A of the size E×R× t is defined where, Ak,e,t = 1, if e is in the route
of user k at time t, otherwise zero. When the user k is assigned a rate xk,t then utility
of user k at rate xk,t is given as Uk,t(xk,t) is increasing, strictly concave function of
xk,t over the range xk,t ≥ 0. Aggregate utility is calculated by summing up all utilities
of user k at rate xk,t and is denoted as ∑k∈R,t∈T Uk,t(xk,t). Rate allocation problem can
be formulated as the following optimization problem.

SY ST EM(Ut ,At ,Ct)

maximize ∑
k∈R,t∈T

Uk,t(xk,t) (1)

AT
n xt ≤Ct and xt ≥ 0

where, n = (1,2, ....,τ), τ is the total number of time instants. An is the matrix
formed in the time interval tn−1 to tn. The constraint shown above tells us that the flow
through a link can not exceed the capacity of particular link [8]. For handling large
scale of the system, it is inconvenient to allocate each user an optimal rate. Hence,
Kelly has divided this problem into two simpler problems named as user’s optimal
problem and network’s optimal problem [9]. Let each user k is demanded a price per
unit flow as λk. A user chooses an amount to pay at per unit time is Pk(t) according
to the incurred cost with the user. Hence, user receives a flow, xk(t) = Pk(t)/λk then
user’s optimal price will be

Userk(Uk(t),λk(t)),

maximize Uk(xk(t))− pk(t), (2)
pk > 0

On the other hand, network wants to maximize weighted log function of pk(t).
Therefore, network utility function can be written as

NETWORK(At ,Ct , pt),

maximize ∑
k∈R,t∈T

Pk(t)log(xk(t)), (3)

AT
n xt ≤Ct and xt ≥ 0.

The values of λk,Pk and xk are considered variable with time. Each user in the
network, k ∈ R initially computes the price per unit flow by using the Eqn. (4) and
it is willing to pay, Pk(t). It adjusts its rate based on the feedback provided by the
links in the network. Each user attempts to make equilibrium by its willingness to
pay the total price for the complete duration. Finally, one can always find out unique
stable value of the price per unit flow λ ?

k , rate x?k and willingness to pay and P?
k

and corresponding convergence vectors will be λ ? = λ ?
k ,k ∈ R, P? = P?

k ,k ∈ R and
x? = x?k ,k ∈ R.

For each user, k is given price per unit flow as λk and the amount for which user is
willing to pay, Pk(t) at time t. Hence, the rate assigned to user k is xk(t) = Pk(t)/λk.
Utility of each user k at a particular time instant is assumed by strictly concave
function of users rate at that time instant. Suppose that each user adopts a rate based
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flow control. At each time instant each link e ∈ E charges a price per unit flow
of µe(t) = ge(∑k:e∈E xk(t)) where ge(•) is an increasing function of the total flow
through it and ge(y) is

ge(y) = ce.(y/Ce)
ω

where, ce is constant and assumed one, Ce is the capacity of resource e ∈ E. The
defined price function arises when resources are modeled as M/M/1 queue. M/M/1
queue is a queue having some length with the single server. Processes are arriving
with certain rate and then service is provided to that process by the server. Suppose
processes are arriving at rate λ and µ is the service rate. Hence, ρ = λ/µ , where
ρ is the average proportion of time when the server is occupied or busy. Ce is the
service rate and packet will receive a mark when there is already ω packets in the
queue. Now consider the following system of differential equation

dxk(t)
dt

= σk(Pk(t)− xk(t) ∑
e∈E

µe(t)) (4)

Each user firstly computes it’s willingness to pay as Pk(t) then it adjusts its rate
based on the feedback provided by the links in the network and trying to balance its
willing to pay and total price. Eqn. (4) consists of two components: a steady increase
in the rate proportional to Pk(t) and steady decrease in the rate proportional to the
feedback provided by the network.

3 Proposed work
Like the Internet, communication networks use a specific set of rules to connect
the components and directed links are used to access data. In the communication
network, degree distribution of both out-flowing and in-flowing links follow a heavy
tail distribution with separate exponent values. In the proposed model, we have given
preference for in-flowing link because the newly created link is attached to the node
which has highest in-flowing link probability. Set of rules which are used in the
formation of dynamic networks, yield that the distributions of both out-flowing and
in-flowing links are interdependent. Another important feature of the model is that
the connection between pairs of nodes is not fixed in time, but it may change on the
time scale of the network’s expansion(updates of links).
Here, a communication network is formed with scale-free property by modifying
the BA model [4] and model [20]. The modified directed network is formed by
maintaining the following rules.

1. Directed nature of linking.
2. Expansion and update are done at unique time scale. At each time unit t, a new

node n(= t) is added to the network (expansion) and total number X(t) of new
connections are established and allocated to the nodes. Newly created links are
divided into two groups: added link and updated link. Distribution of the links is
done using following rules specified below.
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• Enter the value of fraction β , γ , such that β < 1 and 0.5 < γ ≤ 1.
• A fraction fβ (t) = βX(t) of new links are out-flowing links from the new

appeared node n = t and added with the nodes existing in the network at
(t−1) based on priority, here β is a fraction with β < 1.
• Another remaining fraction f(1−β )(t) = (1− β )X(t) are the updated (re-

moved and rewired) links within existing nodes excluding the newly added
nodes.
Updated links may have two types:

– A fraction fup(t) = γ f1(t)links are rewired with the value of fraction γ ,
0.5 < γ ≤ 1. It helps to maintain the growing nature of the network.

– Fraction fdlt(t) = (1− γ) f1(t) are removed from the network.
• The parameter δ is the ratio of updated and added links in the model and

is given by δ = f1(t)
f0(t)

= 1−β

β
, which is independent of the added number of

links X(t) and known as correlation parameter.

3. We can define two functions preferential update and preferential attachment.

While talking about communication network, the concept of preferential linking
driven by the demand of the node for the flowing data into the network. In addition to
this, preference for the update is given to only a few nodes, rather than updating all
nodes at each time instant. Moreover, some of the nodes want to update out-flowing
links more frequently than others. Apart from the newly appeared node, larger update
probability is given to most active nodes at time t, i.e., an out-flowing link from the
node k ≤ n appears according to preferential attachment. Removal of links are done
randomly but the rearrangement of links done based on preferential attachment.

Algorithmic steps are given for expansion and updation of network.

Attributes of links contain linkid, named, delay and capacity. We have to send
packets from multiple sources to multiple destinations based on shortest path. Shortest
path is measured in terms of hop count. Multiple users can send data from specific
source (S) to destination (D) based on shortest path and these S-D sets are generated
according to user’s choice. If number of users increases, then the congestion level
will increase according to the selection of paths.
Initially, shortest path for user is found and after that optimal data rate of the user is
calculated by using these steps:
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Algorithm 1 Network Evolution
1: Input: A small number (m0) for seed network , m(≤

m0) for distribution, β ,γ and timer.
2: Output: Evaluated network.
3: while T ≤ timer do
4: Add a node at each time instant.
5: for m: 1 to fβ (t) do
6: Select a node of higher probability to attach with.
7: end for
8: for n : 1 to fup(t) do
9: Select an arbitrary source and link it to the node having higher inflowing

link probability.
10: end for
11: for p : 1 to fdlt(t) do
12: Randomly select v a link to remove.
13: end for
14: end while

Algorithm 2 Finding shortest path and optimal rate for each user
1: for i := 1 to numPair do
2: Find shortest path between source and destination
3: for j := 1 to numo f Node do
4: Calculate frequency of occurring of active node during path formation
5: rate( j) = capacity

f requency( j) ;
6: end for
7: end for
8: for r = 1 to numo f Pair do
9: Update feedback for each element of S-D pair

10: ratePath(r) = minRate(elementofPath);
11: A(r) = rand(1,10);
12: W pay(r) = ratePath(r)∗ ( a

ratePath(r)+b );
13: meu1(r) = meu;
14: end for
15: Use the value of ratePath, A, Wpay and Meu1 to find out the rate of convergence of each user.

Evolution of the network is done at a unique time instant. Here we have taken
initial size of the network of (100+m) nodes i.e., t0 = 100+m units and δ t = 100,
hence ti+1 = ti +δ t and the series will look like T = (t0, t1, t2, .....tτ) and the value
is, T = (100+m,200+m,300+m, ...,100τ +m). Each user firstly computes and
shows a willingness to pay as Pk(t) then it adjusts its rate based on the feedback
provided by the links in the network and trying to balance it is willing to pay the total
price. Eqn. (4) consists of two components: a steady increase in the rate proportional
to Pk(t) and steady decrease in the rate proportional to the feedback provided by the
network. Initial values of willingness to pay for the user, feedback of the network
and the rate of the resources are provided to the solver for finding out the optimal
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rate of each user. At each time instant user increases its willingness to pay but due to
congestion in the network rate and becomes stable after some time.

4 Simulation and results
In most of the real world networks, the degree of the majority of nodes has low value,
but there exist few hub nodes, having a high degree. Some social networks are found
to have degree distributions that approximately follow a heavy-tailed distribution:
P(k)∼ k−α , where 2 < α ≤ 3, known as scale-free networks. In a scale-free network,
numerous nodes with few links coexist with a few hub nodes, having connected with
thousands or even millions of links. To make all the values for large k visible use of
a log-log plot is needed. We can either use logarithmic axes, with powers of 10 or we
can plot logpk in function of logk. Here, logarithmic axes, with powers of 10 is taken
for plotting the probability distribution of node degrees over the whole network and
the degree distribution shows power law behavior. The value of β can be obtained
from δ as β = 1

(1+δ ) . There are four possible cases of the value of the δ , depending
on updated and newly added link in the network.

In Fig. 1, it is shown that evolved network follows power law degree distribution
when network has different values of nodes along with correlation parameter δ .

1. δ = 0(β = 1) i.e, only expansion is happening no update (rearrangement and
removal). The degree distribution of the network having N = 10000 nodes and
scaling exponent α = 2.664, is shown in Fig. 1(d).

2. δ < 1(β > 0.5), more number of new links are getting added than updated. The
degree distribution of the networks having N = 10000 nodes and the values of β

= 0.6 (expansion), γ = 0.5(rearrangement) and α = 2.455, shown in Fig. 1 (b).
3. δ > 1(β < 0.5), more number of links are updated than added. Degree distri-

bution of the networks having N = 10000,β = 0.25,γ = 0.7 and α = 2.065 is
shown in Fig. 1(c).

4. δ = 1, when both the value of updated and added links are same, degree distribu-
tion of the networks with N = 10000,β = 0.5,γ = 0.5 and α = 2.486 is shown
in Fig. 1(a).

From the graph shown in Fig. 1, it is analyzed that, by increasing the parameter
β in the range (0,1), corresponds to decrease of the correlation parameter δ in the
interval (∞,0), the slope of the distributions increases.

The network is formed using the algorithm 1. Evolved network is formed by
putting the values of parameters as: size of the seed network m0 = 5, Number of
links which is distributed at each time instant m(≤m0), β , γ and timer. User’s routes
for sending packets are varying according to time. At each time instant, a new node
appears with m links and expansion as well as re-arrangements are done. As the
network becomes larger and larger, many paths are available for sending packets for
each user between desired source and destination. All routes are equally weighted
hence, users can select any of these routes for sending packets.
Each user can send data along one of the shortest paths to the destination with a
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Fig. 1: Degree distribution of the network when number of nodes are and average ratio
of updated and newly added links are (a) N = 10000 , δ = 1, (b) N = 10000 , δ =
0.67, (c) N = 10000 , δ = 3 and (d) N = 10000 , δ = 0

maximum flow rate of individual links. Multiple users need to share the resources
hence, data sending rate got reduced, and it can no more send data with a maximum
rate. User’s rate depends on two parameters; it’s own willingness to pay and network’s
feedback. Using rate control theorem given in (4), an optimal data sending rate of
each user is obtained. In Fig. 2, User1’s and User2’s data sending rates are shown
at different time instants. Instead of, increased network size, optimal rates are not
increasing. User rates depend on the demand of particular resources coming in the
shortest route. If demand is high, then data sending rate will be less.

Multiple users want to establish connections between a distinct pair of nodes and
hence, a shortest possible communication path is chosen. There may exist a multiple
number of shortest routes having the same number of hop count, but betweenness
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Fig. 2: Conservation of data sending rates of User1 and User2 at different time
instants

centrality of all shortest paths would not be same. Hence, data flow rate of the paths
having high betweenness value will be less. Optimal rates are also dependent on
betweenness. User’s optimal rates along with their betweenness values are shown in
Table 1. User’s optimal rates are also shown in figure 3.

Table 1: User’s optimal rate through the shortest routes having different betweenness
values(maximum and minimum), when number of nodes N = 100

Source Destination Betweenness Betweenness Optimal Rates Optimal Rates
(Minimum) (Maximum) (Minimum Betweenness) (Maximum Betweenness)

User1 7 38 0.1931 0.1966 6.316335 7.737758
User2 77 96 0.0906 0.5877 3.383048 4.446214
User3 21 37 0.0616 0.3066 6.489473 9.356067
User4 68 79 0.0856 0.3872 4.409398 5.202014
User5 13 36 0.0751 0.4118 7.057041 8.913657
User6 20 47 0.0185 0.1467 5.134327 6.963006
User7 36 62 0.0608 0.1006 5.519844 6.575628
User8 24 65 0.085 0.3955 3.780126 7.232818
User9 40 6 0.0762 0.2017 6.978428 12.434885
User10 18 75 0.1483 0.3413 5.832557 7.118301
User11 24 85 0.0818 0.3847 4.081002 8.247708
User12 39 2 0.2144 0.3314 9.000121 11.311826
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Fig. 3: User’s optimal rate through the shortest routes having different betweenness
values(maximum and minimum), when number of nodes N = 100

5 Conclusions and Future directions
In this paper, a model is proposed to represent complex dynamic systems in the form
of complex networks and their representation is also given by using mathematical
expression. The proposed model is simple, flexible and efficient for the representation
and modeling of dynamically changing networks. At each time instance, a new node
appears with few links, either for expansion or update based on the value of fractions
β and γ . Expansion and update (removal and rewiring) of links are done based on
the preferential basis (most influential nodes). Network changes at each time instant
and it grows according to the value of time. Various experiments are performed for
finding out the topological structure of the evolved network and the rate control
behavior is also studied. At each time slot, user’s route changes and hence data
sending rates also change accordingly. Rate control theorem proposed by Kelly [9],
formulated for static network, is used for obtaining optimal user data sending rates
to maximize the system utility.
In this paper User’s willingness to pay is taken as constant value and it is proportional
to the initial capacity(maximum) of that User. It can vary dynamically according to
the rate assigned to the User. We have not considered the role of delays while solving
System utility. User’s routes are selected by considering shortedness, betweenness
centrality and initial capacity of users are taken according to their in-degree. It can
be extended by considering different objective functions by using parameters such as
reputation, influence etc.
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Abstract Most successful online communities employ professionals, sometimes
called “community managers”, for a variety of tasks including onboarding new
participants, mediating conflict, and policing unwanted behaviour. We interpret the
activity of community managers as network design: they take action oriented at
shaping the network of interactions in a way conducive to their community’s goals.
It follows that, if such action is successful, we should be able to detect its signature
in the network itself. Growing networks where links are allocated by a preferential
attachment mechanism are known to converge to networks displaying a power
law degree distribution. Our main hypothesis is that managed online communities
would deviate from the power law form; such deviation constitutes the signature of
successful community management. Our secondary hypothesis is that said deviation
happens in a predictable way, once community management practices are accounted
for. We investigate the issue using empirical data on three small online communities
and a computer model that simulates a widely used community management activity
called onboarding. We find that the model produces in-degree distributions that
systematically deviate from power law behavior for low-values of the in-degree; we
then explore the implications and possible applications of the finding.

Alberto Cottica (e-mail: alberto@cottica.net)�
University of Alicante, Alicante, Spain & Edgeryders, Brussels, Belgium
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1 Introduction
Organizations running online communities typically employ community managers,
tasked with encouraging participation and resolving conflict [18]. Only a small
number of the participants (one or two members in the smaller communities) will
recognize some central command, and carry out its directives. We shall henceforth
call such directives policies. Putting in place policies for online communities is costly,
in terms of recruitment, training, and software tools. This raises the question of what
benefits organizations running online communities expect from policies; and why
they choose certain policies, and not others.

Online communities can be modeled as social networks of interactions across
participants, and organizations can be modeled as economic agents maximizing
some objective function (e.g. profit, welfare). Hence the topology of the interaction
network affects the ability for participants to contribute to the maximization of the
target variable. For example, Facebook is constantly rewiring the interaction network
across its users to ensure better targeted and more effective advertising, therefore
enhancing their revenue [21].

Such organizations choose their policies such as community managers could take
action to change the network towards maximizing their objective function.

All this implies that the decision to deploy a particular policy on an online
community is a network design exercise. An organisation decides to employ a
community manager to shape the interaction network of its community in a way that
helps ist own ultimate goals. And yet, interaction networks in online communities
cannot really be designed; they are the result of many independent decisions, made
by individuals who do not respond to the organization’s command structure. An
online community management policy is then best understood as an attempt to
“influence” emergent social dynamics; to use a more synthetic expression, it can be
best understood as the attempt to design for emergence. Its paradoxical nature is at
the heart of its appeal.

We are interested in detecting the mathematical signature of specific policies in
the network topology. We consider a simple policy called onboarding [18, 19]. As a
new participant becomes active (e.g. by posting her first post), community managers
are instructed to leave her a comment that contains (a) positive feedback and (b)
suggestions to engage with other participants that she might share interests with.

We model online conversations as social networks, and look for the effect of
onboarding on the topology of those networks. We proceed as follows:
1. We initially examine data from three small online communities. Only two of

them deploy a policy of onboarding. We observe that, indeed, the shape of the
degree distribution of these two differs from that of the third.

2. We propose an experiment protocol to determine whether onboarding policies
can explain the differences observed between the degree distributions of the first
two online communities and that of the third one.

3. Based on the generalized model [10] we simulate the growth of online commu-
nities. Variants to the model cover the relevant cases: the absence of onboarding
policies and their presence, with varying degrees of effectiveness.
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4. We run the experiment protocol against the degree distributions generated by the
computer model, and discuss its results.

Section 2 briefly examines the two strands of literature that we mostly draw upon.
Section 3 presents some data from real-world online communities; it then proceeds
to describe our main experiment, a computer simulation of interaction in online
communities with and without onboarding. Section 4 presents the experiment’s
results. Section 5 discusses them.

2 Related work
Collective intelligence [15] scholars confirmed importance of online community
management practices, indeed, they have tried to systematize it [9] and produce
technological innovation to support it [8, 20]. These tools are meant to facilitate and
encourage participation to online communities, to make it easier for individuals to
extract knowledge from them. Studying human communities is a traditional focus
of network science [5, 6], for which easily available datasets of online communities
make an ideal ground for structural analysis: friendship in Facebook [16, 17], follow-
ing/retweet/mentions for Twitter [11, 12, 13], or vote and comments in discussions
[11, 14, 22, 23].

Starting in the 2000s, online communities became the object of another line of
enquiry, stemming from network science. Network representation of relationships
across groups of humans has yielded considerable insights in social sciences since
the work of the sociometrists in the 1930s, and continues to do so; phenomena
like effective spread of information, innovation adoption, and brokerage have all
been addressed in a network perspective [5, 6]. As new datasets encoding human
interaction became available, many online communities came to be represented as
social networks. This was the case for social networking sites, like Facebook [16, 17];
microblogging platform like Twitter [11, 12, 13]; news-sharing services like Digg
[11]; collaborative editing projects like Wikipedia [14]; discussion forums like the
Java forum [23]; and bug reporting services for software developers like Bugzilla
[22]. Generally, such networks represent participants as nodes. Edges represent a
relationship or interaction. The nature of interaction varies across online communities:
one edge can stand for friendship for Facebook; follower-followed relationship,
retweet or mention in Twitter; vote or comment in Digg and the Java forum; talk in
Wikipedia; comment in Bugzilla.

In contrast to collective intelligence scholars, network scientists typically do not
address the issue of community management, and treat social networks drawn from
online interaction as fully emergent. In this paper, we employ a network approach to
investigate the issue of whether the work of community managers leaves a footprint
detectable by quantitative analysis. To our knowledge, no other work attempted this
investigation. In particular, we exploit a result from the theory of evolving networks,
from seminal work by Barabási and Albert [2] showing that the assumption of growth
and preferential attachment, when taken together, result in a network whose degree
distribution converges to a power law ( [1, 3]). The model was later generalized in
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various ways and tested across a broad range of networks, including social networks
[10].

We use this generalization as a baseline state. The degree distribution of the
interaction network in an online community follows a power law by default. The
action of online community managers, as they attempt to further the goals of the
organisation that runs the online community, will result in its degree distribution
deviating from the baseline power law in predictable ways. Such deviation can be
interpreted as the signature that the policy is working well.

The most important difficulty with this method is the absence of a counterfactual:
if a policy is enacted in the online community, the baseline degree distribution
corresponding to the absence of the policy is not observable, and viceversa. This
rules out a direct proof that the policy “works”. Hence our choice to combine
empirical data and computer simulations.

3 Materials and methods
In this section we introduce the empirical data, the experiment protocol and the
simulation model we use in the experiment.

3.1 Empirical data
We examine data from three real-world online communities: InnovatoriPA is a com-
munity of (mostly) Italian civil servants discussing how to introduce and foster
innovation in the public sector. It does not employ any special onboarding or modera-
tion policy. Edgeryders is a community of (mostly) European citizens, discussing
public policy issues from the perspective of grassroot activism and social innovation.
It adopts the onboarding of new members policy. Matera 2019 is a community of
(mostly) citizens of the Italian city of Matera and the surrounding region, discussing
the city’s policies. It also adopts the onboarding policy.

The communities are modeled as interaction networks (summarized in Table 1) in
which nodes are users and edges represent directed comments from A to B, weighted
by the number of comments written. A glance at their respective visualizations
(Figure 1) suggests that the networks of the three communities have very different
topologies. Innovatori PA displays more obviously visible hubs than the other two.

We fitted power laws in-degree distributions of these three online communities,
as of early December 2014. Next, we tested the hypothesis that degree distributions
follow a power law, as predicted by [10]. To do so, we first fitted power functions
to the entire support of each in-degree distribution1. We next fitted power functions
to the right tail of each in-degree distribution, i.e. for any degree k(n)≥ kmin, where

1 We emphasize in-degree, as opposed to out-degree, because directedness is implicit in the idea of
preferential attachment, and because the in-degree distribution is the one to follow a power law in
online conversation networks ([10]).
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Innovatori PA Edgeryders Matera2019
Policy “no special policy” “onboard new users” “onboard new users”

In existence since December 2008 October 2011 March 2013
Accounts created 10,815 2,419 512

Active participants (nodes) 619 596 198
Number of edges (weighted) 1,241 4,073 883

Average distance 3.77 2.34 2.51
Maximum degree 155 238 46
Average degree 2.033 6.798 4.454

Goodness-of-fit for k ≥ 1
exponent 1.611 1.477 1.606
p-value 0.21 0.00 (reject) 0.00 (reject)

Goodness-of-fit for k ≥ kmin

kmin 2 5 6
exponent 1.834 2.250 2.817
p-value 0.76 0.45 0.94

Table 1: Comparing interaction networks of the three online communities and testing
for goodness-of-fit of power functions to degree distributions. ”Exponent” refers to
the power law’s scaling parameter. ”p-value” to the result of the test that the degree
distribution of the community was generated by a power law with that exponent.

Fig. 1: Interaction networks of three small online communities. Innovatori PA (left)
does not have an onboarding policy in place, whereas the two others do (Edgeryders:
center, Matera: right).
kmin is the in-degree that minimizes the Kolmogorov-Smirnov distance (hereafter
denoted as D) between the fitted function and the data with in-degree k ≥ kmin.

Finally, we ran goodness-of-fit (hereafter GoF) tests for each in-degree distribu-
tion and for fitted power functions. The method we followed throughout the paper
is borrowed from Clauset et al [7]. The null hypothesis tested is that the observed
distribution is generated by a power function with exponent α . We compare the D
statistic of the observed distribution with those of a large number of synthetic datasets
drawn by the fitted power function. Such comparison is summarized in a p-value, that
indicates the probability of the D statistic to exceed the observed value conditional to
the null hypothesis being true. p-values close to 1 indicate that the power function
is a good fit for the data: the null hypothesis is not rejected. p-values close to zero
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indicate that the power function is a bad fit for the data, and reject the null hypothesis.
The rejection value is set, conservatively, at 0.1. Results are summarized in Table 1.

Fig. 2: (log - log) Probability density function from the degree distributions of: (a)
the Innovatori PA network without onboarding policy in place versus (b) a simulated
network with preferential attachment and no onboarding. (c) The Edgeryders network
with onboarding and preferential attachment versus (d) a simulated network with
preferential attachment and fully effective onboarding (ν1 = ν2 = 1).

As we consider the interval k ≥ 1, we find that the in-degree distribution of the
Innovatori PA network – the unmoderated one – is consistent with the expected
behavior of an evolving network with preferential attachment. We cannot reject the
null hypothesis that it was generated by a power law. For other two communities,
both with onboarding policies, the null hypothesis is strongly rejected. On the other
hand, when we consider only the tail of the degree distributions, i.e. k ≥ kmin, all
three communities display a behavior that is consistent of a setting with preferential
attachment.

These results are consistent with the objectives of the onboarding policy, consisting
in helping newcomers find their way around a community that they don’t know yet.
A successfully onboarded new user will generally have some extra interaction with
existing active members. All things being equal, we can expect extra edges to appear
in the network, and interfere with the in-degree distribution that would appear in the

(a) (b)

(c) (d)



Testing for the signature of policy in online communities 47

absence of onboarding – explaining the non-power law distribution of Edgeryders
and Matera2019. Extra edges target mostly low connectivity nodes: onboarding
targets newcomers, and focuses on helping them through the first few successful
interactions. Highly active (therefore highly connected) members do not need to be
onboarded. This may explain why all three communities display power law behavior
in the upper tail of their in-degree distributions, regardless of onboarding.

3.2 Experiment protocol
The difference observed between the two communities with onboarding policies
and the one without might be caused not by the policy itself, but by some other
unobserved variable. To explore the policy’s effects, we generate and compare
computer simulations of interaction networks in online communities that are identical
except for the presence and effectiveness of onboarding policies.

Communities are assumed to grow over time, with new participants joining them
in sequence. At each point in time, new edges appear; their probability of targeting an
existing node grows linearly with that node’s in-degree. Additionally, communities
might have or not have onboarding policies. See section 3.3 below for a specification
of onboarding in the model.

We generated 100 communities with no onboarding policy (control group), 100
communities for each couple of ν1 and ν2 in {0.0,0.2,0.4,0.6,0.8,1.0} (treatment
group), and computed their in-degree distribution. Next, we tested two hypotheses
for the 3700 networks generated.
• Hypothesis 1. The in-degree distribution of C is generated by P for any k ≥ 1.
• Hypothesis 2. The in-degree distribution of C is generated by P for any k ≥ kmin.

Where C is the synthetic network; k(s) is the in-degree of a node s; kmin is the
in-degree that minimizes the Kolmogorov-Smirnov distance D between the fitted
function and the data over k ≥ kmin; and P is the best-fit power-law model for the in-
degree distribution of C. We expect non-rejection of both hypotheses for the control
group; and rejection of Hypothesis 1, but not of Hypothesis 2, in case of effective
onboarding (high ν1) in the treatment group.

3.3 Simulation
We simulated the growth of network in an online community with and without
onboarding following preferential attachment [2] in the generalized model [10].

Without onboarding: A network is initialized with two reciprocally connected
nodes. At each step a new node (new user) is introduced, and m new edges (comments)
are also created, with a uniformly random picked source. The probability that the
new edge points to a node s is proportional to k(s)+As where k(s) is the in-degree
of node s and As is a parameter representing additional attractiveness of the node.

With onboarding: Network initialization and growth are as in the case of no on-
boarding. Additionally, an edge targeting the newly created node is added at each step.
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This edge represents the action of the community manager, addressing a welcome
message to the newcomer. At this point of each step, with probability ν1 ∈ [0,1], a
new edge is added with source as the new node (the newcomer becomes active). The
edge’s target is chosen by preferential attachment, as described previously2. Next
(still in the same step), with probability ν2 ∈ [0,1], another edge is added with a
uniformly picked source and the newcomer node as target. This represent the online
community acknowledging the newcomer by addressing her a comment.

We call ν1 onboarding effectiveness. It is the probability of the newcomer to react
to the community manager’s onboarding activity. We call ν2 community responsive-
ness. It is the probability for the new participant to have attracted the attention of
other participants and engage in a conversation. We set network size to 2000 nodes;
m = 1; and As = 1 for all nodes, in the tradition of [2] and [10].

4 Results
4.1 Goodness-of-fit of the power-law model
For each network evolved we computed two best-fit power-law models, one for k≥ 1
and the other for k ≥ kmin where kmin is the in-degree the minimizes D between the
fitted function and the data over k ≥ kmin. On each of these models, we ran a GoF
test as in section 3.1, results are reported in Table 2.

We first examine the case in which k ≥ 1. We conclude that onboarding seems to
have some effect on the goodness-of-fit of the generated data to their respective best-
fit power-law models. When onboarding is introduced, fewer degree distributions, out
of our 100 runs, are power law-shaped; also, the average p-values returned by GoF
tests are lower than those of the control group. Running t-tests of the null hypothesis
that the average p-value in the control group is equal to the average p-values in the
treatment group results in a strong rejection for any combination of ν1 and ν2.

We now turn to the question of the role played by ν1 and ν2 within the treatment
group. Figure 3 (a, b) shows the cumulated density functions of the p-values in the
control and treatment groups as ν1 and ν2 vary. Increasing onboarding effectiveness
ν1 pushes average p-values of the GoF tests down, making it less likely that Hypoth-
esis 1 would be rejected. Increasing community responsiveness ν2 seems not to play
any role at all. This is somewhat surprising. Recall that we modeled onboarding as
the command-and-control creation of an extra edge at each step, targeting newcomers
to the online community. This has a strong negative effect on the p-value returned by
the GoF test (compare any p-value in Table 2 with the p-value of the control group
with no onboarding). When a responsive community adds a second edge, however,
there is no additional effect on the p-value. This result is confirmed by regression
analysis (not shown here).

2 The source of the new edge is irrelevant to the model’s results, since we only study in-degree. We
specify it in the text to help exposition, since the expected result of onboarding is the activation of
newcomers.
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Table 2: Average p-values (number of rejections) for GoF tests of power-law models
to in-degree distributions of interaction networks in online communities. Control
group communities have no onboarding (control group). Power-law models are
estimated over all nodes with degree k ≥ 1

Control group: 0.262688 (23)
ν2 = 0.0 ν2 = 0.2 ν2 = 0.4 ν2 = 0.6 ν2 = 0.8 ν2 = 1

ν1 = 0.0 0.0593 (83) 0.0601 (81) 0.0520 (83) 0.0479 (88) 0.0551 (82) 0.0514 (85)
ν1 = 0.2 0.0629 (78) 0.0797 (73) 0.0852 (70) 0.0834 (73) 0.0834 (73) 0.0796 (70)
ν1 = 0,4 0.1047 (66) 0.0970 (65) 0.0986 (61) 0.0831 (69) 0.0829 (76) 0.1157 (56)
ν1 = 0.6 0.0964 (59) 0.0855 (67) 0.1021 (63) 0.1269 (51) 0.0906 (70) 0.0797 (71)
ν1 = 0.8 0.1326 (55) 0.1152 (60) 0.1036 (66) 0.1091 (61) 0.1188 (60) 0.1228 (61)
ν1 = 1 0.1009 (65) 0.1207 (62) 0.1326 (54) 0.1164 (60) 0.1230 (54) 0.1205 (57)

When k≥ kmin, the effect of introducing onboarding on the GoF disappears. Over
99% of the networks in the treatment group give rise to distributions that turn out
to be a good fit for a power-law model when kmin is chosen so as to minimize D
between the degree distributions themselves and their best-fit power-law models. We
conclude that Hypothesis 2 cannot be rejected, regardless of whether onboarding is
present or not.

4.2 Lower bounds
We find a limited, albeit statistically significant, effect of onboarding on the value of
kmin, the value of k that minimizes D between the data generated by the computer
simulation and the best-fit power-law model. Figure 3(c,d) shows that over 60% of
the in-degree distributions from interaction networks in the control group, vis-a-vis
only 30 to 40% of those in the treatment group, fit a power-law model best for
kmin ≤ 3. Within the treatment group, some variability is associated to the increase
of ν1, whereas ν2 does not seem to play a significant role. Regression analysis (not
shown here) shows that, once we control for the presence of onboarding, neither
parameter is significant.

4.3 Exponents
Introducing onboarding to an online community has a positive and significant effect
on the value of the exponent of the best-fit power-law model for the in-degree
distribution of its interaction network. This is consistent with previous studies ([10]).
This result holds when the best-fit power-law models is computed over k ≥ kmin,
where kmin is the value of k that minimizes D between the simulated in-degree
distribution and its best-fit power-law model. When it is computed over the whole
support of the in-degree distribution (k ≥ 1), it also holds, except for ν1 = 1. Table 3
illustrate the average value of the scaling parameter α , and the p-value of a t-test on
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Fig. 3: (a,b): CDF of p-values returned by GoF tests to the (best-fit) power-law
models for in-degree distributions of the interaction networks in the control and
treatment groups. 20% of the networks evolved without onboarding (dark blue) have
degree distributions that test negatively for H1. When onboarding is introduced, it
rises to between 50 and 90%. (a,c) the treatment group interaction networks have
been grouped according to the value taken by ν1. (b,d) they have been grouped
according to the value taken by ν2. (c,d) CDF of the average value of kmin that
minimizes D between the in-degree distribution of each interaction network and its
best-fit power-law model.
the null hypothesis that such value is the same as the corresponding statistics in the
control group, against the alternative hypothesis that the former is greater than the
latter.

5 Discussion and conclusion
We started this work in the hope of discovering a simple statistical test that could
be used to assess the presence and effectiveness of online community management
policies, onboarding among them. Enacting onboarding on an online community
leads to a strong rejection of a power-law behaviour hypothesis on its degree dis-
tribution. So, indeed, we can test for the presence of onboarding by looking at the
degree distribution itself, which is much simpler than analysing the network’s whole

(a) (b)

(c) (d)
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Table 3: Average values of the power-law model’s exponent α in the control group
and in the treatment group by values of ν1 and ν2, computed over the whole support
k≥ 1 (top) and k≥ kmin (bottom). The number in parenthesis is the p-value associated
to a t-test that α(treatment) = α(control); they were omitted for k ≥ kmin as they
are all smaller than 0.001.

k ≥ 1 Control group: 1.752
ν1 = 0.0 ν2 = 0.2 ν2 = 0.4 ν2 = 0.6 ν2 = 0.8 ν2 = 1

ν1 = 0.0 1.89 (0.00) 1.89 (0.00) 1.89 (0.00) 1.89 (0.00) 1.89 (0.00) 1.89 (0.00)
ν1 = 0.2 1.85 (0.00) 1.85 (0.00) 1.85 (0.00) 1.85 (0.00) 1.85 (0.00) 1.85 (0.00)
ν1 = 0.4 1.82 (0.00) 1.82 (0.00) 1.82 (0.00) 1.82 (0.00) 1.82 (0.00) 1.82 (0.00)
ν1 = 0.6 1.79 (0.00) 1.79 (0.00) 1.79 (0.00) 1.79 (0.00) 1.79 (0.00) 1.79 (0.00)
ν1 = 0.8 1.77 (0.00) 1.77 (0.00) 1.77 (0.00) 1.77 (0.00) 1.77 (0.00) 1.77 (0.00)
ν1 = 1 1.75 (0.21) 1.75 (0.20) 1.75 (0.26) 1.75 (0.43) 1.75 (0.24) 1.75 (0.19)

k ≥ kmin Control group: 2.419
ν2 = 0.0 ν2 = 0.2 ν2 = 0.4 ν2 = 0.6 ν2 = 0.8 ν2 = 1

ν1 = 0.0 2.985 2.989 2.868 3.000 3.004 3.015
ν1 = 0.2 2.855 2.852 2.868 2.834 2.821 2.854
ν1 = 0.4 2.746 2.727 2.735 2.725 2.739 2.749
ν1 = 0.6 2.661 2.655 2.632 2.650 2.656 2.623
ν1 = 0.8 2.562 2.602 2.571 2.553 2.554 2.553
ν1 = 1 2.496 2.527 2.518 2.514 2.514 2.499

topology. However, we did not find a monotonic relationship between onboarding’s
effectiveness and the distance of the resulting degree distribution from a pure power-
law form. So, our simple test cannot tell the analyst how effective these policies
are.

Our models incorporates two forces: preferential attachment and onboarding. The
former is meant to represent the (emergent) rich-get-richer effect observed in many
real-world social networks; the latter is meant to represent the (command-and-control)
onboarding action of moderators and community managers. The former’s effect is
known to lead to the emergence of an in-degree distribution that approximates a
power-law model. The latter’s effect is more subtle, because it is in turn composed of
two other effects. One consists in the direct action of the moderator, which always
targets the newcomer; the other results of the consequences of a well-executed
onboarding policy.

The direct action of the moderators creates edges pointing to nodes not selected
by preferential attachment: this is definitional of onboarding, and of other online
community management activities. What (non-moderator) participants in the online
community do as a result of moderator activity is not as clear cut. In our simulation
model, fully successful onboarding results in extra edges, some of which point to
nodes selected by preferential attachment, others to nodes selected otherwise.

Also, onboarding only targets newcomers. As many online community manage-
ment policies, it concerns weakly connected participants in the community: mod-
erators have no need to engage with very active, strongly connected participants,
who clearly need no help in getting a conversation going. By engaging weakly con-
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nected participants, moderators hope to help some shy newcomers turn into active
community members. Once this process is under way, moderators have no reason
to continue to engage with the same individuals. In terms of our model, this means
that newcomers, after having being onboarded, are going to receive new edges by
preferential attachment only. It is therefore reasonable to expect that the degree dis-
tributions generated by our model display a heavy tail, with the frequency of highly
connected nodes following a reasonable approximation of a power law. The overall
result of onboarding, then, is an in-degree distribution with power-law behavior for
high values of in-degree k and non-power law behavior for low (close to 1) values of
k. This is indeed what we observe.

Non-preferential attachment selection of edge targets leads to a poorer fit of power-
law models to the in-degree distributions where onboarding is present. This effect
takes three forms. The first one is that, fitting a power-law model to the network’s in-
degree distribution and then running goodness-of-fit tests return a lower p-value than
the p-value returned by the same test when onboarding is absent. The second effect
is that the value of k that minimizes D between the best-fit power-law model and
the observed data tends to be higher than without onboarding. The third one is that
the scaling parameter of the best-fit power law tends to be higher with onboarding:
onboarding makes the allocation of incoming edges more equal.

Our specification of the model accounts for an apparent paradox: the deviation of
the observed networks’ degree distributions from power-law behavior is greater when
onboarding is ineffective than when it is effective. Ineffective onboarding only adds
edges directly created by moderators, none of which are allocated across existing
nodes by preferential attachment. As onboarding gets more effective, even more
edges are added; some are allocated by preferential attachment, and drive the degree
distribution back towards a pure power-law behavior. This paradoxical response may
explain why our community responsiveness parameter ν2 does not appear to impact
the shape of the in-degree distribution.

5.1 Future work
Modeling online community management means accounting for the interplay of
bottom-up forces (like preferential attachment) with top-down ones (like onboarding
policies). This weaving of emergence and design is precisely what we wish to
investigate. There are three obvious directions in which we plan to expand the present
model. The most obvious one is a systematic exploration of the parameter space,
with the goal of assessing our results’ robustness with respect to model specification.

A second direction for further research would be to attempt to make the model
into a more realistic description of a real-world online community. Such an attempt
would draw attention onto how some real-world phenomena, when incorporated in
the model, influence its results. It would also carry the advantage of allowing online
community management professional to more easily interact with the model and
critique it. Several issues that could be investigated in this vein come to mind. For
example, we could relax the assumption that the additional attractiveness parameter
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As is identical for all nodes, allowing for different nodes in the network to attract in-
coming edges at different rates (a phenomenon known as multiscaling [4]). Secondly,
we could introduce a relationship between out-degree and in-degree: this would
reflect the fact that, in an online community, reaching out to others (which translates
in increasing one’s own out-degree in the interaction network) is a good way to get
noticed and attract incoming comments (which translates in an increase in one’s
in-degree). Finally, we could work with other community management policies.

A third direction for further research would attempt to gauge the influence of
onboarding and other community management policies on network topology by
indicators other than the shape of its degree distribution, such as the presence of
subcommunities.

Additionally, we wish to obtain and analyse more empirical data from real-world
online communities with and without onboarding policies.
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Abstract Religion has been extensively studied from many different perspectives.
The current study aims at integrating a number of these perspectives into one compu-
tational network model. By first developing a conceptual temporal-causal network
model based on literature, and then formalizing this model into a numerical network
model, simulations can be done for almost any kind of religious person, showing
different behaviours for persons with different religious backgrounds and characters.
The focus was mainly on the influence of religion on human empathy and disempathy,
a topic very relevant today.

1 Introduction
Religion is a topic that every person has an opinion about, whether that opinion is
positive or negative. While some people blame religion for war and terrorism, others
believe that religion is the only bright spot in a world full of bad. Does religion cause
individuals to be more empathic, enabling them to be aware of the others feelings,
needs and wants? Or, is religion a cause for human disempathy, making persons
indifferent or even hostile for their fellow human? A clear answer has not yet been
found, even though a lot of research has been done on the topic; e.g., [19, 21, 27, 37].
Questioning the influence of religion on human behaviour may not deserve a yes
or a no type of answer, but rather an answer that involves more aspects, like ones
character, culture, and of course different kinds of religions. In some way, all aspects
and influences indicated above come together and originate in the brain. A lot of
research has been done on how human behaviour is generated in the brain, also
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concerning religious topics. So, if these processes in the brain related to religion can
be represented, this could help to get an answer to the question.

A method that can be used to represent real-world processes concerning human
beings is Network-Oriented Modelling. By this method, mechanisms that are based
on neurological mechanisms are represented in a network model using different states
and connections between them, as described in [33, 34]. This Network-Oriented
Modelling method can be used to simulate behaviour of individuals with different
religious backgrounds, characters and cultures. In this paper, first, in Section 2 a brief
literature overview on the existing research related to the topic is discussed. Then, in
Section 3 the conceptual representation of the network model with its various parts
is discussed, and it is indicated how a numerical formalization of this model was
obtained. In Section 4 a relevant scenario simulated using the model is discussed;
Section 5 is a discussion.

2 Literature Overview
There are two important approaches that are used to explain the origins of religion and
religion-based behaviour. First, there is the evolutionarist approach [2, 7] that tries to
explain the origin and different aspects of religion from an evolutionary perspective.
Secondly, there is the neurotheologist approach [4, 8, 25] that tries to find the origins
of religion in the brain and explain religious behaviour on the basis of neurological
processes. Further scientific and philosophical developments from both different
perspectives around cognition, neuroscience and conscious thinking will most likely
generate useful insights into religion [37]. Therefore, an approach that combines
these different aspects into one model would give the most promising answer to
our question. Such a kind of multidisciplinary model is indicated in two articles
by Kapogiannis et al. [18, 19], proposing an integrative cognitive neuroscience
framework for understanding the cognitive and neural foundations of religions.
Among others using MRI analysis, they define three dimensions that together form
an individuals religious belief. The first one is Gods perceived level of involvement,
the second Gods perceived level of emotion, and finally the doctrinal and experiential
religious knowledge of an individual. Kapogiannis et al., considered these dimensions
as nodes of a network and examined the causal flow within and between such
networks, together forming the individuals religious belief. Also some other studies
on religion have been combining knowledge from multiple disciplines, like [26, 38],
although the distinction between the different perspectives on religion was still kept.

Besides the above described approaches to religion, many experiments have been
done to examine behaviour of religious persons. As explored by [21], religion can
foster implicit self-regulation among religious individuals, unconsciously changing
their actions and regulating their emotions. Also, religious individuals that prayed for
people that angered them showed less aggression towards those people afterwards,
indicating that religious behaviour can change peoples emotions [6]. Furthermore, a
study of Schjoedt et al. [29] found that praying towards God activates brain regions
that are responsible for active interpersonal interactions and enable people to generate
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an internal representation about the other, in this case God. This proves that praying
individuals consider God a real meaningful person, rather than a fictive or abstract
entity. This idea of internally representing God as a person is also discussed in [26].

Regarding this theory of God as a real meaningful person, an interesting idea
can be developed as follows. As described in [22, 31, 32], a person can develop
an empathic understanding of others through mirroring and internal simulation
mechanisms, and these mechanisms also influence the individual beliefs and actions
of that person. As a result, the aforementioned internal representation that individuals
generate when they communicate with God, as a real meaningful person, can also
generate an empathic understanding of God as perceived by the individual. This
way, the individual mirrors the (internally represented) beliefs, actions and emotions
of their perceived God. The combination of these mechanisms enables the image
that an individual has of God to influence his own beliefs, actions and emotions,
in a way similar to how an individual is influenced by other humans. The image
that an individual has of God (e.g. the God-image which will be described more
extensively later on), and how this image has impact on the individual, can involve
many aspects. One example is studied by Granqvist et al. [14], who examined the
God-image as an attachment figure in theistic religions, defining the relationship
with God as an attachment relationship. Granqvist et al. examine the influence of a
persons attachment style to the persons relationship to God. Another example that
was studied is the impact of the character that an individuals God-image has. For
example, an individual whose God-image is based on an authoritarian figure (like
God is great, or God strikes down in anger) act in more antisocial, disempathic
ways, and believers whose attachment relationship with God is a loving one (God is
love) are acting in a more social, empathic manner [11, 17, 24]. Finally, there is an
influence of the level of judgmentalism in a persons God image on the willingness
to volunteer both in internal and external communities [23]. However, as described
above, the influence of religion on human empathy and dis-empathy does not emerge
from one single input, but from the combination of the individuals character and
his God-image, which are both (partly) formed by the individuals experiences and
knowledge.

3 The Temporal-Causal Network Model
In this section, it is presented how a neurologically inspired network model can
be made that simulates the influence of religion on an individuals (dis)empathic
behaviour and emotions towards others. The model was developed according to the
Network-Oriented Modelling approach based on temporal-causal networks described
in [33, 34] and adopts elements of previously developed network models for joint
decision making processes [32] and action ownership [30]. It is based on different
theories on religion and human behaviour from literature which will be explained
below. Combining these elements, an integrative computational model was created
that focuses on the influence of religion on (dis)empathic behaviour and emotions
towards others. First, Sections 3.1, 3.2, and 3.3 present how theories and literature
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were used to construct the model, leading to a conceptual representation of the
network model depicted in Fig. 1. Then, Section 3.4 explains how a numerical
representation was obtained from this conceptual representation.

3.1 Mirror Neurons and Internal Simulation
Mirror neurons enable sensory input, for example an observed action or body state
of another person, to directly affect a persons own preparation state. In the current
model, this is modelled by direct links from the sensory representation states of the
emotions and actions of the God-image to the preparation states for emotions and
behaviour of the Self. This gives the preparation state a similar function as a mirror
neuron has: become active after observing the action or emotion. This mirror neuron
function of preparation states makes that the actions and emotions of the God-image
affect the corresponding behaviour, emotion and prayer states of the Self, leading to
the actions and emotions of the God-image to influence the behaviour, emotions and
prayers of the Self. The mirror neuron function enables to influence the individuals
own preparation states. Then, due to activation of the preparation states, the actions
or emotions are internally simulated in a process as described by William James [16]
and Antonio Damasio [9, 10]; this involves the following process. A world state wsW ,
a situation W in the world, occurs representing another persons action or emotion
expression X .

The person develops a sensory state ssW of this world state, and then a sensory
representation state srsW of it. Now by its mirror neuron function the preparation
state psX for bodily changes for the same action or emotion X occurs. Depending
on the context, this is expressed or executed, indicated by state esX . Execution of an
action is modelled by an action execution loop and the process involving expression
of an emotion by a body loop. In the model, the body loop is modelled by the link
from an individuals execution state of a body state expressing an emotion to the
individuals sensory representation of that body state. The feeling for the emotion
is based on this sensory representation of the body state. However, the process is
extended by adding a possibility by internal simulation without executing an actual
action (as-if body loop). This process, is incorporated in the model by a (predictive)
loop from the preparation state for an action or emotion to the sensory representation
for its effect, enabling direct emotion formation without behaviour execution.

3.2 Action Ownership States of God and Self
Whether an individual performs certain behaviour or expresses emotions that were
mirrored (e.g., from the God-image) depends on the context. This context is rep-
resented by action ownership states for which a model was introduced in [30]. An
ownership state is an indication to what extent an individual attributes an action or
emotion to himself, or to what extent the individual deems someone else responsible.
This ownership state for an action (which can also apply to an emotional response)
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can lead to a go or no-go decision for behaviour or emotion expression. There are
four different ownership states in the model; see Table 1.

Table 1: Ownership states for God and Self for actions and emotions.

God-ownership state Self-ownership state

action osGod,ai,ei,bi osSel f ,ci,ei,bi

emotion osGod,bi,ei osSel f ,bi,ei

Here osSel f ,ci,ei,bi is the Self-ownership state for behaviour ci with predicted effect
ei and related feeling bi. It is influenced by the sensory representation state srsGod,ai

of God performing action ai, the sensory representation of ei and the feeling state for
bi. In turn, it influences both the preparation state psci for that behaviour ci and the
execution state esci for that behaviour. Furthermore, God-ownership osGod,ai,ei,bi for
action ai is influenced by the sensory representation states srsGod,ai and srsGod,imagei

of the God-image. In turn, by mirroring it affects the preparation state psci for the
related behaviour of Self and the execution state esci for that behaviour. Moreover,
Self-ownership osSel f ,bi,ei of emotional response bi related to ei is influenced by the
sensory representation srsGod,bi of the emotion within the God-image and the persons
sensory representation srsei of the predicted effect ei. In turn, osSel f ,bi,ei influences
the preparation state psbi of the emotion and the execution state esbi (expression)
of the emotion bi. Finally, God-ownership state osGod,bi,ei of emotional response
bi related to ei is influenced by the sensory representation states srsGod,bi of Gods
emotion and srsGod,imagei of the God-image. In turn, it affects the preparation state
psdi for the related emotion di and the execution state esdi for that emotion. With
the distinction between the ownership of God over behaviour and emotions that the
individual expresses, the level of involvement and authority of God that an individual
experiences is represented, as brought forward in [18]. An individual with a very
low Self-ownership and a high God-ownership can show behaviour different from an
individual with a high Self-ownership and a low God ownership.

3.3 The God-image
The notion of the God-image has received a lot of attention in the scientific world
in the past years, studying the influence of this phenomenon, and, more specifically
its influence on human behaviour towards others [17, 23, 24]. Different kinds of
God-images have proved to influence human behaviour towards others in different
ways. For example, where an authoritarian, punishing and controlling God-image is
correlated to aggressive, disempathic behaviour, a forgiving, helping God-images
correlates to prosocial, empathic behaviour [17, 23]. Furthermore, the belief in Godly
omnipresence and omnipotence also influences human prosociality: individuals
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with a moralistic, all knowing God-image showed more prosocial behaviour than
individuals with a non-moral or non-all-knowing God-image [24].

Besides the studies on the influence of the God-image on human behaviour
towards others, this process can also be described from the mentalizing perspective,
as introduced by Schaap-Jonker [26]. Mentalizing is the capacity of thinking about
thinking and feeling. It provides awareness that ones own and others behaviour is
driven by mental states, and gives the ability to selectively activate internal states
that fit the individuals particular. Also, mentalizing generates a subjective experience
of agency, this way supporting a sense of identity [1, 3, 12, 26]. Mentalizing also
bears some resemblance to the process of internal simulation as described in [32],
where an individual internally simulates mind states to predict effects in the external
world or other persons. Mentalizing can occur both consciously or unconsciously,
concern the self or others, and is both cognitive and affective [12]. This creates many
possibilities in the interactions of the individual towards the God-image.

To enable a God-image to influence an individuals behaviour as explained above,
the individual first has to have a God-image. The God-image refers to the personal
God of the individual. As discussed in [18, 19, 27], this God-image consists of both
an emotional part and a cognitive part, and both parts are dynamically interrelated.
The emotional part is unconsciously developed, highly influenced by parents and
significant others. The cognitive part of the God-image consists of the knowledge
an individual has about God, like the doctrinal information the individual received
in religious study, at school, or at church. The emotional and the cognitive part that
form the God-image can be traced back to different parts in the brain as studied by
[18, 19, 27]. The emotional part involves the amygdala, basal ganglia, the ventrome-
dial prefrontal cortex, the lateral temporal cortex, the dorsal anterior cingulated
cor-tex and the orbitofrontal cortex. These parts of the brain are involved in assigning
emotional significance to behaviour and events and to controlling cognition and
emotion. On the other hand, the cognitive part involves the lateral prefrontal cortex,
the medial prefrontal cortex, the lateral parietal cortex, the medial parietal cortex and
the medial temporal lobe, all brain circuits that are responsible for the processing of
more complex linguistic and symbolic input. This combination of brain processes
results in the formation of the personal God-image of the individual; each personal
God-image differs based on the individuals personal character, experiences and
knowledge, which will be discussed more extensively below.

To summarize, both the doctrinal knowledge that an individual receives about God,
and the individuals character, upbringing and so forth, create a personal, internal God-
image that the individual perceives as a real person, and with whom the individual
interacts. In the computation model, the God-image is represented by the following
process. The generation of the God-image happens through the links between the
external input (World states) to the sensor states, and in the links from the sensor states
to the sensory representations of the God-image. Then, the God-image influences
the behaviour and emotions of the individual through the links from the sensory
representations of the God-image to the ownership states, goal fulfilment state, and
the preparation states.
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As described above, the individual imagines God as a person with intentions and
mind states [29]. In the developed model, the God-image (including images of Gods
actions and emotions) is constructed by three different kinds of input, namely input
about Gods emotions (mind states), actions that God performs (or intentions), and
about the God image in general. This input can come from many sources, for example
religious texts or education from parents, or from prayer. The generation of the God-
image from the input is modelled by the links from the world states to the sensor states
(including the sensor state of the prayer, representing hearing of a prayer of someone
else or of oneself), and from the sensor states to the sensory representation states
of the (general) God-image, God actions and God emotions. Furthermore, while
an individuals own prayer can influence the God-image via an external connection,
the individuals prayer can also influence that individuals God-image via an internal
connection, based on links from the preparation state for the prayer to the sensory
representations states for actions and emotions of the God-image and the general
God-image; e.g. if an individual prays to make God happy, the emotion of his God-
image might become happier (depending on the individuals beliefs). Part of the
God-image is represented by the (adaptive) connection weights within the God-
image model, partly representing the individuals characteristics, and which may be
influenced by the external input as well through Hebbian learning. These parts result
in a personal God-image consisting of the individuals sensory representation of the
God-image, the individuals sensory representation of Gods actions, the individuals
sensory representation of Gods emotions, and the weights of the connections between
these three states. The conceptual representation of the model is graphically depicted
in Fig. 1. In this representation, circles represent states and arrows represent processes.
The dotted arrows represent Hebbian learning connections, which will be explained
below. The processes that are internal are depicted inside the green box, external
processes are outside the box, and the interaction between the two on the boundary.

The subscript i represents the difference between empathetic and disempathic
behaviour and emotion. An overview of the connections (the arrows) and their
weights that were defined for the model, can be found in Appendix E in [36].

3.4 From Conceptual to Numerical Representation of the Model

This section describes the process of numerical formalization of the model presented
in Sections 3.1 to 3.3. This formalization was used to implement the model in
Python in order to perform simulations. According to the adopted Network-Oriented
Modelling approach, a graphical conceptual representation displays nodes for states
and arrows for connections indicating causal impacts from one state to another, and
includes some additional labels for states and connections, so that it becomes a
labeled graph:

• connection weights ωωωX ,Y for each connection from state X to state Y
• combination functions cccY (. . .) to aggregate multiple impacts for each state Y
• speed factors ηηηY for speed of change for each state Y
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Fig. 1: Graphical conceptual representation of the temporal-causal network model;
here subscript i denotes either empathy (1) or disempathy (2).

To choose combination functions, a number of standard options is available; e.g.,
[33, 34]. The conceptual representation of a temporal-causal network model can be
transformed in a systematic or even automated manner into the following numerical
representation of the model [33, 34]; here the variable t indicates a time point; it
varies over the real numbers. Based on a combination function and the connection
weights

aaaggggggiiimmmpppaaaccctttY (t) = cccY (ωωωX1,Y , . . . ,ωωωXk,Y (t)) (1)
is the aggregated impact of the network on Y at t. This is used to provide the following
difference and differential equation for each state Y :

Y (t +∆ t) = Y (t)+ηηηY [aaaggggggiiimmmpppaaaccctttY (t)−Y (t)]∆ t

= Y (t)+ηηηY [cccY (ωωωX1,Y , . . . ,ωωωXk,Y (t))−Y (t)]∆ t (2)

dY (t)/dt = ηηη [aaaggggggiiimmmpppaaaccctttY (t)−Y (t)] = ηηη [cccY (ωωωX1,Y , . . . ,ωωωXk,Y (t))−Y (t)] (3)
These numerical representations (2) and (3) can be used for mathematical and compu-
tational analysis and simulation. In the model presented here, for all states for the com-
bination function the advanced logistic sum combination function aaalllooogggiiissstttiiicccσ ,τ(. . .)
is used [33, 34]:
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cccY (V1, . . . ,Vk) = aaalllooogggiiissstttiiicccσ ,τ(V1, . . . ,Vk)

=

(
1

1+ e−σ(V1+...+Vk−τ)
− 1

1+ eστ

)
(4)

Here σ is a steepness parameter and τ a threshold parameter. The advanced logistic
sum combination function (4) has the property that activation levels 0 are mapped
to 0 and it keeps values below 1. When the value of the right hand side expression
given above is < 0, the value 0 is assigned to aaalllooogggiiissstttiiicccσ ,τ(V1, . . . ,Vk).

In cases of adaptive networks in which some or all of the connection weights ωX ,Y
are dynamic, for a numerical representations dynamic connection weights also get a
time argument: ωX ,Y (t). To model their dynamics, the dynamic connection weights
are described by a difference or differential equation for Hebbian learning, which also
can be based on a combination function and speed factor as above; for more details,
see [33, 34]. In the current network model learning mechanism were included for the
connection strengths of the adaptive connections from srsGod,imagei to srsGod,ai , from
srsGod,imagei to srsGod,bi , from srsGod,ai to srsGod,bi , and from srsGod,bi to srsGod,ai ;
see the dotted lines in Figure. 1. This learning mechanism is based on the Hebbian
learning principle introduced by Donald Hebb [15]. Different interpretations of
Hebbian learning exist, either based on causality-based learning [20] or simultaneity-
based learning; e.g., [5, 13, 35]. In this model, the latter simultaneitybased learning
approach is used. This approach is based on the principle that strengthening of a
connection between neurons over time may take place when both nodes are often
active simultaneously: neurons that fire together, wire together [28]. In the model,
the weight ωX ,T of an adaptive connection from state X to state Y is updated after
time step ∆ t using a learning rate ηH > 0 and extinction ζH ≥ 0 and the activation
levels X(t) and X(t) of the states X and Y . This is modelled as follows (see also [13],
p. 406):

ωX ,Y (t +∆ t) = ωX ,Y (t)+ [ηHX(t)Y (t)(1−ωX ,Y (t))−ζHωX ,Y (t)]∆ t (5)
The weight ωX ,Y has a maximal strength of 1; the factor 1−ωX ,Y (t) keeps ωX ,Y
below 1.

4 Simulation Scenario: a Person with Fundamentalist Tendencies
As discussed, the computational model was implemented in Python in order to
perform simulations and study the influence of religion on human empathy and
disempathy. Simulations have focused on six possible scenarios based on literature.
All of them can be found in Appendix D in [36]. In the current section, for the sake of
space limitations, only one of them is discussed. For each scenario, relevant parameter
values are chosen in order to simulate the behaviour described in literature and to
test the influence on empathic or disempathic behaviour. For most of the states in the
implemented model two instances are used: the empathic (indicated with subscript
1 in the figures) and the disempathic instance (indicated with subscript 2 in the
figures). Through adapting the connections relating to those two instances, the degree
of empathy of disempathy of the God-image or individual can be varied. For each
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scenario ∆ t was chosen 0.25, the total number of time steps 500, and the speed factor
of all states 0.17. The extinction and learning rates for the adaptive connections
are all 0.5. A certain combination of parameters within a person could lead to
fundamentalist tendencies. If a person has both an anxious attachment relationship
with the God image, a disempathic God-image, and a lot of divinity and disempathic
related external influence about God, this could form behaviour that is considered
fundamentalist.

This scenario aims at simulating this fundamentalist behaviour by making the
disempathic connection weights in the model higher than the empathic ones (1.0
versus 0.1), making the connections for the God ownership states higher than the
Self-ownership states (God-ownership for empathic behaviour become 0.8, for dis-
empathic behaviour 0.3, Self-ownership 0.1) and strong links from a disempathic
God-image to the preparation states (1.0) and from preparation states to execution
states (1.0). The results can be found in Fig. 2.

Fig. 2: Simulation scenario for a person with fundamentalist tendencies, meaning that
connection strengths to the Self-ownership are very low while the God-ownership is
high, there is low, connection strengths to the effect prediction is low and the person
has a disempathic God-image. The person strongly executes disempathic behaviour,
no empathic behaviour, and develops no Self-ownership.

Main differences with a scenario with a person with a disempathic God-image are
as follows: the fundamentalist person does not, or barely, develop Self-ownership
of its actions; the fundamentalist person does have a lower activation level of the
prediction of the effects of his actions: srsei . The disempathic behaviour of the
fundamentalist person reaches the same activation level, but reaches this level faster
than the person with just a disempathic God-image.
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5 Discussion and Conclusion
In this paper the influence of religion on human empathy and disempathy was studied.
First of all, an extensive literature study was done regarding all the processes are
related to religion and human behaviour, specifically towards others. The relevant
theory was then used to design a conceptual representation of a temporal-causal
network model that captures the process of how religion influences human behaviour,
for example the religion-related external input that an individual receives, the way this
external input is then processes and generates a personal God-image, and how this
God-image influences the individuals behaviour and emotions. The behaviour and
emotions of both the God-image and the individual were distinguished in empathic
and disempathic. Although (informally expressed) theories exist and are referred
in the different sections above, a formalised computational model for them was
never designed, as far as the authors know; so, comparison with other computational
models is difficult.

The developed conceptual representation was then formalized into the numerical
representation and this was implemented in Python. With this implemented network
model, scenarios based on relevant literature were addressed to simulate the influence
of religion on human empathy and disempathy, in order to answer the question asked
in the beginning. For example, scenarios were simulated for a person with an empathic
or disempathic God-image, persons with atheist or fundamentalist tendencies, or
persons with Autism Spectrum Disorders. It was shown how a person mirrors the
empathy or disempathy in the actions and emotions of the God-image, depending on
the situation of a person. First of all, it was shown how external (religious) influences
have impact on an individuals God-image. Input regarding a disempathic God created
a disempathic God-image, while input regarding an empathic God gen-erated an
empathic God-image. Furthermore, the God-image strongly influenced the empathic
or disempathic behaviour and emotions of the religious individual. An em-pathic
God-image led to empathic actions and emotions, while a disempathic God-image
led to disempathic actions and emotions. However, there were more aspects that
influenced this. For example, the ownership and mirroring process: persons with a
very low Self-ownership can show more fundamentalist tendencies.

Although the simulations and the model in general show some interesting results,
it is difficult to provide a final answer on what the influence of religion on human
empathy and disempathy is. While the model does represent important aspects of the
domain, and is a good basis for an answer, there are still many things to improve. For
example, the model only reflected the influence of the God-image on the behaviour of
the individual, not that of other persons or more specific non-addressed characteristics
of the person itself. Therefore, the process of literature study, developing a conceptual
model, formalizing it and simulating is an iterative one, where adaptations can be
made all the time in order to match the real world situation as much as possible while
preserving the abstractness that is required of a computational model.
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Abstract This paper discusses how Network-Oriented Modelling based on adaptive
temporal-causal networks can be used to model and analyse dynamics and adaptiv-
ity of vari-ous processes. Adaptive temporal-causal network models incorporate a
dynamic perspective on causal relations in which the states in the network change
over time due to the causal relations, and these causal relations themselves also
change over time. It is discussed how modelling and analysis of the dynamics of the
behaviour of these network models can be performed.

1 Introduction
Network-Oriented Modelling has been proposed as a modeling perspective suitable
for processes that are highly dynamic, circular and interactive; e.g., [26, 27]. In
different application areas this modelling perspective has been proposed in different
forms: in the context of modelling organisations and social systems (e.g., [3, 7, 20]),
of modelling metabolic processes (e.g., [4]), and of modelling electromagnetic
systems (e.g., [8, 9, 23]. To address dynamics well, Network-Oriented Modeling
based on adaptive temporal-causal networks has been developed [25, 26, 27]. This
approach incorporates a continuous (real) time dimension. Adaptive temporal-causal
network models are dynamic in two ways: their states change over time based on
the caual relations in the network, but these causal relations may also change over
time. As in such networks often many interrelating cycles occur, their emerging
behaviour patterns are not always easy to predict or analyse. This may make it hard
to evaluate whether observed outcomes of simulations are plausible or might be due
to implementation errors.

However, some specific types of properties can also be analysed by calculations in
a mathematical manner, without performing simulations; e.g., [2, 17, 18, 19, 21, 22].
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Such properties that are found in an analytic mathematical manner can be used for
verification of the model by checking them for the values observed in simulation
experiments. If one of these properties is not fulfilled (and the mathematical analysis
was done in a correct manner), then there will be some error in the implementation
of the model. In this paper methods to analyse such properties of temporal-causal
network models will be described. They will be illustrated for two types of adaptive
temporal-causal network models: one based on Hebbian learning (Section 3), and
one based on the homophily principle for dynamic connection weights in adaptive
networks modelling social interaction (Section 4).

2 Network-Oriented Modeling by Temporal-Causal Networks
The Network-Oriented Modeling approach based on temporal-causal networks de-
scribed in more detail in [25, 26] is a generic and declarative dynamic modeling
approach based on networks of causal relations. Dynamics is addressed by incorpo-
rating a continuous time dimension. This temporal dimension enables modelling by
networks that inherently contain cycles, such as networks modeling mental or brain
processes, or social interaction processes, and also enables to address the timing of
the processes in a differentiated manner. The modeling perspective can incorporate
ingredients from different modeling approaches, for example, ingredients that are
sometimes used in neural network models, and ingredients that are sometimes used
in probabilistic or possibilistic modeling. It is more generic than such methods in
the sense that a much wider variety of modeling elements are provided, enabling
the modeling of many types of dynamical systems, as described in [25, 26]. The
Network-Oriented Modeling approach is supported by a few modeling environments
(in Matlab, or in Pyhon, for example) that can be used to model conceptually in a
declarative manner, without the need of programming.

Temporal-causal network models can be represented at two levels: by a conceptual
representation and by a numerical representation. A conceptual representation of
a temporal-causal network model can have a (labeled) graphical form (or a matrix
form), as shown in the examples presented below. In the first place it involves
representing in a declarative manner states and connections between them. The
connections represent (causal) impacts of states on each other, as assumed to hold
for the application domain addressed. Each state X is assumed to have an (activation)
level that varies over time, indicated in the numerical representation by a real number
X(t). In reality not all causal relations are equally strong, so some notion of strength
of a connection from a state X to a state Y is used: a connection weight ωωωX ,Y . Based
on this, in a numerical representation the impact of state X on state Y at time t is
defined by ωωωX ,Y X(t), where X(t) is the activation level of state X at t. Note that
also a connection from a state Y to itself is allowed. The weight ωωωY,Y of such a
connection can, for example, be used to model persistence of state Y . Furthermore,
when more than one causal relation affects a given state Y , these causal effects have
to be combined. To this end, some way to aggregate multiple causal impacts on a
state is used; this is done by a combination function cccY (. . .) that uses the impacts
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ωωωXi,Y Xi(t) from states X1, . . . ,Xk on Y as input and provides one aggregated impact
value out of them. Moreover, not every state has the same extent of flexibility in
responding to impact; some states respond fast, and other states may be more rigid
and may respond more slowly. Therefore, a speed factor ηηηY of a state Y is used for
timing of effectuation of causal impacts.

Combination functions can have different forms. The applicability of a specific
combination rule may depend much on the type of application addressed, and even
on the type of states within an application. Therefore, for the Network-Oriented
Modeling approach based on temporal-causal networks a number of standard combi-
nation functions are available as options and a number of relevant properties of such
combination functions have been identified; e.g., see [25], Table 10, or [26], Chapter
2, Table 2.10. Some of these standard combination functions are scaled sum, product,
complementary product, max, min, and simple and advanced logistic sum functions.
These options cover elements from different existing approaches, varying from ap-
proaches considered for reasoning with uncertainty, probability, possibility or vague-
ness, to approaches based on neural networks; e.g. [1, 5, 6, 10, 12, 14, 15, 16, 29].
In addition, there is still the option to specify any other (non-standard) combination
function.

The above three concepts (connection weight, combination function, speed factor)
can be considered as parameters representing characteristics in a network model. In
a non-adaptive network model these parameters are fixed over time. But to model
processes by adaptive networks, not only the state levels, but also these parameters
can change over time. For example, the connection weights can change over time to
model evolving connections in network models. For modeling processes as adaptive
networks, some of the parameters (such as connection weights) are handled in a
similar manner as states. For more detailed explanation, see below in Section 3.

A conceptual representation of a temporal-causal network model can be trans-
formed in a systematic and automated manner into a numerical representation of
the model, as described in [25, 26], thus obtaining the following difference and
differential equation for all states Y :

Y (t +∆ t) = Y (t)+ηηηY [cccY (ωωωX1,Y X1(t), . . . ,ωωωXk,Y Xk(t))−Y (t)]∆ t (1)

dY (t)/dt = ηηηY [cccY (ωωωX1,Y X1(t), . . . ,ωωωXk,Y Xk(t))−Y (t)] (2)
The modeling approach enables to take into account theories and findings from any
domain from, for example, biological, psychological, neurological or social sciences,
as such theories and findings are often formulated in terms of causal relations. This
applies, among others, to mental processes based on complex brain processes, which,
for example, often involve dynamics based on interrelating and adaptive cycles. But
equally well it applies to social interaction processes and their adaptive dynamics.
This enables to address complex adaptive phenomena such as the integration of
emotions within all kinds of cognitive processes, of internal simulation and mirroring
of mental processes of others, and dynamic social interaction patterns, as shown in
[26] by a large number of example models.
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3 Modelling Mental Processes by Adaptive Networks
Mental processes can be modeled by temporal-causal networks in an adaptive manner:
characteristics represented by network parameters can change over time as well.
These parameters that can change are modeled in the same way as states. This will
be illustrated here for one specific case: the way in which connection strengths can
change based on Hebbian learning. In Section 4 a similar type of adaptivity will be
illustrated for adaptive network models for evolving social interactions.

Hebbian learning [13], is based on the principle that strengthening of a connection
between neurons over time may take place when both states are often active simulta-
neously (neurons that fire together, wire together); see also Fig. 1. The principle itself
goes back to Hebb [13], but see also, e.g., [11]. In the example model considered here
it is assumed that the strength ωX1,X−2 of the connection from state X1 to state X2 is
adapted using the following Hebbian learning rule, taking into account a maximal
connection strength 1, a learning rate ηηη > 0 and a persistence factor µµµ in the interval
[0,1], and activation levels X1(t) and X2(t) (assumed between 0 and 1) of the two
states involved:

dωX1,X2(t)/dt = ηηη [X1(t)X2(t)(1−ωX1,X2(t))− (1−µµµ)ωX1,X2(t)] (3)

dωX1,X2(t +∆ t) = ωX1,X2(t)+ηηη [X1(t)X2(t)(1−ωX1,X2(t))− (1−µµµ)ωX1,X2(t)]∆ t
(4)

Such Hebbian learning rules can be found, for example, in (Gerstner and Kistler,

Fig. 1: Graphical concep-
tual representation of an
adaptive network for Heb-
bian learning.

2002, p. 406). It will be discussed how this can be modeled by considering the
connection weight ωX1,X2 as a state ΩX1,X2 that changes over time, represented by an
extra node in the network. As a first step this node for the state ΩX1,X2 representing
ωX1,X2 is added and connected; see Fig. 2 for a conceptual representation. This state
is affected by both X1 and X2 due to the learning, so connections from these states
to ΩX1,X2 are incorporated. Moreover a connection from ΩX1,X2 to X2 is used to
represent the effect of the connection strength on X2, and a connection from ΩX1,X2
to itself for persistence. The weights of all these connections are assumed 1; see Fig.
2. As a next step it is explored what combination functions are needed for ΩX1,X2 and
X2 in this new situation depicted in Fig. 2.

First, the combination function for the state ΩX1,X2 is identified, to aggregate
the impacts of X1 and X2 , and ΩX1,X2 on ΩX1,X2 . The difference equation for the
connection weight ωX1,X2 shown in (4) above can be rewritten into:
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Fig. 2: Graphical concep-
tual representation for the
Hebbian learning princi-
ple with state ΩX1,X2 rep-
resenting a dynamic con-
nection weight ωX1,X2 .

ΩX1,X2(t +∆ t) = ΩX1,X2(t)+ηηη [X1(t)X2(t)(1−ΩX1,X2(t))− (1−µµµ)ΩX1,X2(t)]∆ t

= ΩX1,X2(t)+ηηη [X1(t)X2(t)(1−ΩX1,X2(t))+µµµΩX1,X2(t)−ΩX1,X2(t)]∆ t
(5)

On the other hand, according to the temporal-causal network approach using a
combination function cccΩX1 ,X2

(. . .) for state ΩX1,X2 (see equation (1)) it holds:

ΩX1,X2(t +∆ t) = ΩX1,X2(t)+ηηηΩX1 ,X2
[cccΩX1 ,X2

(X1(t),X2(t),ΩX1,X2(t))−ΩX1,X2(t)]∆ t
(6)

So, the speed factor ηηηΩX1 ,X2
can be assumed ηηη , and it follows from equations (5) and

(6) that the combination function cccΩX1 ,X2
(V1,V2,W ) for the new state ΩX1,X2 satisfies

cccΩX1 ,X2
(X1(t),X2(t),ΩX1,X2) = X1(t)X2(t)(1−ΩX1,X2(t))+µµµΩX1,X2(t) (7)

Therefore the combination function for ΩX1,X2 in the description in Fig. 2 is:
cccΩX1 ,X2

(V1(t),V2(t),W ) =V1V2(1−W )+µµµW =V1V2−V1V2W +µµµW (8)
Next consider state X2. Suppose the original situation depicted in Fig. 1 is described
by the combination function cccX2(V1,V2) for X2 which is applied to the impacts
ωX1,X2(t)X1(t) and ωωωX3,X2X3(t) from X1 and X3 on X2 to obtain (based on (1) above)
the difference equation for X2

X2(t +∆ t) = X2(t)+ηηηX2
[cccX2(ωX1,X2(t)X1,ωωωX3,X2X3(t))−X2(t)]∆ t (9)

In the new situation depicted in Fig. 2 the weight ωX1,X2 is represented by a
state ΩX1,X2 with activation values ΩX1,X2(t) the same as the connection weight
values ωX1,X2(t) in the old situation for each t : ΩX1,X2(t) = ωX1,X2(t). Now there
are not two but three states with impact on X2, namely X1 , X3 and ΩX1,X2 . This
requires a new combination function ccc∗X2

(V1,V2,W ) for X2 with three arguments,
which is applied to the impacts X1(t), ωωωX3,X2X3(t) and ΩX1,X2(t) on X2, obtaining
ccc∗X2

(X2(t),ωωωX3,X2X3(t),ΩX1,X2(t)) used in the difference equation for X2

X2(t +∆ t) = X2(t)+ηηηX2
[ccc∗X2

(X2(t),ωωωX3,X2X3(t),ΩX1,X2(t))−X2(t)]∆ t (10)
This impact ccc∗X2

(X2(t),ωωωX3,X2X3(t),ΩX1,X2(t)) is equal to cccX2(ωX1,X2(t)X2(t),ωωωX3,X2X3(t))
in the previous model representation depicted in Fig. 1: ccc∗X2

(X2(t),ωωωX3,X2X3(t),ΩX1,X2(t))=
cccX2(ωX1,X2(t)X2(t),ωωωX3,X2X3(t)). So, recalling that ΩX1,X2(t) =ωX1,X2(t) for all t, the
new combination function can be defined as ccc∗X2

(V1,V2,W ) = cccX2(WV 1,V2). For ex-
ample, if cccX2(V1,V2) is the sum function V1 +V2, then ccc∗X2

(V1,V2,W ) = WV1 +V2
which is a combination of a product and a sum function.
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4 Modelling Evolving Social Interactions by Adaptive Networks
Next an adaptive temporal-causal network model is discussed to model evolving
social interactions based on the homophily principle. According to this principle,
also indicated as birds of a feather flock together, connections are strengthened if
the connected states are similar. For example, when two persons both like the same
type of music, movies, drinks, and parties, they may strengthen their connection. For
the current model the dynamic connection weights ωXA,XB from state XA of person A
to state XB of person B are assumed to change over time based on the principle that
the closer the activation levels of the states of the interacting persons, the stronger
the mutual connections between the persons will become, and the higher the differ-
ence between the activation levels, the weaker they will become. For a conceptual
representation, see Fig. 3. Similar to the case of Hebbian learning in Section 3,

Fig. 3: Graphical conceptual repre-
sentation of an adaptive temporal-
causal network model for the ho-
mophily principle.

ωXA,XB is represented by state ΩXA,XB and the weights of the connections involving
ΩXA,XB are assumed 1: the weights of the connections from XA and XB to ΩXA,XB , and
from ΩXA,XB to XB and to itself. According to the temporal-causal network approach,
the homophily principle may be formalised using the following general format of
equations (1) and (2) above and a combination function cccA,B(V1,V2,W ) that still has
to be determined:
ΩXA,XB(t+∆ t)=ΩXA ,XB(t)+ηηηΩX A ,X B

[cccΩX A ,X B
(XA(t),XB(t),ΩXA ,XB(t))−ΩXA ,XB(t)]∆ t

(11)
dΩXA,XB(t)/dt = ηηηΩXA ,XB

[cccΩXA ,XB
(XA(t),XB(t),ΩXA,XB(t))−ΩXA,XB(t)] (12)

Note that the connection weight ΩXA ,XB increases when cccΩX A ,X B
(XA(t),XB(t),ΩXA ,XB(t))>

ΩXA,XB(t), decreases when cccΩXA ,XB
(XA(t),XB(t),ΩXA,XB(t))<ΩXA,XB(t) and stays the

same when cccΩXA ,XB
(XA(t),XB(t),ΩXA,XB(t)) = ΩXA,XB(t).

Examples of such combination functions can be obtained when a threshold value
τττΩXA ,XB

is assumed such that the connection weight ΩXA,XB becomes stronger when
|XA(t)−XB(t)|< τττΩXA ,XB

(levels of XA and XB close to each other) and weaker when
|XA(t)− XB(t)| > τττΩXA ,XB

(levels of XA and XB not so close to each other). The
following is an example which is linear in XA(t) and XB(t):

cccΩXA ,XB
(XA(t),Xb(t),ΩXA,XB(t)) = ΩXA,XB(t)+ γ(τττΩXA ,XB

−|XA(t)−XB(t)|) (13)
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The factor α can be made dependent on ΩXA,XB(t), to keep values of ΩXA,XB(t)
within the [0,1] interval: α = ΩXA,XB(t)(1−ΩXA,XB(t)). This makes the combination
function

cccΩXA ,XB
(V1,V2,W ) =W +W (1−W )(τττΩXA ,XB

−|V1−V2|) (14)
where V1, V2 refer to XA, XB and W to ΩXA,XB . Thus the following is obtained:
ΩXA,XB(t+∆ t)=ΩXA,XB(t)+ηηηΩXA ,XB

[ΩXA,XB(t)(1−ΩXA,XB(t))(τττΩXA ,XB
−|XA(t)

−XB(t)|)]∆ t (15)
dΩXA,XB(t)/dt = ηηηΩXA ,XB

[ΩXA,XB(t)(1−ΩXA,XB(t))(τττΩXA ,XB
−|XA(t)−XB(t)|)]

(16)
The combination function for XB can be found in the same way as in Section 3 for
X2.

5 Mathematical Analysis of Temporal-Causal Network Models
In this section it is discussed how some types of dynamic properties of adaptive
temporal-causal network models can be analysed mathematically, in particular, sta-
tionary points and monotonicity. A stationary point of a state occurs at some point
in time if for this time point no change occurs: the graph is horizontal at that point.
Stationary points are usually maxima or minima (peaks or dips) but sometimes also
other stationary points may occur. An equilibrium occurs when for all states no
change occurs. From the difference or differential equations describing the dynamics
for a model it can be analysed when stationary points or equilibria occur. Moreover,
it can be found when a certain state is increasing or decreasing, when a state is not in
a stationary point or equilibrium. First a definition for these notions.

Definition (stationary point, increase, decrease, and equilibrium)

• a state Y has a stationary point at t if dY (t)/dt = 0
• a state Y is increasing at t if dY (t)/dt > 0
• a state Y is decreasing at t if dY (t)/dt < 0

The model is in equilibrium a t if every state Y of the model has a stationary
point at t. This equilibrium is attracting when for any state Y , all values of Y in
some neighbourhood of the equilibrium value increase when the value is below the
equilibrium value and decrease when the value is above the equilibrium value.

A question that can be addressed is whether observations based on one or more
simulation experiments are in agreement with a mathematical analysis. If it is found
out that the observations are in agreement with the mathematical analysis, then this
provides some extent of evidence that the implemented model is correct. If they turn
out not to be in agreement with the mathematical analysis, then this indicates that
probably there is something wrong, and further inspection and correction has to be
initiated. Considering the differential equation (2) for a temporal-causal network
model, more specific criteria can be found:

dY (t)/dt = ηηηY [cccY (ωωωX1,Y X1(t), . . . ,ωωωXk,Y Xk(t))−Y (t)] (17)
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where X1, . . . ,Xk are the states with connections to Y . For example, it can be con-
cluded that

dY (t)/dt > 0⇔ cccY (ωωωX1,Y X1(t), . . . ,ωωωXk,Y Xk(t))> Y (t) (18)
In this manner the following criteria can be found.

Criteria for increase, decrease, stationary point and equilibrium
Let Y be a state and X1, . . . ,Xk the states connected toward Y . Then the following
hold

Y has a stationary point at t ⇔ cccY (ωωωX1,Y X1(t), . . . ,ωωωXk,Y Xk(t)) = Y (t)

Y is increasing at t ⇔ cccY (ωωωX1,Y X1(t), . . . ,ωωωXk,Y Xk(t))> Y (t)

Y is decreasing at t ⇔ cccY (ωωωX1,Y X1(t), . . . ,ωωωXk,Y Xk(t))< Y (t)

The model is in equilibrium at t ⇔ cccY (ωωωX1,Y X1(t), . . . ,ωωωXk,Y Xk(t)) = Y (t)
for every state Y

Note that these criteria can immediately be found from a conceptual representation
of a temporal-causal network model, as long as the referred combination function is
known. Using the above criteria no further numerical representation is needed of the
difference or differential equations, for example. From these criteria more insight can
be obtained about the behavior of the network model, in particular which stationary
points are possible for a state in the model, and which equilibria are possible for
the whole model. Sometimes the stationary point equation can be rewritten into an
equation of the form Y (t) = . . . such that Y (t) does not occur in the right hand side.
In Sections 6 and 7 examples of this are shown.

The criteria can also be used to verify (the implementation of) the model based
on inspection of stationary points or equilibria, in two different manners A. and B.
Note that in a given simulation the stationary points that are identified are usually
approximately stationary; how closely they are approximated depends on different
aspects, for example on the step size, or on how long the simulation is done.

A. Verification by checking stationary points through substitution of the values
from a simulation in the criterion

1. Generate a simulation
2. Consider any state Y with a stationary point at any time point t and states

X1, . . . ,Xk affecting it
3. Substitute the values Y (t) and X1(t), . . . ,Xk(t) in the criterion

cccY (ωX1,Y X1(t), . . . ,ωXk,Y Xk(t)) = Y (t)
4. If the equation holds (for example, with an accuracy < 102), then this test

succeeds, otherwise it fails
5. If this test fails, then it has to be explored were the error can be found

Note that this method A. works without having to solve the equations, only substitu-
tion takes place; therefore it works for any choice of combination function. Moreover,
note that the method also works when the values of the states fluctuate, for example
according to a recurring pattern (a limit cycle). In such cases for each state there
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are maxima (peaks) and minima (dips) which also are stationary points to which the
method can be applied; here it is important to choose a small step size as each station-
ary point occurs at one time point only. There is still another method B. possible that
can be applied sometimes; it is based on solving the equations for the stationary point
values by symbolic rewriting. This can provide explicit expressions for stationary
point values in terms of the parameters of the model. Such expressions can be used to
predict equilibrium values for specific simulations, based on the choice of parameter
values. For more details, see [26], Chapter 12, or [28]. This method B. provides more,
but a major drawback is that it cannot be applied in all situations; this depends on the
chosen combination functions; e.g., for logistic functions it does not work.

6 Mathematical Analysis for Hebbian Learning
It can be analysed from the network model from Section 3 when a Hebbian adapta-
tion process has a stationary point and when it increases or decreases. Recall equation
(8):

cccΩX1 ,X2
(V1,V2,W ) =V1V2(1−W )+µµµW (19)

where V1, V2 refer to X1(t), X2(t) and W to ΩX1,X2(t). According to the criteria in
Section 5 a stationary point of ΩX1,X2(t) occurs if and only if:

cccΩX1 ,X2
(X1(t),X2(t),ΩX1,X2(t)) = ΩX1,X2(t) (20)

which for this case is equivalent to the following three rewritten forms
X1(t)X2(t)(1−ΩX1,X2(t))+µµµΩX1,X2(t) = ΩX1,X2(t)

X1(t)X2(t)−X1(t)X2(t)ΩX1,X2(t)− (1−µµµ)ΩX1,X2(t) = 0

X1(t)X2(t) = (X1(t)X2(t)+(1−µµµ))ΩX1,X2(t) (21)
Note that for µµµ = 1 (fully persistent) this reduces to

X1(t)X2(t) = X1(t)X2(t)ΩX1,X2(t) (22)
and for µµµ < 1 it can be rewritten into

ΩX1,X2(t) =
X1(t)X2(t)

1−µµµ +X1(t)X2(t)
(23)

Thus two cases are found:
Stationary points for ΩX1,X2(t) when µ = 1 (fully persistent, no extinction)
When µµµ = 1 a stationary point occurs for ΩX1,X2 if and only if

X1(t) = 0 or X2(t) = 0 and ΩX1,X2(t) has any value
or ΩX1,X2(t) = 1 and X1(t) and X2(t) have any values

Stationary points for ΩX1,X2(t) when µ < 1 (not fully persistent, some extinc-
tion)
For µµµ < 1 a stationary point occurs for ΩX1,X2 if and only if ΩX1,X2 =

X1(t)X2(t)
1−µµµ+X1(t)X2(t)

.
In particular for µµµ < 1 a stationary point occurs if and only if

(a) ΩX1,X2(t) =
1

1+(1−µµµ)/(X1(t)X2(t))
and both X1(t)> 0 and X2(t)> 0

(b) ΩX1,X2(t) = 0 and X1(t) = 0 or X2(t) = 0
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Note that the above conditions show that when both X1(t) > 0 and X2(t) > 0, a
positive stationary point value is found, which is 1 for µµµ = 1, and 1

1+(1−µµµ)/(X1(t)X2(t))
for µ < 1 which is nonzero and < 1. So without extinction the value 1 is possible,
but extinction always makes it < 1. In fact the maximal value of this occurs when
both X1(t) = 1 and X2(t) = 1, in which case the stationary point value is 1

2−µµµ
. It turns

out that this is the maximal value a stationary point can have, and this value is < 1
when µµµ < 1. For example, for µµµ = 0.95, and X1(t) = 1 and X2(t) = 1, the positive
stationary point value for ΩX1,X2(t) is about 0.95. Another example is µµµ = 0.8,
and X1(t) = 1 and X2(t) = 1, in which case the stationary point value is 0.83. In
further analysis of the criteria for increase and decrease it turns out that for given
(positive) values of X1(t) and X2(t) the value of ΩX1,X2(t) increases when it is under
the positive stationary point value and it decreases when it is above this value (the
value is attracting):
Increasing ΩX1,X2 when X1(t)> 0 and X2(t)> 0:

dΩX1,X2(t)/dt > 0⇔ΩX1,X2(t)<
1

1+(1−µµµ)/(X1(t)X2(t))
Decreasing ΩX1,X2 when X1(t)> 0 and X2(t)> 0:

dΩX1,X2(t)/dt < 0⇔ΩX1,X2(t)>
1

1+(1−µµµ)/(X1(t)X2(t))
For comparison to example simulation patterns showing the behaviours analysed
above, see [26], Chapter 12.

7 Mathematical Analysis for the Homophily Principle
In Section 4 it was shown how the homophily principle for evolving social interaction
may be modeled using a combination function (see equation (14))

cccΩXA ,XB
(V1,V2,W ) =W +W (1−W )(τττΩXA ,XB

−|V1−V2|) (24)

In this section it is analysed which stationary points can occur for ΩXA,XB(t), accord-
ing to the approach described in Section 5. For this case the criterion from Section 5
for a stationary point is:

cccΩXA ,XB
(XA(t),XB(t),ΩXA,XB(t)) = ΩXA,XB(t)⇔

ΩXA,XB(t)(1−ΩXA,XB(t))(τττΩXA ,XB
−|XA(t)−XB(t)|) = 0 (25)

Clearly for ΩXA,XB(t) = 0 or ΩX1,X2(t) = 1 one of the left hand side factors in this
condition is 0. In contrast, when 0 < ΩXA,XB(t)< 1 the right hand factor should be 0:

τττΩXA ,XB
−|XA(t)−XB(t)|= 0⇔ |XA(t)−XB(t)|= τττΩXA ,XB

(26)

So, in principle there are three types of stationary points for ΩXA,XB(t).
Stationary points for ΩXA,XB(t)
ΩXA,XB(t) = 0 or ΩXA,XB(t) = 1 or |XA(t)−XB(t)|= τττΩXA ,XB

and ΩXA,XB(t) has any
value
Similarly the following can be found.
Increasing ΩXA,XB(t)
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dΩXA,XB(t)/dt > 0⇔ (τττΩXA ,XB
−|XA(t)−XB(t)|)> 0⇔ |XA(t)−XB(t)|< τττΩXA ,XB

Decreasing ΩXA,XB(t)
dΩXA,XB(t)/dt < 0⇔ (τττΩXA ,XB

−|XA(t)−XB(t)|)< 0⇔ |XA(t)−XB(t)|< τττΩXA ,XB

This shows that for cases that |XA(t)−XB(t)| < τττΩXA ,XB
the connection keeps on

becoming stronger until ΩXA,XB(t) approaches 1. Similarly for cases that |XA(t)−
XB(t)|> τττΩXA ,XB

the connection keeps on becomes weaker until ΩXA,XB(t) approaches
0. This implies that ΩXA,XB(t) = 0 and ΩXA,XB(t) = 1 can both become attracting,
but under different circumstances concerning the values of XA(t) and XB(t). In [26],
Chapter 11, Section 11.7 for such an adaptive network model an example simulation
is shown where indeed the connection weights all converge to 0 or 1, and during this
process clusters are formed of persons with equal levels of their state; see also [24].

8 Discussion
The Network-Oriented Modelling approach based on adaptive temporal-causal net-
works as described here (see also [25, 26]), provides a dynamic modelling approach
that enables a modeller to design high level conceptual model representations in
the form of cyclic graphs (or connection matrices). These conceptual representa-
tions can be systematically transformed in an automated manner into executable
numerical representations that can be used to perform simulation experiments. The
modelling approach makes it easy to take into account on the one hand theories and
findings from any domain from, for example, biological, psychological, neurological
or social sciences, as such theories and findings are often formulated in terms of
causal relations. This applies, among others, to mental processes based on complex
brain networks, which, for example, often involve dynamics based on interrelating
and adaptive cycles, but equally well it applies to the adaptive dynamics of social
interactions. This enables to address complex adaptive phenomena within all kinds
of integrated cognitive, affective and social processes. By using temporal-causal
relations from those domains as a main vehicle and structure for network models,
the obtained network models get a strong relation to the large body of empirically
founded knowledge from the Neurosciences and Social Sciences. This makes them
scientifically justifiable to an extent that is not attainable for black box models which
lack such a relation.

In this paper it was discussed in some detail how mathematical analysis can be used
to find out some properties of the dynamics of a network model designed according
to a Network-Oriented Modelling approach based on temporal-causal networks; see
also [26], Chapter 12, or [28]. An advantage is that such an analysis is done without
performing simulations. This advantage makes that it can be used as an additional
source of knowledge, independent of a specific implementation of the model. By
comparing properties found by mathematical analysis and properties observed in
simulation experiments a form of verification can be done. If a discrepancy is found,
for example, in the sense that the mathematical analysis predicts a certain property
but some simulation does not satisfy this property, this can be a reason to inspect
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the implementation of the model carefully (and/or check whether the mathematical
analysis is correct). Having such an option can be fruitful during a development
process of a model, as to acquire empirical data for validation of a model may be
more difficult or may take a longer time.
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Abstract The lexicons of natural language can be characterized as a network of
words, where each word is linked to phonologically similar words. These networks are
called phonological neighbourhood networks (PNNs). In this paper, we investigate the
extent to which observed properties of these networks are mathematical consequences
of the definition of PNNs, consequences of linguistic restrictions on what possible
words can sound like (phonotactics), or consequences of deeper cognitive constraints
that govern lexical development. To test this question, we generate random lexicons,
with a variety of methods, and derive PNNs from these lexicons. These PNNs are
then compared to a real network. We conclude that most observed characteristics
of PNNs are either intrinsic to the definition of PNNs, or are phonotactic effects.
However, there are some properties—such as extreme assortativity by degree—which
may reflect true cognitive organizing principles.

1 Introduction
In natural languages, sentences are composed of words, which are in turn composed
of strings of symbols referred to as phonemes, which represent the smallest units of
sound that can be used to distinguish words from each other. Many psycholinguistic
theories of spoken word recognition and infant language acquisition rely on a concept
of the phonological similarity of words, termed neighbourhood, which is defined
in terms of the phonemic structure of words. Two words are neighbours of each
other if they differ by the deletion, addition, or substitution of one and only one
segment—that is, an edit distance of one. For example, neighbours of plan include
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Fig. 1 Example phonologi-
cal neighbourhood network
centred around the English
word plan. Note that it is
the sound of a word, not the
spelling, which determines the
phonological neighbours. Note
further that some neighbours
of a word are neighbours of
each other.

pan (deletion of /l/), plant (addition of /t/), and clan (substitution of /k/ for /p/). See
Figure 1 for a visual example.1 The neighbourhood relation is symmetric, intransitive
and anti-reflexive.

For a given lexicon, then, it is possible to construct a complex network to model
phonological neighbourhood relations throughout the language. Phonological neigh-
bourhood networks (PNNs) have been used to study aspects of lexical organization
in several languages [1, 16, 20]. In this paper, we explore the extent to which these
complex network analyses can provide insight into the psychological organization of
human language.

Vitevitch [20] first proposed the use of PNNs to study the phonological aspects of
lexicons. In a PNN, every word in the lexicon is a vertex in a graph, and two vertices
are linked by an edge if a neighbourhood relation obtains between the two words.
This process yields an undirected, unweighted graph, ideal for examination with the
tools of complex network analysis.

Early work on PNNs, in a variety of languages, has demonstrated that these
networks have distinct properties which differ in important ways from other complex
networks studied in the literature [1, 20]. For example, while most complex networks
typically have a giant component which contains around 80–90% of the vertices,
the observed values for PNNs fall between 10% and 65% [1, 16]. PNNs were also
found to be remarkably robust to vertex removal, with the average shortest path
length remaining the same when up to 5% of vertices were removed. Notably, this
effect held regardless of whether vertex removal was at random or in order of degree
[1]. Despite these differences from other networks, the high clustering coefficients
established that PNNs exhibit small world properties.

However, these statistics and examinations rely on comparing the observed net-
works to random networks [14]. While this approach is reasonable for many kinds
of complex networks, it is not an appropriate comparison for PNNs. Unlike other
networks, where vertices exist independently of each other and edges can be made

1 Note that neighbourhood is defined based on the pronunciation of a word, not the spelling. For
instance, while the spelling of the words knee and neat are quite different, the pronunciations are
very similar. The addition or deletion of the /t/ sound will transform knee into neat and vice versa.
Therefore, these words are neighbours. On the other hand, the words tough and though have very

plan

flan
clan

plaque

pan

plans
planned

planner

plant

plane

similar spellings, but their pronunciations—/t2f/ and /DoU/ respectively—are very different. These
words are not neighbours.



Organizing principles of phonological neighbourhood networks 85

or unmade (for example, friendships made or broken, shipping routes established
or abandoned), in a PNN the edges (neighbourhood relations) are intrinsic to the
definition of the vertices themselves (the phonological structure of the words). That
is, because edges exist between two vertices if and only if the two words are phono-
logical neighbours, there are certain graphs which are not possible PNNs.

One such graph is shown in the left of Fig. 2. Here, each vertex is connected
to every other vertex, with two exceptions: vertices 1 and 3 are not connected,
and vertices 2 and 4 are not connected. It not possible for this graph to have its
vertices labelled such that the shortest path from vertex-to-vertex is equal to the
edit distance (Hamming distance) of the vertex labels [9]. In other words, this graph
cannot represent neighbourhood relations between words. On the other hand, the
graph on the right of Fig. 2 is plausibly a PNN, with the mapping 0=cant, 1=can,
2=cat, 3=cab, 4=cap.2 Note that the graphs in Fig. 2 both have the same number of
vertices and edges, but the left one could not be a PNN while the right one could be.

The difference between these graphs is that the graph on the right is addressable,
that is, there exists a vertex labelling schema which satisfies the neighbourhood
relation, while the graph on the left is non-addressable [2]. Addressable graphs
have also been termed `1-graphs, as it can be shown that addressable graphs are
isometrically embeddable into a hypercube [6, 17]. Since the distances along the
edges of a hypercube fall under the definition of an `1 metric, it follows that these
graphs are isometrically embeddable into an `1 metric space [7]. The recognition of
such graphs can be solved in polynomial time [8, 11].

For these reasons, random graphs are inappropriate as comparison cases when
considering PNNs. Currently, it is not easy to tell if results obtained are generalizable
results about language and lexical organization, or if they are simply consequences
of the structure of an addressable graph [10]. It has further been noted that the
statistics of PNNs are very sensitive to the distribution of word lengths within a
lexicon and the number of phonemes in the language’s symbol set [16, 19]. For
example, given n phonemes, the number of possible words is an exponential term of

Fig. 2 Two graphs, both with
the same number of vertices
and edges. The graph on the
left is non-addressable. This
graph could not represent a
PNN. The graph on the right
is addressable. This graph
could be represent a PNN.
Consider the mapping 0=cant,
1=can, 2=cat, 3=cab, 4=cap.
Each vertex is connected to its
phonological neighbours.
2 Other possible mappings include (0=slow, 1=low, 2=sew, 3=go, 4=show); (0=lamp, 1=lamb,
2=lap, 3=lab, 4=lad); (0=gasp, 1=gas, 2=gap, 3=gag, 4=gash); (0=iode, 1=eyed, 2=ode, 3=aid,
4=add) and so on.

0

1 2

34

0

1 2

34
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n, while the number of possible neighbourhood connections is a linear term of n [19].
This fact has consequences for how cross-linguistic comparisons are carried out, as
languages differ in the sizes of their lexicons and their number of phonemes [16].
These difficulties make the use of complex network analysis in the study of PNNs a
complex undertaking.

In this study, we generate random lexicons, rather than random graphs. PNNs
are derived from these random lexicons, guaranteeing that the resulting graphs are
addressable. These simulated PNNs can be compared to real PNNs. In broad terms,
there are two possible outcomes to this investigation:

1. The simulated PNNs are indistinguishable from a real PNN.
2. The simulated PNNs differ from a real PNN.

In the case of (1), we can conclude that alleged properties of the human lan-
guage faculty relating to lexical organization [1] are simply consequences of the
mathematical structure of PNNs. In this regard, the results could shed light on the
hypercube-embeddable graphs, but not on language.

In the case of (2), we can conclude that any areas of difference between the
simulated PNN and the real PNN are due to some organizing principle or cognitive
constraint operating on language. For example, to ensure efficient communication,
the lexicon may be organized to avoid having words which sound very similar [12].

2 Method
To address the question of which properties of PNNs are simply due to their definition
and which are due to linguistic principles, we generated random lexicons, derived
PNNs from these lexicons, and compared the properties of these PNNs to the PNN
of English. The PNN of English we used was derived from the Hoosier Mental
Lexicon [15], a dictionary of American English with phonological transcriptions of
19,320 words, after homophone removal. We refer to this lexicon and PNN as the
‘real English lexicon’ and ‘real English PNN’ to distinguish it from the simulated
(random) lexicons and PNNs that we generated.

2.1 Random lexicons
Each random lexicon had the same size and mean word length (6.35 phonemes), and
used the same inventory of phonemes, as the real English lexicon. Five groups of
random lexicons were generated, differing in the extent to which they approximate the
real English lexicon: uniform random lexicons; Zipfian random lexicons; scrambled
random lexicons; bigram random lexicons; and trigram random lexicons. Each group
consisted of 200 random lexicons.

The simplest group was the uniform random lexicons, which were created by
randomly sampling from the phoneme inventory in a unform manner. Word length
was sampled from a Poisson distribution (with λ = 6.35). In these lexicons, while
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the overall properties of the lexicon (number and length of words) was the same as
that of the real English lexicon, the content of the words resemble what one would
obtain from random typing.

Zipfian random lexicons were created in the same manner, except that the sam-
pling from the phoneme inventory was not uniform. Instead, phonemes were fre-
quency ranked according to a Zipf distribution. That is, given N phonemes, the
probability of phoneme φk, where k ∈ {1, . . . ,N} is given as

p(φk) =
k−1

∑
N
n=1 n−1

.

Phoneme distributions in natural languages are approximately Zipfian [21]; these
lexicons therefore approximate more closely the structure of English than the uniform
random lexicons.

The scrambled random lexicons began with the real English lexicon and scram-
bled the order of the phonemes within each word. This scrambling disrupts the
neighbourhood structure of the words, while preserving the overall phoneme frequen-
cies exactly.

Of these three groups, the uniform random group approximates the average word
length of English; the Zipfian group the average word length and average phoneme
frequency; and the scrambled group matches word length and phoneme frequencies
exactly. An important difference between these groups and the real English lexicon
is that of phonotactics—higher-level generalizations about the combinatoric possi-
bilities of phonemes. The classical example is that neither blick nor bnick are actual
English words, but the former could be a word, while the latter could not. This is
due to a restriction in what consonant clusters English permits at the beginning of
syllables.3

Due to the lack of phonotactics in the randomly generated lexicons, any differences
between them and the real English lexicon could either be due to organizing principles
of lexical storage, or simply a consequence of the fact that phonotactics restrict the
possible words that can appear in a lexicon. To test for this possibility, the bigram
and trigram random lexicon groups were generated.

These random lexicons were generated by creating n-gram models of English
phoneme distributions, where n = 2 for the bigram random lexicons and n = 3 for
the trigram random lexicons. In these models, the probability of a given phoneme
is conditioned on the probability of the preceding n− 1 phonemes. (Kneser-Ney
discounting was applied to smooth the probability space for unobserved forms.)
In this way, the model is able to account for basic distributional facts of English
phonotactics—for example, vowels and consonants tend to alternate; the consonant
cluster ‘thl’ (as in decathlon) is rare, but the consonant cluster ‘str’ (as in string) is
common; and so on. Using this model, a lexicon the same size as the real English
lexicon was generated. Due to the fact that the n-gram models encodes the probability
of individual phonemes, and the ‘end-of-word’ character, these generated lexicons

3 Note that in some languages, like Russian, both blick and bnick are possible words, while in others,
like Japanese, neither are possible words.
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approximate the real English lexicon in terms of phoneme frequencies and mean
word length.

The bigram model yields English-like words, but there are exceptions, for example,
/#nd/, where # represents the beginning of a word. There are no English words that
begin with /nd/.4 This situation arises due to the fact that the model can only ‘see’
two phonemes at a time. The sequence /#n/ (that is, the beginning of a word, followed
by /n/) is a frequent bigram sequence, and so it has relatively high probability;
likewise, the sequence /nd/ is frequent and also has a relatively high probability, and
so therefore there is a chance that the model will output sequences like /#nd/. The
trigram model, on the other hand, is able to see three phonemes at a time, notes that
/#nd/ is not attested in the original lexicon, and accordingly assigns this sequence
an extremely low probability. Thus, the trigram model is more English-like than the
bigram model. Still, phonotactics are considerably more complex than phoneme-level
n-gram probabilities, and the trigram model still produces words which sound quite
un-English-like. The use of complex phonotactic generators to create ‘English-like’
simulated lexicons can help alleviate this problem [12], but such an investigation is
beyond the scope of the current study.

To summarize, in terms of fidelity to English linguistic lexical patterns, these
random lexicon groups are expected to follow the following hierarchy:

uniform < Zipfian < scrambled < bigram < trigram

Comparison of these random lexicons with each other and with the real English
lexicon allows us to determine which observed properties of English are lexically
meaningful. If a property is true of all PNNs, it is likely to be a simple consequence
of the definition of the neighbourhood relation over lexicons, and does not necessarily
reveal anything about language. If a property is true of the real English PNN and the
n-gram PNNs, but not the other random PNNs, it is likely to be a consequence of the
phonotactic patterns of the lexicon—hard limits on what shapes words can take. If a
property is true only of the English PNN but not any of the random PNNs, then it is
likely to be due to a deeper organizing principle of the lexicon.

2.2 Network measures
For each group of PNNs, several network measures were taken.

• Giant component size: the size, as a ratio of the number of vertices in the entire
graph, of the largest connected component.

• Clustering coefficient: the mean clustering coefficient for each vertex in the
entire graph.

• Mean number of neighbours: the mean number of neighbours for each vertex in
the entire graph.

4 Even in borrowed words like Ndebele, a short vowel sound is usually inserted before the /n/.
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• Assortativity by degree [13]: the correlation coefficient of the degree of a vertex
with that of its neighbours, averaged over the entire graph. This measures the
extent to which highly-connected words cluster together.

• Shortest path: the average shortest path length for all pairwise comparisons.
Vertices which are not connected are ignored, essentially yielding a grand mean
of each connected component weighted by the number of vertices in each com-
ponent.

2.3 Robustness to vertex removal
To evaluate the relative robustness of each PNN, vertex removal was performed.
A proportion of vertices were removed, and the average shortest path of the graph
was measured. The procedure was then repeated with a larger proportion of vertices.
This procedure allows us to examine the change in the robustness of the network as
successively more vertices were removed.

Two vertex removal methods were employed: a random method, where vertices
were removed at random; and a targeted method, where vertices were removed in
decreasing order of degree. That is, the word with the most neighbours was removed
first, the word with the second most was removed second, and so on. We tested
removal proportions from 0 to 0.05, in 21 equally-spaced steps. Two measures of
network robustness were used: giant component size and average shortest path. We
follow convention in assuming that larger giant component size and smaller shortest
path represent more robust networks.

3 Results
Table 1 summarizes the results for the real English PNN and of the five groups of
random PNNs.

3.1 Overall patterns
For giant component size, clustering coefficient, and mean number of neighbours,
the statistics obeyed the following hierarchy:

uniform < Zipfian < scrambled < bigram ≈ trigram ≈ English

That is, the n-gram PNNs were very similar to the real English PNN, while the
other random PNNs had lower values as a function of their projected similarity to
English. Nevertheless, while the other random PNNs were not similar to English,
their statistics do indicate some small-world properties, as previously reported [1, 20].

The size of the real English PNN giant component is still smaller than most
scale-free networks studied in the literature [14]. The fact that the real English
PNN regardless has the largest giant component of all the PNNs suggests that the
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English lexicon has clusters of highly-connected words [18]. For this to happen, the
lexicon must employ a large degree of re-use of common elements and sequences
of phonemes. It has been theorized that such re-use is beneficial for the developing
lexicon in infant and child language acquisition [3], and aids in the processes of
speech production and perception in adults [4, 5].

All the PNNs examined are assortative by degree: words with many neighbours
tend to cluster together. Assortativity was higher for the n-gram random PNNs than
the other random PNNs, and it was highest of all for the English PNN. Taken together,
these results suggest that the property of assortativity in general is intrinsic to PNNs,
but that it is enhanced by the presence of phonotactics, and enhanced further by
unknown lexical organizational constraints.

The real English PNN had neither the longest nor the shortest mean shortest path
length. This value does not appear to readily distinguish the real English PNN from
the random PNNs, nor does it distinguish the different random PNNs from each
other.

Table 1: Summary statistics for the real English PNN and the five groups of random
PNNs. Standard deviations included in parentheses. GC: giant component; Clust.:
clustering; Sh.: shortest.

GC size Clust. coeffi-
cient

Mean # neigh-
bours

Assortativity Sh. path

Uniform .023
(.002)

.009 (.001) 0.108 (0.010) .540 (.045) 6.032
(0.334)

Zipfian .100
(.003)

.034 (.002) 0.628 (0.032) .240 (.021) 4.835
(0.073)

Scrambled .167
(.002)

.046 (.001) 0.710 (0.010) .427 (.019) 7.057
(0.091)

Bigram .286
(.004)

.106 (.002) 2.604 (0.050) .459 (.009) 5.242
(0.038)

Trigram .371
(.005)

.138 (.002) 3.018 (0.055) .538 (.008) 6.432
(0.068)

English .320 .117 2.675 .643 6.991

3.2 Vertex removal
The patterns of robustness to vertex removal are shown in Fig. 3 for giant component
size, and Fig. 4 for average shortest path length. For all groups of PNNs, random
vertex removal does not appear to influence giant component size, while targeted
vertex removal leads to a decline in giant component size. However, it can be seen
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that the fall is very sharp for the uniform, Zipfian, and scrambled PNNs (rapidly
reaching zero), while the slope is much gentler for the bigram, trigram, and real
English PNNs.

The same pattern is observed for the shortest path length: no change for random
removal, rapid increase for targeted removal for the uniform, Zipfian, and scrambled
PNNs, and gentle increase for targeted removal for the bigram, trigram, and real
English PNNs. After a point, the shortest path lengths for the uniform, Zipfian, and
scrambled PNNs fall; this is a consequence of the rapid fragmenting of the graph
into many isolated islands, and does not reflect an increase in robustness. (Note that
the falls coincide with the giant component size approaching zero.)

These results demonstrate that, while the real English PNN is remarkably robust
to both random and targeted vertex removal [1], the same is true of the bigram and
trigram random PNNs. The observed robustness is therefore not necessarily due to
an organizing principle of lexical structure, but phonotactic limitations on possible
words.

Fig. 3: Giant component size for the five random groups of PNNs, plus the real
English PNN, given two vertex removal methods, plotted as a function of the propor-
tion of vertices removed. Red circles depict values for random vertex removal; blue
triangles depict values for targeted vertex removal.
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Fig. 4: Shortest path lengths for the five random groups of PNNs, plus the real English
PNN, given two vertex removal methods, plotted as a function of the proportion of
vertices removed. Red circles depict values for random vertex removal; blue triangles
depict values for targeted vertex removal.

4 Discussion
For both the real English PNN and the random PNNs, the clustering coefficients
were relatively high, confirming the assertion that PNNs have small-world properties
[1]. However, as this was observed for the random PNNs too, it would appear to
be a property intrinsic to the definition of a PNN, and therefore not necessarily
psycholinguistically meaningful.

In terms of giant component size and mean number of neighbours, the real English
PNN was midway between the bigram and trigram random PNNs, suggesting that
these properties are due to phonotactics rather than any deeper constraints which
may modulate the development of the lexicon.

However, where the real English PNN stood out from the random PNNs was
in assortativity by degree. While all the PNNs were assortative, the real English
PNN was the most of all. It is possible that this high level of assortativity aids in
lexical retrieval by limiting the spread of activation to irrelevant candidate words in
the process of speech perception [20]. However, the mechanisms by which the real
English PNN obtains this high level of assortativity is unknown.

Finally, the vertex removal analysis demonstrated that while the real English
PNN and the n-gram PNNs were very robust to targeted vertex removal, the other
random PNNs rapidly lost robustness. In this regard, the non-n-gram random PNNs
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are similar to scale-free networks, in that the mean shortest path length rapidly
increases upon targeted vertex removal [14]. This finding suggests that the robustness
observed by [1] is not necessarily due to a particular cognitive constraint on lexical
organization, but a consequence of phonotactics.

5 Conclusion

With a novel method for generation of random PNNs, we have shown that some
properties of PNNs—such as small world properties, small giant component size,
and assortativity by degree—are due to the definition of the neighbourhood relation
that defines PNNs, rather than properties of language per se. Others properties are
common to the real PNN and n-gram PNNs, which simulate the phonotactic patterns
of natural language. For example, the n-gram PNNs are indistinguishable from the
real PNN in terms of giant component size, clustering coefficients, and mean number
of neighbours, and all are equally robust to vertex removal. These properties are
likely due to phonotactics, rather than the definition of the neighbourhood relation or
any underlying cognitive constraints.

A promising avenue for further study is the strong assortativity observed on the
real PNN relative to the random PNNs, suggesting that there could be principles
and mechanisms governing the structure of the lexicons of human languages which
enhance the assortativity of the network. Whether these principles operate over
milliseconds (i.e. they are caused by patterns of cognitive processing) or generations
(i.e. they are caused by patterns of cultural evolution) is a promising question for
future research. Replicating these results for languages other than English is also a
crucial step in establishing the true nature of PNNs.
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Abstract Does co-editing of Wikipedia articles reveal users dominating others? Do
these dyadic dominance orderings (if any) lead to a global linear hierarchy among
contributing users? In this article we claim that dominance (respectively deference) is
revealed by users undoing (respectively redoing) edits of others. We propose methods
to turn the history of Wikipedia pages into a dynamic multiplex network resulting
from three types of interaction events: dyadic dominance, dyadic deference, and
third-party assigned dominance ties. We analyze various local temporal patterns for
the different types of ties on a sample of page histories comprising 12,719 revisions
by 7,657 unique users. On the dyad level we analyze whether two users tend to
agree on a dominance order among them or whether dominated users tend to fight
back. On the neighborhood level we analyze various degree effects including whether
dominant users tend to dominate in the future and whether subordinate users tend
to get dominated. On the triad level we analyze whether users have a preference for
transitive closure over cyclic closure of dominance ties. These dynamic patterns shed
light on the micro processes that can foster or impede the emergence of a global
linear hierarchy.

1 Introduction
The formation of dominance hierarchies is a universal pattern in many human and
non-human societies. For instance, experiments with domestic chicken [5, 15] re-
vealed that interaction among two individuals results with overwhelming probability
in a clearly dominant and a clearly subordinate one, that dominant (respectively
subordinate) individuals tend to dominate (respectively get dominated by) others,
and that dominance networks of several individuals tend to be transitive and cycle-
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free. Experiments on dominance among humans (often denoted by terms like status,
reputation, prestige, or power) have been performed with small groups (compare
[6] and references therein) but empirical studies on hierarchy formation in larger
and non-artificial human groups are rare. Collaboration in Wikipedia provides an
opportunity to study large-scale, longitudinal, and completely observed data on hi-
erarchy formation in task-oriented human groups. Analyzing hierarchy formation
is relevant for understanding Wikipedia since, as any production community, it has
to solve the problems of coordination and control. Moreover, acquired high or low
status might be a primary source of motivation or frustration of users [18]. However,
this paper does not attempt to determine the consequences of successful or failed
hierarchy formation but rather analyzes the micro-processes that foster or impede the
formation of a global linear hierarchy.

Contributions. In this paper we propose methods to turn the histories of Wikipedia
pages into sequences of three types of timestamped and weighted interaction events:
dyadic dominance, dyadic deference, and third-party assigned dominance ties. Dyadic
dominance ties result from undoing edits and are tentatively interpreted as user A
claiming: “I (A) dominate you (B).” Dyadic deference ties result from redoing edits
and are tentatively interpreted as A claiming: “You (B) have high status.” Finally,
third-party assigned dominance ties result from user C favoring A’s edits over B’s
edits and are tentatively interpreted as C claiming: “A dominates B.” Thus, the
difference between dyadic dominance and third-party dominance is whether the
dominance from A to B is claimed by A or by a third actor C.

We turn these events into a dynamic multiplex network, encoding past interaction
among users. Crucially, we aggregate not only the type and weight of events that are
actually observed but normalize by the potential for such events. We analyze how
a tie’s embedding in the network of past events influences the probability of future
typed events on it (see Figure 1 for details). This analysis tests the validity of the
tentative interpretation of events and reveals which of these types are appropriate or
inappropriate for uncovering dominance among users.

2 Background and related work on hierarchy formation and
Wikipedia research

Linearity of hierarchies. Dominance hierarchies are universal in groups of many
non-human and human species, e. g., [2, 5, 15]. This tendency to form linear hierar-
chies has often been attributed to advantages in the group’s fitness (cf. [2, 17]); an
interesting perspective for our topic: can the success or failure of task-oriented online
communities be explained by the (in-)ability to form a hierarchy? Whatever the
hypothetical causes or consequences of hierarchy formation, empirical tests of these
need ways to assess the degree of linearity in the hierarchical structure of a group.
Indices for linearity that have been defined for tournament graphs (i. e., graphs in
which every undirected dyad {A,B} has a dominant and a subordinate node), such as
Landau’s h or Kendall’s K, have been shown to be inappropriate for sparse networks
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[16]. Global hierarchy indicees for sparse graphs exist (e. g., [14]); alternatively,
it has been proposed to measure the linearity of sparse dominance graphs via the
relative frequencies of small subgraphs, most notably transitive triads (pointing to
linearity) and cyclic triads (pointing to non-linearity) [16, 17].

In this paper we will also consider local configurations but we stress two differ-
ences to the two last-mentioned papers. First, we are not analyzing networks of stable
dominance ties but dynamic networks of relational events. Thus, instead of counting
configurations, we model the probability of current events on a dyad (A,B) as a
function of how (A,B) is locally embedded into the network of past events. Second,
in networks resulting from the co-editing among Wikipedians there is no reason to
assume a priori that reciprocated dominance ties are rare. This marks a considerable
difference to, say, pecking-networks among chicken where dominance ties are rarely
reverted [5]. In Wikipedia, anecdotal evidence, such as the term “edit war” or the
“three-revert rule1”, suggests that at least some users do not accept it when their edits
are undone but have a tendency to fight back. Therefore we must start our analysis
not with analyzing types of triangles or stars but on the lower dyadic level. Figure 1
illustrates the different network effects considered in this paper.

Fig. 1: Local configurations of past dominance events (light gray) explaining future
dominance on the tie from A to B (dark gray). A plus sign (+) indicates a hypothetical
increase in the probability; a minus sign (-) indicates a hypothetical tendency for
decreased dominance probability on (A,B). All of these hypotheses are derived from
the assumption that dominance ties point from higher to lower in the hierarchy. Note
that the ties are not binary but have weights between zero and one, as explained in
Sect. 3.

Wikipedia research. Wikipedia2 is an open, Web-based project to create a user-
generated encyclopedia using wiki software [12]. Launched in 2001, Wikipedia is

1 https://en.wikipedia.org/wiki/Wikipedia:Edit_warring
2 www.wikipedia.org
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one of the Top-10 most visited websites worldwide3 and is the largest and most
popular general reference work on the internet. Its societal relevance, together with
the free availability of its complete database, made Wikipedia also a popular case
for empirical research and here we can only discuss some of the most closely
related previous work. Reputation systems for Wikipedians have been proposed,
e. g., in [1, 8]. It has been shown, among others, that contributions of users with low
reputation are more likely to be undone in the future; this finding corresponds to
the hypothesized effect of INDEGREE TARGET in the notation from Figure 1. Other
possible patterns in the Wikipedia edit networks are, however, not tested in these two
papers, but the largest difference is that we do not seek to define a global reputation
index for users but systematically evaluate dynamic local patterns that can foster or
hinder the emergence of a linear dominance hierarchy. Event sequences (compare
[4]) resulting from co-editing Wikipedia articles are analyzed in [7, 9] but none
of these papers is specifically about dominance among users (nor about status or
reputation of users). Signed networks (that is, networks with positive and negative
ties) have been defined resulting from co-editing articles ([3]), from votes for or
against requests for adminship ([11]), or from both ([13]). Subsequently, these three
papers analyze triadic or global patterns confirming or contradicting balance theory
and/or status theory in these signed networks. Adding to these previous papers, we
evaluate more systematically the consistency of local dynamic patterns with linear
hierarchy formation on the dyad level, the neighborhood level (degree effects), and
the triadic level. As it has been argued above and will be empirically shown below,
the formation of linear hierarchies can be challenged not only with triads but already
at a lower level. Last but not least, to the best of our knowledge our paper is the
first that also considers third-party assigned dominance ties in which a user C states
a dominance order between two different users A and B. The distinction between
dyadic dominance and third-party dominance is highly important, since—as we will
show in this paper—the latter type of dominance ties is more consistent with linear
hierarchy formation.

3 Dominance, deference, and third-party dominance
Edit events. We propose to compute relational events expressing dominance, defer-
ence, and third-party dominance by successively comparing the text of subsequent
revisions of the same Wikipedia article in a similar way as in previous work, e. g.,
[1, 3, 8, 13]. As in these papers, we determine for each revision which part of the text
is newly added, which is deleted, and which previously deleted text is restored by
reverting a deletion. As in previous work, we do not treat it as a text modification if
large parts of the text (complete sentences in our case) are just moved or duplicated.
As it is usual, we consider a sequence of consecutive revisions by the same user as
one revision whose text is that of the last one in the sequence. Authorship of text is
maintained at the word level. Note that the same word can appear in different places

3 http://www.alexa.com/topsites

http://www.alexa.com/topsites
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in the text and these different instances can have different authors. Augmenting the
computation of edit events proposed in [3], we encode the user interaction resulting
from it in a more complete way, as explained in the following.

For each word w in the text of each revision we maintain pointers to three poten-
tially different users playing different roles with respect to w:

[author(w),deleter(w),restorer(w)] .

Here author(w) is the author who originally added the word w. This pointer is set
at the revision when the word is added and is never changed afterward. The pointer
deleter(w) gives the last user who deleted the word. It points to nil when the
word is originally added (indicating that no one deleted it so far) and is updated
whenever the word is deleted. The pointer restorer(w) gives the last user who
added or restored the word. It is set to the author when the word is originally added
but, in contrast to author(w), the last restorer of a word can change over time when
a word is restored after being deleted.

Adding a word, thus, assigns the author of it but creates no interaction events.
Interaction events arise when a word is deleted or restored as defined in Figure. 2.
Note that we generate a dyadic event only if active (i. e., the user who performs
the revision) is different from the target of the event and we generate a third-party
dominance event only if the active user, the source, and the target are three pairwise
different users.

Fig. 2: Edit events resulting from the deletion of a word (left) and a word being
restored (right). Solid lines encode dyadic deference events by which the active user
re-does the target user’s edit. Dashed lines encode dyadic dominance events by which
the active user makes the target user’s edit undone. Dotted lines encode third-party
dominance assignments by which the active user re-does the source user’s edit that
has been made undone by the target user. After deleting a word w the user active
becomes deleter(w) and after restoring w user active becomes restorer(w).
Note that author(w) is only set when w is originally added and does never change
again.

The event potential. While iterating over the revisions of a page we do not only
consider events that happen but also the potential for such events. More precisely,
we keep track for each user B and for each of the dyadic event types x (that is, dyadic
dominance and dyadic deference) how many events of type x can have target B.

author
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author
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Likewise, for each ordered pair of different users (A,B) we keep track of the potential
for third-party dominance events which a user C (different from A and from B) can
assign to the dyad (A,B).

The network of past events. While iterating over the sequence of revisions of a
page, we successively update six functions (called dyad-level attributes) defined
on ordered pairs (A,B) of different users. Three of these attributes count events of
the three types that actually happened on (A,B) and three of them (the cumulative
potentials) add up the number of events (of the three types) that could have happened
on (A,B) at the edit times.

Finally, to describe the past interaction on dyads (A,B) we consider, separately for
the three event types, the ratio of actually observed events divided by the cummulative
potential for such events.4 These ratios are between zero and one (including these
borders) and can be interpreted as probabilities: the past dyadic dominance ratio
on (A,B) is the probability that a randomly chosen word of B that could have been
made undone by A during the history of the page is actually undone by A. Similar
interpretations apply to past dyadic deference ratio and past third-party dominance
ratio. Henceforward, when we speak of past dominance, deference or third-party
dominance, we refer to these ratios.

4 Statistical model
Outcome variables. Whenever a revision r is performed by a user A, then A has
a certain potential to initiate events of the two dyadic types to various target users
B and A has a certain potential to initiate third-party dominance events on various
dyads (B,C).5 The three outcome variables that we consider are the ratios of the
number of events actually performed in r divided by the respective potential for
such events. Thus, for each event type we use a binomial model where instances
are words that can potentially be changed, a “success” instance is such a word that
is actually changed in the revision, and a “failure” instance is such a word that is
left unchanged. The probability that a potential change occurs is specified in logistic
regression models with explanatory variables introduced below.

Explanatory variables. When modeling the probability of change events that could
happen in revision r, we use only information about past interaction resulting from
revisions that happened strictly before r. These explanatory variables are defined by
combinations of three dyadic attributes (past dyadic dominance ratio, past dyadic
deference ratio, and past third-party dominance ratio) on the configurations shown in
Figure 1. Specifically, for the degree variables we add up the attribute values of all
in-coming respectively out-going dyads incident to source respectively target. For the
transitive triad variables we sum over all users C (different from A and B) the product

4 Here we resolve 0/0 to be equal to 0, since no event of that type could have happened so far on
such a dyad.
5 Here we speak of the potential for events in revision r. Note the difference to the cumulative
potential used for defining tie-weights in the network of past events.
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of the attribute value on (A,C) with the value on (C,B) and take the square-root of
this sum. For the cyclic triads we consider the dyads (C,A) and (B,C) accordingly.

To obtain better interpretable explanatory variables we divide them by their
standard deviation. With this normalization it is easier to compare the effect sizes of
the various variables. Since average probabilities are very close to zero (cf. Table1),
we can interpret the estimated parameters in the following intuitive (not formally
correct) way: if we estimated a parameter θ for the variable x when modeling the
dyadic dominance probability p, then (hypothetically) increasing x by one standard
deviation (that is by 1) multiplies the probability p by exp(θ).

Empirical data. We analyzed the histories of a sample of ten articles from the
English-language Wikipedia, randomly chosen from the set of articles that have at
least 1000 revisions.6 In March 2016 there are 56,042 articles (pages in the main
namespace that are not redirects) that have at least a thousand revisions. (Altogether
there are about 5 million articles; the mean number of revisions per article is just
86.) The ten sampled articles have together 12,719 revisions (disregarding successive
revisions by the same user) performed by 7,657 different users. We note that our

Table 1: Number of instances and non-null instances in the analyzed data.

dyadic dominance dyadic deference third-party dominance

no. potential dyads 3,126,047 1,753,160 4,852,052
no. non-null dyads 37,823 21,411 21,335
dyad-density 1.21% 1.22% 0.44%

no. potential words 361,673,769 359,365,077 348,420,292
no. changed words 1,738,728 785,233 783,190
word-change density 0.48% 0.22% 0.23%

number of observations is not just ten since the unit of analysis is not the page but
the dyadic event. Table 1 gives the number of dyad-timepoints on which there could
have happened an event of the various types, the number of actual dyadic events,
the number of words that could have been modified, and the number of actual word
modifications. The approach to analyze 10 random pages (rather than just one) has
been chosen since it reduces the likelihood of accidentally analyzing a page with an
exceptional structure. The restriction to pages with at least a thousand revisions is
motivated by the consideration that hierarchy formation takes some time and also a
number of users that is not too small. What blows up the runtime of our analysis is
that we consider not only the actually occurring events but also those that could have
happened. However, we strongly believe that this is necessary since an observation
such as “user A deleted 10 of user B’s words” is meaningless if we disregard how

6 These turned out to be the pages: Balika Vadhu; Ganymede (moon); Greed; Jay Park; List of
Hollyoaks locations; Mothra; Pea; Shiv Sena; Swimsuit; and The Third Man.
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many of B’s words user A did not touch and/or if we disregard all the other users
with which A potentially could have interacted but did not. The results reported in
the next section have been estimated to maximize the joint likelihood of all events
from all sampled pages.

5 Results and discussion
Dyad-level effects. Table 2 reports logistic regression parameters explaining the
probability of dyadic dominance by past interaction on the same and the reverse dyad.
In the first model, we observe that past dyadic dominance on (A,B) increases the
probability of future dyadic dominance on (A,B); thus, actors continue to dominate
their subordinates. However, we see that past dyadic dominance on the reverse dyad
(B,A) also increases the probability of dyadic dominance on (A,B); thus, subordinate
actors have a tendency to fight back which is a hindrance to hierarchy formation.
Likewise, we see that past deference on (A,B) reduces the probability of dyadic
dominance on (A,B) (as expected). However, past deference on (B,A) also reduces
the probability of dyadic dominance on (A,B); this makes the interpretation that
deference goes from lower to higher in the hierarchy questionable.

Table 2: Explaining dyadic dominance by past dyadic dominance and dyadic defer-
ence on the same dyad.

dyad model dyadic inertia dyadic reciprocity

(Intercept) −5.427 (0.001)∗∗∗ −5.427 (0.001)∗∗∗ −5.427 (0.001)∗∗∗

dyadic dominance inertia 0.222 (0.000)∗∗∗ 0.115 (0.000)∗∗∗

dyadic deference inertia −0.288 (0.002)∗∗∗ −0.071 (0.003)∗∗∗

dyadic dominance reciprocity 0.060 (0.000)∗∗∗ −0.064 (0.000)∗∗∗

dyadic deference reciprocity −0.093 (0.000)∗∗∗ 0.030 (0.001)∗∗∗

undirected dyadic dominance 0.127 (0.000)∗∗∗ 0.262 (0.000)∗∗∗

undirected dyadic deference −0.243 (0.001)∗∗∗ −0.321 (0.003)∗∗∗

AIC 17,531,308.231 17,531,308.231 17,531,308.231
Num. obs. 3,126,047 3,126,047 3,126,047

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Looking more closely at the parameter sizes, we see that a dyadic dominance
event on (A,B) has two effects. First it increases the future hostility (likelihood
of dominance events) on (A,B) and on (B,A). This is consistent with a structural
balance interpretation of negative ties (and inconsistent with a status interpretation)
and has also been found by Leskovec et al. [11] who analyzed voting behavior of
Wikipedians. A second effect, however, is that a dyadic dominance event on (A,B)
increases the future dominance on (A,B) more than on (B,A), thereby increasing
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the relative dominance of (A,B) over (B,A). This second effect becomes more
transparent if we control for the increase in dominance activity on both dyads (A,B)
and (B,A) by defining a variable undirected dyadic dominance which is the sum of
dyadic dominance inertia and dyadic dominance reciprocity (normalized to standard
deviation one). In the second and third model in Table 2 we see that, controlling for
the undirected increase in dominance activity, a dominance event on (A,B) increases
the future dominance probability on (A,B) more than expected and that it increases
the future dominance probability on (B,A) less than expected. A similar result is
obtained for dyadic deference, where a deference event on (A,B) decreases the future
dominance probability on (A,B) more than expected and that on (B,A) less than
expected. We note that the three models in Table 2 are equivalent since their variables
are linear transformations of each other.

Summarizing this, a dyadic dominance event on (A,B) has two effects: a structural
balance effect increasing the hostility level on the undirected dyad {A,B} and a
hierarchical effect that shifts the relative dominance towards the direction (A,B). It
is likely that the experimentally found anti-reciprocity of dominance events among
chicken (e. g., [5, 15]) is due to the small network size. In larger and therefore sparser
networks it is likely that reciprocation of acts of dominance, albeit rare, would occur
with a higher probability than the low baseline probability of interacting at all.

We make similar findings when estimating the probability of dyadic deference
by dyadic effects (with the understanding that deference hypothetically points from
lower to higher). These results are not reported in this paper.

Table 3: Explaining third-party dominance by past third-party dominance on the
same dyad.

dyad model dyadic inertia dyadic reciprocity

(Intercept) −6.196 (0.001)∗∗∗ −6.196 (0.001)∗∗∗ −6.196 (0.001)∗∗∗

tp dominance inertia 0.379 (0.000)∗∗∗ 0.391 (0.001)∗∗∗

tp dominance reciprocity −0.022 (0.001)∗∗∗ −0.740 (0.001)∗∗∗

undirected tp dominance −0.025 (0.001)∗∗∗ 0.814 (0.001)∗∗∗

AIC 9,721,545.325 9,721,545.325 9,721,545.325
Num. obs. 4,852,052 4,852,052 4,852,052

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3 reports logistic regression parameters explaining the probability of third-
party dominance by past interaction on the same and the reverse dyad. In contrast
to dyadic dominance, we see that third-party dominance is clearly anti-reciprocal:
controlling for the undirected increase in the event probability is here not necessary
although it strengthens the anti-reciprocity. This means that if a different user C states
that A dominates B, then the probability that C (or any other user different from A and
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B) later reverses this order decreases. Thus, third-party assigned dominance is more
consistent with the hierarchical interpretation than dyadic dominance. Apparently
bystanders can judge the dominance order among A and B more reliably than A or B
themselves.

Neighborhood-level effects (degree effects). We estimated models explaining the
probability of dyadic dominance on (A,B) by past interaction on edges incident to
A (source) and B (target). For space limitations, the estimated parameters are not
reported in this paper and we will only summarize the main findings. We find some
effects consistent with the hierarchical interpretation, such as a positive effect of
dominance outdegree source and dominance indegree target. However, we can also
find effects inconsistent with this interpretation, such as a positive effect of dominance
outdegree target (which implies that dominant users tend to get dominated). As in
the case of dyad effects, the effects of the degree variables (for dominance and for
deference) become consistent with the hierarchy-interpretation once we control for
the undirected degrees. We also controlled for the dyadic effects from Table 2 in the
degree model which did not change the findings qualitatively. We further estimated
the probability of dyadic deference events by degree effects. These findings differ
qualitatively from those obtained for the dominance probability (whether or not we
control for the undirected degrees) and make the interpretation of dyadic deference
pointing from subordinate to dominant more questionable.

We also estimated degree-models for third-party dominance (not reported in this
paper). Most effects in this model are consistent with the hierarchical interpretation
of third-party dominance ties. The exception is a positive effect of indegree source
which suggests that subordinates are more likely to dominate in the future. As
for dyadic dominance, controlling for the undirected degrees brings all effects in
accordance with the hierarchical interpretation. Controlling for the dyadic effects
from Table 3 in the degree model yields qualitatively the same findings.

Triad-level effects. Table 4 reports logistic regression parameters explaining the
probability of dyadic dominance on (A,B) by past interaction on two-paths of
the form (A,C),(C,B), forming a transitive triad, and on two-paths of the form
(B,C),(C,A), forming a cyclic triad. The first model reveals that the embedding of
(A,B) in a dominance two-path increases the probability of a dominance event on
(A,B), irrespective of whether the resulting triad is transitive or cyclic. Controlling
for the increase in dominance activity caused by a dominance two-path in any di-
rection (dominance triplet) reveals a preference for transitive over cyclic closure of
dominance ties—consistent with the formation of a linear hierarchy. Similar effects
result from two-paths of deference ties. Controlling for dyad effects and degree
effects (not reported in this paper), however, does not keep these effects stable.

Table 5 reports logistic regression parameters explaining the probability of third-
party dominance on (A,B) by past interaction on two-paths of the form (A,C),(C,B),
forming a transitive triad, and on two-paths of the form (B,C),(C,A), forming a cylic
triad. The first model reveals that indirect third-party dominance ties decrease the
probability of third-party dominance on the dyad (A,B) irrespective of the direction of
these two-paths. For transitive triplets, this contradicts the hierarchical interpretation
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Table 4: Explaining dyadic dominance by past dyadic dominance and dyadic defer-
ence on transitive and cyclic two-paths.

triad model transitive triad cyclic triad

(Intercept) −5.264 (0.001)∗∗∗ −5.264 (0.001)∗∗∗ −5.264 (0.001)∗∗∗

transitive dominance triplet 0.149 (0.001)∗∗∗ 0.049 (0.001)∗∗∗

transitive deference triplet −0.362 (0.002)∗∗∗ −0.045 (0.003)∗∗∗

cyclic dominance triplet 0.027 (0.000)∗∗∗ −0.013 (0.000)∗∗∗

cyclic deference triplet −0.135 (0.001)∗∗∗ 0.019 (0.001)∗∗∗

dominance triplet 0.105 (0.001)∗∗∗ 0.156 (0.001)∗∗∗

deference triplet −0.355 (0.002)∗∗∗ −0.405 (0.003)∗∗∗

AIC 18,958,234.850 18,958,234.850 18,958,234.850
Num. obs. 3,126,047 3,126,047 3,126,047

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5: Explaining third-party dominance by past third-party dominance on transitive
and cyclic two-paths.

triad model transitive triad cyclic triad

(Intercept) −5.403 (0.001)∗∗∗ −5.403 (0.001)∗∗∗ −5.403 (0.001)∗∗∗

transitive tp dominance triplet −0.024 (0.001)∗∗∗ 1.330 (0.002)∗∗∗

cyclic tp dominance triplet −1.792 (0.003)∗∗∗ −1.760 (0.003)∗∗∗

tp dominance triplet −2.259 (0.004)∗∗∗ −0.040 (0.001)∗∗∗

AIC 10075300.988 10,075,300.988 10,075,300.988
Num. obs. 4,852,052 4,852,052 4,852,052

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

but is consistent with a structural balance interpretation of dominance ties (an enemy
of an enemy is not an enemy). When we control for the dominance-reducing effect
of undirected two-paths, we find a preference for transitive over cyclic closure
(consistent with the hierarchical interpretation). As for dyadic dominance, controlling
for dyad and degree effects (not reported in this paper) does not keep these triadic
effects stable.

6 Conclusion
In this paper, we proposed methods to derive three types of interaction events from
co-editing Wikipedia articles. We analyzed whether local dynamic patterns for
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these events are consistent with a linear dominance hierarchy among the users.
The analysis in this paper revealed that past events can have two distinct effects
on future interaction: on one hand on the frequency of events on the undirected
dyad {A,B} and on the other hand on the relative dominance of (A,B) over (B,A).
The effects on the undirected dyads are often more consistent with a structural
balance interpretation of dominance events as revealing negative ties. The effects
on the directed dyads are often more consistent with a hierarchical interpretation of
dominance events. This finding is similar to one made in [11] where voting behavior
among Wikipedians was analyzed. We also showed that the effect on the event
frequency can obfuscate effects on the hierarchical ordering. This finding is similar
to one made in [10] where effects on the interaction frequency were separated from
effects influencing the sign of ties. The analysis in our paper also revealed that
the three different types of events show different levels of consistency with linear
dominance hierarchies. Most notably, third-party assigned dominance was the only
event type that is anti-reciprocal, irrespective of whether we control for a change
in the interaction frequency or not. On the other hand, dyadic deference was the
most inconsistent with the hierarchical interpretation. A promising approach for
future research is to link patterns of (failed or successful) hierarchy formation with
properties of the page, such as article quality. This would need a larger sample of
separately analyzed pages that show variation in their hierarchical structure and in
quality.
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[15] Schjelderup-Ebbe, T.: Beiträge zur Sozialpsychologie des Haushuhns. Zeitschrift für Psy-

chologie 88, 225–252 (1922)
[16] Shizuka, D., McDonald, D.B.: A social network perspective on measurements of dominance

hierarchies. Animal Behaviour 83(4), 925–934 (2012)
[17] Shizuka, D., McDonald, D.B.: The network motif architecture of dominance hierarchies.

Journal of The Royal Society Interface 12, 20150080 (2015)
[18] Willer, R.: Groups reward individual sacrifice: The status solution to the collective action

problem. American Sociological Review 74(1), 23–43 (2009)



Part II
Network Measures



Identifying Influential Spreaders by Graph

Sampling
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Abstract The complex nature of real world networks is a central subject in several
disciplines, from Physics to computer science. The complex network dynamics of
peers communication and information exchange are specified to a large degree by
the most efficient spreaders - the entities that play a central role in various ways such
as the viruses propagation, the diffusion of information, the viral marketing and net-
work vulnerability to external attacks. In this paper, we deal with the problem of
identifying the influential spreaders of a complex network when either the network
is very large or else we have limited computational capabilities to compute global
centrality measures. Our approach is based on graph sampling and specifically on
Rank Degree, a newly published graph exploration sampling method. We conduct
extensive experiments in five real world networks using four centrality metrics for
the nodes spreading efficiency. We present strong evidence that our method is highly
effective. By sampling 30% of the network and using at least two out of four cen-
trality measures, we can identify more than 80% of the influential spreaders, while
at the same time, preserving the original ranking to a large extent.
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1 Introduction

Understanding spreading process in real world complex networks is of high impor-
tance due to the variety of applications that they occur, such as the acceleration of
information diffusion, the control of the spread of a disease and the improvement of
the resilience of networks to external attacks.

Key role to spreading dynamics plays the heterogeneity of nodes in terms of
spreading efficiency. High spreading efficient nodes are called influential spreaders,
representing the nodes that are more likely to spread information or a virus in a
large part of the network. Therefore, thorough research has been realized in order to
connect the topological properties of network nodes with their spreading efficiency.

In this paper, we deal with the problem of identifying the influential spreaders
of a complex network when we are not able to analyze directly the whole network,
either because of its large size or of our limited computational resources which
are necessary for estimating global centrality measures or other advanced nodes
properties.

Our approach is based on graph sampling, the problem of selecting a small sub-
graph which will preserve the topological properties of the original graph. In our
case, the central question is whether the top-k spreaders in the samples correspond to
the top-k spreaders in the original graph. Thus, a sampling method could be served
effectively as an influential spreaders identifier if and only if: (a) the fraction of
top-k common nodes in the samples and in the graph is on average sufficiently large
and (b) the rankings of these nodes in the samples are close to the original ranking
in the graph.

We address this question using Rank Degree [18], a graph exploration sampling
method which as proven outperforms other well known methods such as Forest Fire
and Frontier sampling [11, 10, 14].

We conduct extensive experiments in five real world networks using four cen-
trality metrics in order to rank the nodes, with respect to spreading efficiency. In
order to emphasize the efficiency of Rank Degree, we compare our method with
that of Forest Fire. The results show that Forest Fire is inadequate in identifying the
best spreaders, while our method is highly effective. Studying the samples of Rank
Degree, we are able to identify in every network, at least 80% of the influential
spreaders by sampling 30% of the network, using at least two out of four centrality
measures.

Finally, and more importantly, in four out of five networks, the rank correlation
between the top-k nodes in the samples and the top-k nodes in the original graph is
very large.

The rest of the paper is organized as follows. Sect. 2 describes the related work.
Sect. 3 presents our method. Sect. 4 describes the experimental analysis and pro-
vides information on the methods and datasets used and Sect. 5 concludes the paper.
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2 Related Work

The problem of identifying the influential spreaders in a network is a central subject
in complex networks analysis and therefore, several approaches have been proposed
in the literature.

Kitsak et al. [9] proposed the k-shell decomposition method [15, 16] as an influ-
ential spreaders identifier, showing that the k-core values constitute a more reliable
measure than degree centrality and betweenness centrality. One of the core results
is that the placement of a node (node global property) is more important than its
degree (node local property). Two nodes with the same degree but different place-
ment, where the one is connected with the periphery of the network and the other
with the innermost core will not have equal spreading efficiency. Thus, highly con-
nected nodes are not always the best spreaders, while less connected nodes but well
connected with the core of the network may strongly affect the spreading process. In
addition, Zeng et al. [19] investigated the limitations of the k-shell method and they
proposed a mixed degree decomposition procedure which performs more accurately
than the k-shell approach.

Chen et al. [2] proposed the local centrality, a semi-local centrality measure as
a tradeoff between the degree centrality (local measure) and the computationally
complex betweenness and closeness (the global measures). They showed that local
centrality is more effective to identify influential nodes than the degree centrality.

LeaderRank [13] is a ranking algorithm for identifying influential nodes in di-
rected social networks. LeaderRank is a parameter-free random walk algorithm
analogous to PageRank [1]. Moreover, Li et al. [12] proposed a weighted variation
of Leader Rank which outperforms LeaderRank. Furthermore, in [3] the authors in-
troduced ClusterRank a local ranking algorithm for directed graphs that takes into
account the nodes clustering coefficient and they proved that ClusterRank outper-
forms other approaches such as LeaderRank.

3 The Rank Degree Method

Algorithm 1 presents briefly the Rank Degree (RD) sampling method. RD is a
graph exploration sampling algorithm which outperforms several other well known
approaches. A detailed analysis of the algorithm is out of the scope of this paper
and we refer to [18] where the authors studied thoroughly the properties and the
efficiency of the algorithm.

The main characteristic of the method is that the graph traverse is based on a
deterministic selection rule, the ranking of nodes according to their degree values
(see Steps 9-10). The algorithm is specified by two parameters: (a) the number s
of the initial starting nodes (seeds) and (b) the parameter ρ which defines the top-
k, that is, the selected fraction of nodes from each ranking list. Hence, we use the
notation RD(ρ). The extreme case is for top-k with k=1, in other words when we
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Algorithm 1 Rank Degree Algorithm
1: Set parameters: (i) s: number of initial seeds, (ii) ρ (see Step-10), (iii) target sample size x
2: Input: undirected graph G(V,E)
3: Output: sample of size x
4: Initialization: {Seeds}← s nodes selected uni f ormly at random
5: Sample ← /0
6: while sample size < target size x do

7: {New Seeds}← /0
8: for ∀w ∈ {Seeds} do

9: Rank w’s friends based on their degree values
10: Selection rule:

(i) RD(max): select the max degree (top-1) friend of w
(ii) RD(ρ): select the top-k friends of w, where k = ρ · (# f riends(w)), 0 < ρ ≤ 1

11: Update the current sample with the selected edges (w, f riend(w) on the top− k) along
with the symmetric ones

12: Add to {New Seeds} the top-k friends of w
13: end for

14: Update graph G: delete from the graph all the currently selected edges
15: {Seeds}← {New Seeds}

If {New Seeds}= /0 then repeat Step-4 (random jump)
16: end while

select only one node from each ranking list - that node having the maximum degree.
For simplicity, we refer to this case as RD(max).

The algorithm, starting from s initial nodes, performs s parallel graph traverses.
At each time step, the number of visited nodes (current seeds) varies and depends
on the set of selected nodes at the previous time step.

As referred to, in [18], the algorithm generates the most representative samples
for RD(max) and RD(0.1), i.e. when we select either the top-1 or the top-10% from
the ranking lists. In this paper, we concentrate our analysis to RD(max) studying its
performance with respect to influential spreaders.

4 Experimental Analysis

4.1 Methods

Sampling: Apart from our method, RD, we study the Forest Fire (FF), a well known
sampling method introduced by Leskovec et al. [11]. FF starts from a randomly
selected node (seed) w and at each step, the algorithm moves from the current set
of seeds to the next one as follows: from each node w in the set of current nodes, a
random number x is generated which is geometrically distributed with mean p f (1−
p f ). The parameter p f is called forward burning probability which is set to 0.7.
Then, x outgoing edges are selected from the set of w′s outgoing edges. The end
nodes of the selected edges constitute the next set of current nodes. At each step,
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the visited nodes are considered as burned and are removed from the graph. Hence,
they cannot be traversed for a second time. Finally, the process is repeated until a
sample of the requested size is reached.

Spreading efficiency: In the absence of ground truth information with regard
to nodes spreading efficiency, several approaches have been proposed in the liter-
ature such as the Linear Threshold and Independent Cascade models [7], as well
as the basic epidemic models Susceptible Infected Recovered (SIR) and Susceptible
Infectious Susceptible (SIS) [9, 2] which tend to simulate the spreading process in a
graph.

In this paper, we use local and global topological properties, centrality measures,
in order to estimate the nodes spreading efficiency in the original graph and in the
samples: (a) k-core decomposition, a subgraph with nodes of degree at least k (on the
subgraph). k-shell: the set of nodes that belong to the k-core but not to the k+1-core.
For the rest of the paper, when we refer to nodes k-core values we imply the max
k-shell that these nodes belong to, (b) degree centrality, (c) betweenness centrality
and (d) closeness centrality [5].

It has been proved that most of the centrality measures are positive correlated
[17] and also that some measures are less effected by sampling [4].

Sampling evaluation: We study the efficiency of the sampling methods with
regard to node influences using two measures:

(a) OSim [6], an object similarity measure (in our case the objects are the nodes),
the overlap between the elements of two ranking lists A and B (each of size k),

without taking into account their ordering. It is defined as OSim(A,B) =
|A∩B|

k
. In

our case, the lists A and B correspond to the ranking lists rG(top−k) and rS(top−k)
which are computed as follows: for a given centrality measure we calculate the
nodes centrality values for both the original graph G as well as each of the collected
samples S and we rank the nodes accordingly (in descending order) creating the
ranking lists rG and rS. Then, for a given k, we create the rG(top−k) and rS(top−k)
collecting the top-k nodes of the ranking lists rG and rS.

(b) Kendall tau [8], the well known rank correlation coefficient measure, with
which we measure the relative ordering between all pair of nodes in the two ranking
lists rG(top− k) and rS(top− k).

4.2 Data and Sampling Setup

We evaluate the efficiency of RD(max) as influential spreaders identifier in five real
world datasets, two of small and three of medium graph size (Table 1). We restrict
our analysis to undirected graphs, therefore we transform the directed graphs (wiki-
Vote and p2p-Gnutella30) to undirected, by applying to each edge the symmetric
one. In addition, we study the efficiency of FF - a well known sampling algorithm
which, contrary to RD, inadequately identifies the most influential nodes, even if it
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Table 1 Datasets

Graph egoFacebook wiki-Vote CA-CondMat p2p-Gnutella30 Email-Enron

Description Ego-net Wiki-net Collaboration Net. P2P Net. Comm. Net.
Type Undirected Directed Undirected Directed Undirected
# Nodes 4039 7115 23133 36682 36692
# Edges 88234 103689 93497 88328 183831

is producing representative samples with regard to some topological properties of
the graph.

For each dataset and each method separately, we collect 40 samples, per sam-
ple size, where the sample sizes are 10%, . . . ,50%. In all experiments, the number
of initial seeds is defined by the 1% of the target sample size. For instance, for a
given graph G with 2000 nodes and target sample size 10%, the number of initial
seeds is 2. Moreover, we compute the OSim and Kendall tau for each top-k in-
terval separately. Therefore, we define two top-k intervals, the small top-k, where
k ∈ [0.001,0.01] (i.e. one per mill to one percent) as well as the medium top-k,
where k ∈ [0.01,0.1] (i.e. 1% to 10%)

4.3 Results

4.3.1 Effectiveness of Rank Degree

Top-k similarity (OSim): For a given graph G, top-k and centrality measure, we
calculate the OSim between the top-k nodes in G and the top-k nodes in each of the
40 samples separately.

Fig. 1 and Fig. 2 present the average OSim for RD(max) samples, of the small
and medium size graphs. Specifically, for each graph, for each top-k interval, and
for each sample size, we plot the average OSim values of the 40 samples, for
each centrality measure separately. The results for small and medium top-k (i.e.
k ∈ [0.001,0.01] and k ∈ [0.01,0.1]) are given in separate plots. For the sake of
clarity, only the sample sizes 10% and 30% are shown.

We observe that, in egoFacebook the samples size 30% maintain at least the
80% of influential spreaders in terms of k-core and degree centrality for small top-k
(Fig. 1(a)), while for medium top-k, the corresponding OSim values are larger than
90% (Fig. 1(b)). Moreover, from Fig. 1(c) (wiki-Vote), it is clear that all centrality
OSim values are higher than 70% for all sample sizes. In medium top-k (Fig. 1(d))
and for samples size 30%, the degree centrality and k-core have the largest OSim
values where in some cases are close to 100%.

In Fig. 2(a) (CA-CondMat), we can see that for small top-k, degree centrality and
closeness centrality are close to 80% with betweenness and k-core following. The
results are similar for medium top-k (Fig. 2(b)).
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Fig. 1 Average OSim per top-k. Small size graphs

In the case of p2p-Gnutella30 (Fig. 2(c)), k-core comes first for sample sizes
10% and 30% with closeness, degree centrality and betweenness following. For
medium top-k, three out of four centrality measures have OSim values larger than
80% (Fig. 2(d)).

In Email-Enron and small top-k, three out of four centrality measures have OSim
values larger than 80%. In almost all sample sizes and top-k intervals, the OSim
for k-core is close to 100% (Fig. 2(e)). Finally, the results for medium top-k and
samples size 30%, three out of four centrality measures have OSim values larger
than 90% (Fig. 2(f)).

Ranking similarity (Kendall tau): For a given graph G, top-k and centrality
measure, we apply the Kendall tau on the ranking values of the common nodes be-
tween the top-k nodes in the graph G and in a given sample S. Specifically, consider
two ranking lists rG(top− k) and rS(top− k). First, we compute the intersection
R = rG(top− k)

⋂
rS(top− k). Then, we define the RG(top− k) and RS(top− k)

which contain only the ranking values from rG(top− k) and rS(top− k) that corre-
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Fig. 2 Average OSim per top-k. Medium size graphs

spond to the nodes in R. Finally, we compute the Kendall tau of RG(top− k) and
RS(top− k).
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Fig. 3 Ranking similarity: Average Kendall tau per top-k. Samples size 30%

Fig. 3 presents the average Kendall tau values for k-core and degree centrality for
small and medium top-k and samples size 30%.

We observe that in four out of five datasets the average Kendall tau values are
large, at least 0.7. Thus, there is a large positive correlation between the ordering of
the top-k nodes in the samples and the top-k nodes in the original graph.

For instance, in wiki-Vote and Email-Enron, for small top-k and top-k in [0.01,0.4],
the Kendall’s tau values are almost equal to one (Fig. 3(a) and Fig. 3(b)). Moreover,
in every top-k, the samples from all datasets except CA-CondMat preserve strongly
the relative ordering of the top-k nodes.

In the case of degree centrality, the results are similar. For instance, in four out of
five datasets and for any interval of medium top-k, the average Kendall values are at
least 0.8 (Fig. 3(d)).
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Fig. 4 Comparison of RD(max) and FF : average OSim RD(max) minus average OSim FF per
top-k. Samples size 30%

4.3.2 Rank Degree vs Forest Fire

We conclude the analysis comparing our method with the Forest Fire (FF). For each
top-k and for each sample size, we compute the difference between the average
OSim of RD(max) and the average OSim of FF. We present the results only for k-
core and degree centrality, as well as for samples size 30%. The results for the other
sample sizes and centrality measures are similar, hence we omit the plots.

Observing the Fig. 4 and taking into account Fig. 1 and Fig. 2, where we present
the average OSim between the original graph and all 40 samples, we conclude the
following.

In both small and medium datasets and for every top-k, the difference of OSim
values in terms of k-core and degree centrality is always positive. The range of
difference is roughly between 0.3 to 0.9 which shows that RD is more efficient than
FF as an influential nodes identifier.
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5 Conclusion

In this paper, we proposed a graph sampling approach to the problem of identifying
the influential spreaders in a complex network. Our approach is based on graph sam-
pling and specifically on Rank Degree, an efficient graph exploration sampling al-
gorithm. We experimentally analyzed the proposed method using several centrality
measures and studying five real world networks. The analytical experiments demon-
strate that our method can identify, with high accuracy, a large fraction of the most
influential nodes along with their original ranking in the whole graph. In future,
we intend to extend our analysis applying the SIR and SIS epidemic models that
will serve as ground truth information on the spreading efficiency of nodes. More
specifically, we will investigate the correlation between the centrality measures and
the spreading efficiency of nodes, as defined by the epidemic models in the original
graph and in Rank Degree samples.
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Abstract Detection of influential actors in social media such as Twitter or Facebook
can play a major role in improving the marketing efficiency, gathering opinions on
particular topics, predicting the trends, etc. The current study aspires to extend our
formal defined T measure to present a new measure aiming to recognize the actors
influence by the strength of attracting new attractors into a networked community.
Therefore, we propose a model of an actor influence based on the attractiveness
of the actor in relation to the number of other attractors with whom he/she has
established connections over time. Using an empirically collected social network for
the underlying graph, we have applied the above-mentioned measure of influence in
order to determine optimal seeds in a simulation of influence maximization.

1 Introduction
With the wide spread of social media networks nowadays, it has become possible
to acquire insights into and knowledge about a wide variety of more or less nu-
merous communities interacting through the Internet. Moreover, applying analytic
approaches to social media data can provide better-informed decision-making pro-
cesses in various fields like marketing, politics, education, etc. In fact, there is an
important aspect of such analytics, that is, the detection and characterization of influ-
ential actors in social networks. Various studies have suggested different approaches
and specific measures to solve the problem of influential actors detection.

Influential actors in social media have an effective role in information diffusion.
For instance, A viral marketing operation for a new product can be conducted by
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seeding the product in Twitter with a few elected influential actors who can influence
others in a way that might help in the rapid spread of that product.

T measure [13] provides a new type of influence in online social network in order
to emphasize on those actors who attract many outsiders to join the own community
in which a specific topic is dealt. For example, in Twitter those actors spawn many
retweets on a certain topic from people who have no previous contributions on that
topic.

In this paper, the robust promise of influential actors detection leads us to extend
T measure to present a new measure (HT measure) for the detection of influential
actors which is based on quantifying the contribution of this actor to increasing the
size of the network by attracting new attractors of the specific subcommunity. In
other words, while T measure defines the attractiveness value of an actor through
evaluating the number of outsiders who joined to the community by this actor, HT
measure will refer to his/her attractiveness value through evaluating the importance
of those outsiders. In the evaluation section of this paper, we apply our measure to a
dataset based on Twitter communication around #EndTaizSiege (related to recent
events in Yemen). We compare our measure with T , Katz centrality, indegree, and
betweeness measures in terms of how good these measures are if used to refer to the
influential actors in social media in terms to their ability to attract others to become
active in the information diffusion process.

The rest of the paper is organized as follows: Section 2 presents related research.
An overview of T measure approach is given in section 3, which also provides the
basic formal definitions. Section 4 introduces the implementation of our measure,
followed by the description of our datasets and the experimental results in section 5.
Section 6 deals with the performance of our approach in the influence maximization
problem. Finally, conclusions are drawn and an outlook for further research is
described in section 7.

2 Related Works
Social influence analysis has attracted considerable research interests in recent years.
A wide scheme of research focused on modelling and measuring influence and on
influential actors detection. Particularly online social networks such as Twitter are
of special interest. However, regarding the manifestation and identification there are
still open questions.

It could be shown from the study presented by Cha et al. [2] that applying
different measures can produce utterly different results when it comes to the task of
ranking actors according to their influence. They illustrated an in-depth comparison
of three measures of influence: indegree (number of followers of an actor), retweets
(number of retweets containing ones actor name) and mentions (number of mentions
containing ones actor name). They concluded that different measures can be used
to identify different types of influential actors. Popular actors with high indegree
were not necessarily influential in terms of spawning retweets or mentions and most
influential actors can hold significant influence over a variety of topics. Consequently,
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the way in which a network is extracted from social media content and the measure
of influence should be considered carefully with respect to the roles and type of
influence a one aims to reveal.

Qasem et al. [13] proposed a new approach which is related to the research
presented in [2] in the sense that it aimed for a clear formulation of social influence
and a methodology to produce an exact ranking of the actors according to the
definition. In concrete, Qasem et al. [13] introduced a new type of influence in
online social network to define those actors who attract many actors to join the own
community in which a specific topic is dealt. Based on this type of influence, a new
measure (T measure) has been proposed to define those actors.

In contrast to local measures that only take into account the direct neighbourhood
of an actor, there exist also recursive measures that determine the centrality of an
actor relative to the influence of its neighbours. A measure of influence proposed in
the early years of social network analysis, which is still of importance, is the Katz
centrality[7]. It accounts for the ability of an actor to spread information through a
network by the counting the number of paths the actors have to each other actor. In
addition, longer paths are weighted less than short paths.

Closely related measures are Eigenvector centrality for undirected networks and
PageRank for directed networks. These measures are recursive in the sense that
they calculate the centrality of each actor based on the centrality of its neighbours.
Adaptations to Twitter a based on link analysis are TURank (Twitter User Rank) [16]
utilizes ranking algorithm to present based on link analysis a new algorithm in which
influential actors are defined. TURank defines actor-tweet graph where nodes are
actors and tweets, and links are follow and retweet relationships. PageRank algorithm
is extended by TwitterRank [15] to detect influential actors in Twitter based on link
structure and topical similarity. Azaza et al. [1] proposed a new influence assessment
approach depending on belief theory to combine different types of influence markers
on Twitter such as retweets, mentions and replies. They used Twitter dataset of
European Election 2014 and deduced the top influential candidates. These ideas were
taken up in this work to assess the importance of an actor according to the potential
to attract new actors to join the network. Here, the attraction value of an actor can
be adjusted by the attraction values of the attracted actors achieve later on. In other
words, high attractors are those who influence others to become active in the Twitter
communication and also attract many others to do so.

Information diffusion in a network refers often to the influence in the spread of
information. Particularly in social media, influential actors can control the diffusion
of information through the network to some extent. Information diffusion is defined
as the process by which a new knowledge or idea spread over the social networks
by the means of communications among the social network actors [14]. The most
widely used information diffusion models are the independent cascade (IC) [3][4]
and the linear threshold (LT) [5]. These two models describe different aspects of
influence diffusion. The IC and LT models have been introduced by Kempe et al.
[8] to fix the problem of the influence maximization which search for those actors
whose aggregated influence in the social network is maximized. whereas Pei et al.
[12] provided strategies to search for spreaders based on the following of information
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flow rather than simulating the spreading dynamics (modeled dependent results).
Furthermore, The features of identifying spreaders measures using independent
interaction and threshold models through empirical diffusion data from LiveJournal
are discussed in [11]. Morone et al. [10] proposed to map the problem of influence
maximization in complex networks onto optimal percolation using CI (Collective
Influence) algorithm.

Our work is related to the research presented in [13] in the sense that we aim to
define a new type of influence based on the attractiveness model in order to detect
those actors who attract new other attractors to participate the activities of the own
community. As well as, our study is related to the approach of [7] in the sense that
an actor is influential if he/she is linked from other influential actors. This new type
of influence led us to propose a new measure (HT measure) to detect those actors,
and compare the results with other standard measures. In this paper, we evaluated
the performance of our measure in the information diffusion maximization problem
by selected sets of top actors based on HT measure and other sets which are defined
by T , Katz measure, and other standard measures.

3 Approach
The approach of T measure provides a new type of influence in online social network
in order to emphasize on those actors who attract many outsiders to join the own
community in which a specific topic is dealt. Thus, influential actors who are detected
by T measure are those actors whose tweets spawn many retweets in a way that leads
to an increase in the size of social network. T measure depends on the decomposition
of a topical dataset that is collected from a social network according to the time
period of collection. The basic idea of the dataset decomposition is to analyze a
specific event in social media after each slice of time. The aim is to define the actors
who affect the size of this event by attracting outsiders to participate. To be more
specific, the attractiveness value (T value) of the actor A in the slice time t equals
the number of new attractors who joined the community in the slice time t +1 by
establishing new connection with actor A.

To formalize our HT measure, we will enumerate here briefly some of the concepts
that are used to implement T measure.

The approach of T measure is based mainly on the decomposition of a topical
dataset that is collected from a social network according to the time period of
collection. This time period is referred to by the term P-period.

Definition 3.1 (P-period). P-period is a time duration of the data collection process
from social networks.

The definition above is applied to the streaming dataset obtained from online
social networks. If we have a historical dataset, P-period will be the period between
the oldest activity (in Twitter, the activity would be tweet, retweet, reply, etc.) and
the newest one in that dataset.
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The social networks dataset in this approach is represented by a directed graph
which is refereed to by P-graph.

Definition 3.2 (P-graph). P-graph is a directed graph constructed from social net-
work data which have been collected during P-period.

Decomposition of a P-graph leads to decomposition of the P-period into slices of
time so that every subgraph is related to a slice. This slice is referred by P-slice.

Definition 3.3 (P-slice). P-slice is a time slice of P-period.

If all P-slices are equidistant, the P-slice is called EP-slice.

Definition 3.4 (EP-slice). EP-slice is a P-slice in case all P-slices are equidistant.

To ease the definition of subgraphs of this approach, some terms related to actors
according to P-slices are defined.

Definition 3.5 (P-actors). Let s1,s2, . . .sn be the P-slices. For every i such that 0 <
i≤ n, the P-actors Ai is a set of all actors that joined the social network between the
P-slices 0 and si.

Definition 3.6 (Ps-actors). Let s1,s2, . . .sn be the P-slices. For every i such that
0 < i≤ n, the Ps-actors Asi is a set of all actors that joined the social network between
the P-slices si−1 and si.

Figure 1 shows how the P-actors and Ps-actors are taken with respect to P-slice in
this approach. The figure displays the P-actors A3 and Ps-actors As3 as an example.
A3 is the set of all actors who joined the community until s3 whereas As3 joined
between P-slices s2 and s3.

The subgraphs used in this approach are defined as the following:

Definition 3.7 (P-subgraph). P-subgraph Gi(Ai,Ei) is a directed subgraph of P-
graph which is aggregated until P-slice si.

Definition 3.8 (S-subgraph). The i-th directed S-subgraph Si(Ai,Esi) is the sub-
graph of the directed P-subgraph Gi(Ai,Ei) with Esi = {(a,b) : (a,b ∈ Asi ) or ( b ∈
Ai−1 and a ∈ Asi )} ∩Ei

Fig. 1: P-actors and Ps-actors with respect to P-slices



128 Z. Qasem et al.

Figure 2 shows the difference between P-subgraph and S-subgraph in this ap-
proach where n is the number of P-slices and 1 < i ≤ n. P-subgraph Gi−1 is the
P-subgraph of the P-slice si−1, and P-subgraph Gi and S-subgraph Si are of the
P-slice si.

In the next section, we will introduce the implementation of our measure based
on this approach.

4 Implementation
T measure tries to define those actors who attract many actors to the community.
Figure 3 shows how the attractiveness value of the actor A is calculated with respect
to T measure.

From figure Figure 3, T value of the actor A in the P-subgraph G(i−1) is equal to
its indegree value in the S−subgraph Si. Hence, The number of new actors joined the
community by the actor A.

T (AGi−1) = indegree(ASi) (1)
The indegree measure evaluates the number of neighbors of the actor A with order

1 (number of the immediate neighbors). In HT measure, we will increase the order
to include the neighbors with order m, where m is the maximum neighborhood order.
Thus, HT measure defines the attractors of attractors. Figure 4 shows the difference
between T measure and HT measure.

From figure 4, HT value of the actor A in the P-subgraph G(i−1) is equal to its
indegree plus the indegree of his/her neighbors with order m in the S−subgraph Si.

Fig. 2: Directed P-subgraphs Gi−1 and Gi, and directed S-subgraph Si

Fig. 3: T measure evaluation
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HT (AGi−1) = T (AGi−1)+ ∑
a∈neighbors(Asi ,m)

indegree(aSi) (2)

Where m is the maximum neighborhood order.
HT and T values of the actor A in whole P-graph G are calculated as following:

T (AG) =
n−1

∑
i=1

T (AGi) (3)

HT (AG) =
n−1

∑
1

HT (AGi) (4)

Where n is the number of slices.

5 Evaluation
In this section, we will describe the evaluation strategy. Furthermore, the experimental
results on the dataset will be discussed in this section.

5.1 Evaluation Strategy
We gathered a dataset from Twitter via Twitter API from December 31, 2015, to
January 06, 2016. This Twitter dataset relates to the hashtag #EndTaizSiege (14,944
actors and 46,552 connections) that comprises a big connected component (containing
84% of actors), singletons (14%), and smaller components (2%).

Applying our approach leads to decompose P-graph constructed from Twitter
dataset into three P-subgraphs and two S-subgraphs based on three P-slices. As a
matter of fact, the time slicing has been estimated in accordance to the size of dataset
using an equal window size for each slice. Figure 5 shows how the P-period with
Twitter dataset #EndTaizSiege has been decomposed into equal window size so that
we get a fair division of the retweet activities for each time slice.

The directed weighted P-graph of our collected Twitter dataset is constructed
based on retweet activities so that actor a gets incoming connection from actor b if
actor b retweeted a tweet of actor a. The weight of connection refers to the number
of retweets between two connected actors.

Fig. 4: HT measure evaluation
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5.2 Experimental Results
For our Twitter dataset, we applied HT measure to verify whether it can detect
influential actors. Table 1 shows the description of the top influential actors with
respect to HT , T , Katz centrality, indegree, and betweenness measures. The question
mark in the table 1 fields refers to an actor who is not a well-known as an influential
actor within the community. We notice here how the HT and T measures refer to
well-known influential actors within the community, or to the famous news accounts.
Unlike other measures, the top ten influential actors with respect to HT and T
measures are well-known within the community. In our case, the well-known actors
have been recognized based on a local expertise, where they are the most renowned
actors in the field of human rights and politics who continually traded their names
in the newspapers and news concerning the current situation in Taiz city in Yemen.
Their names have not been mentioned explicitly in order to protect their privacy.

Table 1: Description of top influential actors according to different influence measures
in Twitter dataset #EndTaizSiege

Rank HT T Indegree Betweenness Katz Centarlity
1 News Account N1 News Account N1 News Account N1 ? News Account N1
2 TV announcer T1 Journalist J1 Journalist J1 ? ?
3 Journalist J1 TV announcer T1 TV announcer T1 ? Human Rights Activist H1
4 Human Rights Activist H1 Television reporter R1 Journalist R3 Journalist J2 Journalist J2
5 Human Rights Activist H2 Human Rights Activist H1 Human Rights Activist H1 ? ?
6 Television reporter R1 Human Rights Activist H2 News Account N2 ? Television reporter R1
7 News Account N2 News Account N2 Human Rights Activist H2 Human Rights Activist H3 Journalist J1
8 Journalist J2 Political activist P1 ? TV announcer T1 TV announcer T1
9 Political activist P1 Journalist J2 Political activist P1 News Account N1 ?
10 Political activist P2 Political activist P2 ? ? ?

Fig. 5: Retweet activities over time in our Twitter dataset
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6 Information Diffusion
In our work, we study the information diffusion to compare our measure with other
existing measures in terms of how good these measures are if used to refer to the
influential actors in social media in terms to their ability to attract others to become
active in the information diffusion process. In order to assess how well the HT
measure is suited to uncover influential actors with respect to information diffusion,
we simulate the diffusion of information originating from a seed set of nodes through
the Twitter networks using the well-known independent cascade (IC) model [8].

In information diffusion, the IC model is proposed where the information flows
through cascade over the social network. In IC model, there are two terms are used
to describe the state of the actors. The actor who is influenced by the information
is called active, and inactive for the actor who is not influenced. The IC model
process starts with activated actors as an initial seed set . In step s, an actor a will
get a single chance to activate each currently inactive neighbor b. Actually, the
activation process is based on the propagation probability P of the actors links. The
propagation probability P of a link is the probability by which an actor can influence
the other actors. In Twitter, we proposed that actor a is influenced by actor b if
he/she retweeted from actor b in proportion to the tweets number of actor b. So, the
propagation probability P in IC model is based in our Twitter dataset on the link
weight divided by tweets number of target actor.

To compare the performance of actors sets selected by the HT measure with other
influence measures, we selected sets of top actors based on the HT , T , and Katz
centrality measures. As well as, we selected the sets identified by measures that are
known to be good heuristics for seed set selection, namely degree and betweenness
centrality [9].

6.1 Simulation of attraction processes with time-respecting paths
In this section,We will report results based on simulated attraction processes. To do so,
we adapt the IC model that is known to simulate the diffusion of information through
a network as described above. Information diffusion and attraction processes have
some commonalities but differ on various aspects. In traditional information diffusion
models such as the IC model, the network is usually considered as stable in the sense
that the set of nodes and the set of edges do not change over time. However, the nodes
changes their states ”inactive” and ”active” during the information diffusion process.
Attraction, as it is studied in this paper is similar in the sense that actors who are not
part of the community (i.e. do not have contributed a tweet) are inactive while others
are considered as active. On the other hand, the original IC model does not account for
the fact that the network grows when new actors become attracted to the community.
Thus, the IC model was adapted to take into account the creation times of the edges.
These time varying networks have special characteristics regarding reachability of
node pairs since a walk on the graph can only take edges with increasing timestamp,
which is known as the time-respecting property (see [6]). In this aspect, we added
a new activation rule to the IC model which is: the actor who is activated in time t
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cannot activate those actors who have been linked with him/her before the time t. To
explain this activation rule in more details, we define the following terms:

Definition 6.1 (Path-time). The path-time of each link in the network is the P-slice
number in which this link has been created.

Definition 6.2 (Activation-time). The activation-time of each activated actor is the
path-time of the link by which this actor has been activated.

Now, we can state that the actor a can not activate the actor b if the link from b to
a has a path-time later than the activation-time of the actor a.

Using this activation rule the simulation can be interpreted as an attraction process
were actors who are already part of the communities can attract others only if their
activity starts after the activator has become active.

Previous studies [13] have shown that a seed selection strategy based on indegree
yields similar results as a selection strategy based on the T measure. This is also
expected with respect to the high correlation between these two measures. However,
the benefit of the T measure that distinguishes it from other measures is that time is
explicitly taken into account. The experimental results in the next section support
the assumption that the T and HT measure can identify important attractors in time
varying networks while it boils down to indegree if time is neglected.

6.2 Experimental results
Here, we considered the dataset of #EndTaizSiege which is related to an organized
event in Yemen. Hence, we got a highly connected component that is suitable for the
application of our approach which is basically aimed to identify those actors who
contribute to attract others to participate in a specific organized event. We simulated
the information diffusion based on the IC model with time-respecting paths for seed
sets of sizes n = 1...25 which are generated from different influence measures. The
diagram in figure 6 shows the results of applying IC model on our Twitter dataset with
different seed sets which identified by different influence measures. Comparing with
other influence measure, we notice that the HT measure yield the best performance
in information diffusion under the IC model with time-respecting paths for the seed
sizes bigger than 11. Additionally, we statistically verified the results of simulation
for each seed set using T-Test. In case of n > 11, the differences between HT and T
measures are significant. For example, results for the seed set 12 show that there is
a significant difference in the score of HT measure (M =1259.95; SD = 291.1128
conditions; t(19) = 3.678480757; P = 0.000). On the other hand, the differences
among HT and indegree mearures are also significant in case of n > 12.
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Fig. 6: IC model under time-respecting paths with different influence measures over
Twitter dataset #EndTaizSiege

7 Conclusion
In summary, we presented in this paper an extended approach to detect influential
actors based on the attractiveness model that is introduced with T measure. Our
approach detects those actors who contribute effectively to increase the size of social
network by attracting new attractors to the community in which a specific topic is
dealt. Through experiment results we presented through how our proposed measure
HT referred to the influential actors in Twitter dataset. Furthermore, we showed
through experiment and statistical tests that the best performance has been yielded
by HT measure in maximization of influence problem when we took the time into
account.

Our current work in extending and improving this approach focuses on an elab-
oration of our measure with more datasets and more results, and describe it on
multi-layer networks. Furthermore, we plan to develop an efficient general strategy
for time slicing to determine the time period decomposition into time slices, and the
role of time slicing in making HT measure far better than existing measures.
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Abstract In many networks, different centrality indices reveal conflicting rankings
of the nodes. The problem is worsened, if the same nodes occur in different but
related network layers, i.e., in multiplex networks. The main concern in the analysis
of multiplex networks is maintaining the inherent nature of multiple layers in the
explorations. Therefore, in this paper we discuss a method combining a fuzzy operator
with a visualization, that allows the exploration of a node’s centrality with respect to
different network processes on different layers of the same network simultaneously.
Our empirical results indicate that an airport transportation network allows for a
smaller number of different behaviors than social networks in a medium sized law
firm and a large sized tweet dataset.

1 Introduction
Freeman already pointed out in 1978, that the concept of centrality can be charac-
terized in different ways using a number of centrality indices [8]. The wide range
of proposed centrality measures confirms the success of this simple concept in the
analysis of static network structure [4, 9, 11, 13, 16]. However, for a long time, there
was neither a full, non-trivial characterization containing all known centrality indices
nor a theory that explained when to use which of the dozens of centrality indices [14].
Finally, in 2005, Borgatti stated that centrality indices predict the importance of a
node with respect to a process on a given infrastructure [3], e.g., spreading a ru-
mor [5] or propagating an infectious disease [10]. Thus, for any single process, only
one centrality index fits, according to Borgatti [3]. The question that arises is what
happens if multiple processes take place in a network and if one wants to analyze the
centrality of the given network? In our previous work, we proposed to use a fuzzy
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operator based on at least one, a few, almost all, or all the processes in that set [17].
It has been elaborated in a study that the complicated nature of complex systems
entails going beyond the analysis of single-layer networks and considering multi-
layer or multiplex networks where agents interact using multiple types of relations
or interactions [12]. Therefore, a wide range of recent studies suggested methods
to analyze these networks, such as structural measures [2], link assessment [1], and
centrality ranking in multi-layer networks [16]. Similarly, the question that arises is
how to deal with a node’s centrality index in multiple layers, or—worse— multiple
centrality indices of a node in multiple layers. First approaches simply aggregated
the result of centrality indices over the layers, e.g., by averaging over all indices in
all layers. However, the aggregation of the classical centrality indices can result in
misleading results [6, 16] and suppresses possibly interesting information.

In our recent studies [17, 18], we considered the evaluation of nodes’ centrality
as a Multi Criteria Decision Making (MCDM) problem. In that setting, several
normalized centrality indices play the role of multiple criteria and nodes were
considered as alternatives; if a node gets a high normalized index of centrality, it
obtains a high satisfaction value of the corresponding criteria. The best solution
among the alternatives can be selected with respect to the chosen multiple criteria
which are, e.g., the normalized classical centrality indices: Degree, Betweenness,
Closeness, and Eigenvector. Likewise in this paper, we analyze the influence or
importance of nodes with respect to multiple centrality indices but in multiplex
networks.

1.1 Research questions
Considering multiple aspects of centrality based on a set of network processes
of interest, brings up the question of how conveniently the influence of a node
can be analyzed with respect to at least one process, most of them or all of them
within a layer and over multiple layers. In most studies, a regular average over
multiple centrality indices and/or over the layers is employed. Building the average
is convenient, but it has been suggested that it is not an ideal option when multi-layer,
interconnected, or multiplex networks are concerned [6, 16]. In addition, it misses
the information whether one node is especially important for at least one of the
network processes, or whether there is a node that is never very influential, but at
least moderately influential for all network processes.

Thus, our research questions are the following: (1) Do rankings based on a set
of centrality indices rather correlate or conflict? (2) If they conflict, how can the
different aspects of centrality be explored for each node within one layer? (3) How
can the different aspects of centrality be explored for each node within all layers
of interest? (4) How can the patterns of centrality rankings of nodes be analysed
within all layers? We show how one kind of visualization can help to understand
conflicting centrality indices rankings. For this, we consider the normalized centrality
indices themselves as multiple criteria in a decision making problem. We then use a
fuzzy operator to find the best solution, i.e. the most influential node, based on the
possibly conflicting centrality indices. Finally, we propose two measures that allow
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us to partition the nodes into the different groups and to explore the nodes that have
a similar pattern of centrality rankings.

2 Definitions, data, and methods
A multiplex network is defined as follows: it is a network with |M| layers M =
{l1, l2, · · · , l|M|} where each layer li itself is a network comprised of |Ni| nodes and
|Ei| edges. Each edge set Ei represents a different type of relation or interaction,
and in almost all multiplex networks some nodes are contained in multiple layers.
Let di(v,w) denote the distance of two nodes in layer li which is defined if and only
if v,w ∈ Ni. The degree degi(v) is defined as the number of edges it is contained
in layer li. The closeness centrality closei(v) of a node is defined as the sum of all
distances of v to all other nodes in Ni. The betweenness centrality betwi(v) is defined
as ∑s,t∈Ni

δs,t (v)
δs,t

, where δs,t(v) denotes the number of shortest paths between s and t
that contain v and δs,t denotes the number of all of their shortest paths.

2.1 Data sets
We use the following three multiplex network data sets:

1. The Europe Airlines dataset is a multiplex network dataset which has been
developed by Cardillo et al. (2013) [4]. The dataset contains an undirected and
unweighted network comprised of 37 layers where each layer corresponds to an
airline in Europe, including high cost airlines (Lufthansa, British airways, and
Air France) and low cost airlines (Airberlin, Ryanair, and Easyjet). Each node
represents an airport and two nodes are connected if there is at least one direct
flight between them. For the experiments in this paper, we use the three layers of
low cost airlines, which share 20 airports.

2. Law firm data set is a 3-layer multiplex network provided by Lazega (2001) [15]
in the study of how 71 attorneys of a law firm go forward on the same task based
on their social ties which namely represent seeking advice (directed relationship),
co-working, and friendship. In the first layer, a node is connected to the other
nodes to whom he/she might go for taking advice on a task. The second layer of
network contains the ties between two nodes if they are co-workers. Note that,
the advisor is not necessarily a co-worker or wise versa. In the third layer, the
nodes are connected if they socialized outside the firm.

3. A tweet network called the Higgs Boson dataset, compiled by De Domenico et
al. (2013) [5], includes four directional network datasets. The nodes are the users
and there is a directed edge between a pair of nodes in the first three networks, if
one user replied to another one, retweeted the post, or mentioned the other user
in his/her tweet about the Higgs particle. The fourth network contains the social
interactions of the nodes for being friends/followers. Our analysis is restricted to
the biggest, strongly connected component of each of the first three networks,
which have 127 nodes in common.
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2.2 Identification of influential nodes as an MCDM
As discussed earlier, a node might be considered central for some network processes
but not for all, even within a single layer. This problem becomes even more complex,
if the centrality of multiple layers is concerned. We consider the analysis of the
different normalized centrality indices (degree, betweenness, and closeness) of a
node within one layer as an MCDM problem. An MCDM tries to find a satisfying
solution among alternatives with respect to multiple, possibly conflicting criteria—as
is the case for most centrality indices that almost never agree perfectly on the ranking.
The nodes are considered as the alternatives in this decision making where the best
solution (the most influential node) can be selected based on the satisfaction of either
at least one criterion, most, or all of them or anything in between. Fuzzy operators
provide a means to scale between these extremes in a seamless way, guided by some
parameter.

Maximum Entropy Ordered Weighted Averaging is one of the fuzzy operators
proposed by Yager to solve an MCDM problem [7, 19, 20]. He assumes that the
extent to which a criterion is met is expressed by a value between 0 (no satisfaction)
and 1 (full satisfaction) and considered various ways of aggregating these possibly
conflicting values into a single result, which can then be used to rank all alternatives.
He stated that the aggregation of multiple criteria in a decision making problem for a
solution can be scaled between two extreme cases of pure OR and pure AND. In the
pure OR, the maximum value of satisfaction obtained from any criteria has the most
important role in the aggregation. In the pure AND, the role of the minimum value
of satisfaction among the criteria determines the aggregation. The OR operator thus
represents the situation in which at least one criterion with the best satisfaction value
is enough to give an alternative the highest rank and the AND operator represents a
situation in which all the criteria needs to be satisfied to result in a high rank. Yager
showed that anything between these two extreme cases can be represented using
proportional linguistic quantifiers such as a few, most, and almost, as introduced
by Zadeh [21]. For each alternative x, MEOWA operator uses A(x), the vector of
its n satisfaction values, where all values are between 0 and 1. Then, these values
are sorted non-increasingly in vector B(x). Note that the order of the criteria is in
general different for each of the alternatives! The aggregation is then computed as
the scalar-product of a weight vector W and B(x):

λ (a1,a2, · · · ,an) = ∑
j

Wj ·B(x) j

The weight vector itself is obtained using the following function based on some
parameter β [7]:

wi =
eβ

n−i
n−1

∑
n
j=1 eβ

n− j
n−1

.

The resulting weights are always between [0,1] and their sum is equal to 1. It can be
easily seen that high values of β lead to a weight vector that gives a weight close to
1 to the first position of the sorted vector B(x) j, i.e., the result is dominated by the
maximum satisfaction value. This is considered to be a high orness - it is enough if
one criterion is strongly satisfied. A high, negative value of β favors the last position
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in the sorted vector B(x) j, i.e., the least value. This is considered a high andness.
Note that for β = 0, the weight vector contains 1/n in all positions, i.e., an average
of the satisfaction values is computed. For all values of β , an orness measure denoted
by Ω is defined by Yager [7]:

Ω =
1

n−1

n

∑
i=1

(n− i)
eβ

n−i
n−1

∑
n
j=1 eβ

n− j
n−1

For the β -values of −20 and 20, the orness equals 0 and 1 respectively. The orness
is 0.5 for β = 0.

3 Experimental Results
3.1 Air-transportation network
Via the air-transportation network, different centrality indices are of interest: a direct
property indicating importance is the number of flights reaching a city, as measured
by the degree—it can be assumed that it correlates with the number of people wanting
to go there (by a specific airline). Another indicator of importance is the average
distance to an airport which is directly proportional to its closeness. It might be
interpreted as the ease by which an infecting disease reaches this airport. Finally, the
betweenness centrality is associated with a network process that uses shortest paths;
it is directly proportional to the average fraction of shortest paths that would be lost
if that airport was shut down, between any two airports taken at random. For twenty
airports shared between all three layers of low cost airlines, these three centrality
indices were measured in each layer and normalized by the maximum and minimum
observed values for the corresponding index.

The first question to be addressed is that whether the rankings regarding the chosen
centrality indices actually conflict or whether they correlate strongly. Figure 1a shows
a pairwise scatter plot of two of the chosen centrality indices. While there is a general
positive correlation, there are always conflicting views on the same node. Thus,
an analysis with a fuzzy operator is meaningful and can be used to explore these
conflicts in a convenient manner. Figure 2a shows, for each of the shared airports
and each of the three low-cost airlines Airberlin, Ryanair, and Easyjet, the airports’
ranking position within each of the layers for different values of β . By concentrating
on all curves of the same color, a comparison of within-layer influence regarding the
three chosen network processes is possible, as shown in the following. In the layer
of Airberlin, it can be seen that the airports of Palma de Mallorca and Kos Island
obtain the highest and the second highest rank among the airports within the layer,
independent of β . Faro airport ([0.48,0.107,0.72]) is also an airport with an almost
stable ranking position, but there are always nodes with even higher values. In the
high orness (right side of the plot), for example, it is located lower than the airport
of Alicante with the normalized centrality values of [0.44,0.098,0.732], because
Alicante’s last value is a tad higher than Faro’s last value. But to the left side of
the subplots (high andness), the ranking of Alicante is demoted, since its smallest
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Fig. 1: The correlations between the three normalized centrality indices are depicted
for each layer of three multiplex networks respectively.

value of satisfaction (0.098) is less than that for the Faro airport (0.107). In the layer
of Easyjet, the airport of Gatwick always occupies the highest rank, independent
of the β -value, i.e, its ranking pattern is similar to London airport in the layer of
Ryanair. As mentioned, in the layer of Ryanair, not very surprisingly, London is first
with respect to all chosen network processes, while, maybe more surprisingly, the
airports of Alicante and Madrid are always second and third. We can also use the
same visualization to understand the influence of one node (airport) with respect to
all three airlines and all three network processes of interest. The very first observation
is that there is no airport that is most influential in all three layers at the same β—it
seems that the low-cost airlines rather partition the market than share it. However,
the airports of Málaga and Alicante are always among the top 6 influential nodes in
all three layers.

In order to address the fourth research question, we use ∆Agg, which measures
the maximum difference in ranking positions fixing a layer and ∆Layers, which
measures the maximum differences in ranking positions fixing a β -value. First,
we obtain the minimal rank of node v within layer Li over all β -values and de-
note it by minRank(v,Li) and obtain maxRank(v,Li) accordingly. Then, ∆agg(v) :=
max{maxRank(v,Li)−minRank(v,Li)|1≤ i≤ |L|}; a large value of ∆Agg means the
centrality indices where more conflicting. Note that, the maxRank(v,Li) can be found
in a β -value in the range of [−20,0) or in [0,20]. For the categorization, we count
the number of times that the maxRank among |L| layers is obtained in a β -value in
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Fig. 2: (a) Rankings of some airports shared between the three layers of airlines using
the different values of β . (b) Categorizing of the shared nodes (20 airports in total)
using two proposed measures of ∆Agg and ∆Layers.

[−20,0). If the measured frequency (FmaxRank(v)≥ k), then −∆agg is assigned to
the node v, otherwise ∆Agg; this partitions the nodes into two groups. In the first
group, the nodes’ least centrality value among three indices is high enough to give
them a high rank in the high andness and in the second group–above the horizontal
line– the nodes’ maximal centrality index value is high enough to prioritize them in
the high orness.

The maximal differences among all layers for node v for any β -value can be
measured using maxRank(v,β ), which is the maximal rank of v based on any layer
and minRank(v,β ) is defined as minimal rank for any β -value. The overall maxi-
mum differences of node v is then defined as ∆Layers(v) := max{maxRank(v,β )−
minRank(v,β )|β ∈ Γ }, where Γ is a set of β -values. A large value of ∆Layers indi-
cates, the node v is more influential in one or two layers and not influential in the rest.
In the categorization, if the max value has been obtained in a β -value in [−20,0),
then −∆Layers is assigned to node v, otherwise ∆Layers; this again partitions the
nodes using a vertical line into two groups. We choose k = 2 as the number of layers
in the used multiplex networks is only three.

As shown in Figure 2b, for instance, Madrid airport obtains ∆agg = 2, which
indicates that this airport has almost stable ranking fixing one layer using different
aggregation strategies and its maxRank-values have been found in at least two layers
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towards the high orness. Instead, it has a high difference of ranking among all layers
(∆Layers = −16), i.e., very central in two layers and not central in the rest. Its
maximum difference has been found in a β value toward the high andness. The
interesting point of this visualization is that we observe the nodes that have similar
ranking patterns considering multiple layers. For example, Madrid and Kos Island
have similar patterns considering both ∆Agg and ∆Layers. London and Barcelona
are located in two different groups. London often obtains the maximum rank in the
high andness and in contrast, Barcelona achieves it in two layers in the high orness,
but, they both obtain positive ∆Layers-values. Madrid and London airports are
exactly located in opposite groups.

3.2 Law firm data set
In the law firm data set, one important network process is again the direct influence
someone might have on other people, as quantified by the degree centrality. Regarding
communication flows in small groups, the betweenness centrality might again reflect
the influence of a person. Since we also have directed relations in this data set, the last
network process of interest is the average minimal number of steps to give a message
to another person—as quantified by the out-closeness, the analogous, directed version
of the classic closeness. Figure 1b shows that the different centrality indices have
very different ideas about who is most influential with respect to the network process
they represent.

In the layer of Advice as shown in the Figure 3a, node 1 is among the three most
influential nodes with respect to all three normalized indices of [0.442,0.114,1]—it
is also interesting to see that the degree, the number of people seeking advice from her
or him, is not maximal. It achieves a maximal value in the out-closeness. The other
top ranks in this layer are node 26 in the highest place with the indices of [1,1,0.037]
(maximal betweenness) and node 24 in the fourth place: [0.767,0.557,0.042], also
based on a high degree. Note that the node’s lowest satisfaction value at the out-
closeness is really very small. This gives node 24 a medium to high rank when
the ranking considers the node’s influence with respect to all network processes of
interest. In the layer of Coworker where a lawyer (as a node) is connected to the
other nodes if he/she spent time with them on a law case. Interestingly, node 24
and 4 which we already analyzed in the Advice layer, are among the top 2 in the
high orness with respect to their normalized centrality indices of [1,1,0.332] and
[0.632,0.41,1], respectively. Another interesting case is node 3 which is one of the
nodes with a sharp decreasing from the high orness to the high andness. It turns out
that this node has the least number of coworkers but in terms of being indirectly close
to other coworkers of coworkers, he/she obtains a much larger value [0,0,0.703].
Thus, when at least one criterion is enough, the corresponding lawyer is one of the
top 10 influential persons in the law firm, but both, on average and when all network
processes are considered, this node gets the least ranking position. As can be seen in
Figure 3b, the number of nodes with almost similar ranking patterns as node 3 is not
small in the top right category. In the layer representing friendship, in the high orness,



Analyzing Multiple Rankings of Influential Nodes in Multiplex Networks 143

N
od

e 
 1

0
20

40
60

N
od

e 
 3

0
20

40
60

N
od

e 
 4

0
20

40
60

N
od

e 
 2

4
0

20
40

60

N
od

e 
 2

5
0

20
40

60

N
od

e 
 2

6
0

20
40

60

N
od

e 
 6

5
0

20
40

60

−2
0
−1

0
−7 −5 −2 0 2 5 7 10 20

N
od

e 
 6

6
0

20
40

60

−2
0
−1

0
−7 −5 −2 0 2 5 7 10 20

Advice
Coworker
Friend

andness <−   β   −> orness

(a)

−60 −40 −20 0 20 40 60

−
60

−
40

−
20

0
20

40
60

∆Layers

∆
A
gg

1
3

4

24

25

26

65
66

(b)

Fig. 3: (a) Rankings obtained using the different values of β -parameter for some
selected nodes out of 71 nodes in all three layers of relations. (b) Categorizing of the
71 nodes using two proposed measures of ∆Agg and ∆Layers.

nodes 1 and 24 are top two nodes with the normalized indices of [0.259,0.011,1]
(maximal out-closeness), and [0.889,0.341,0.186], respectively. However, node 1 is
one of the nodes in this layer that has one of the smallest minimal satisfaction values
and thus its rank drops significantly for the high andness.

3.3 Tweet network data set
A tweet network, especially of a very large size, definitely supports direct influence as
measured by the degree, but in our view it is not likely to support any network process
that uses shortest paths and assumes that all pairs of nodes want to communicate
with each other or learn of each others’ interest with the same frequency. However,
the closeness and betweenness centrality indices assume exactly this: equal need
of communication along shortest path between all pairs of nodes. However, for
consistency with the other data set and as a pure demonstration, we stick to the
normalized indices of degree, out-betweenness and out-closeness. Again, these
centralities do not correlate very strongly (s. Figure. 1c).
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Fig. 4: (a) Rankings obtained using the different values of β -parameter for some
shared nodes between the three layers of the Higgs Boson dataset. (b) Categorizing
of the 127 shared nodes using two measures of ∆Agg and ∆Layers.

We use the degree of these 127 nodes obtained in the fourth layer as an additional
information for the exploratory analysis, i.e., the number of their friends/followers
on Twitter. This additional information allows for another aspect of the different
centrality indices in the different layers of the Tweet network: it seems that there is no
obvious correlation between the number of direct followers and their centrality with
respect to various aspects of communication on Twitter, as detailed in the following.
In the Mention layer, nodes 2, 59, and 96 are among the top 10 nodes, but their
number of followers varies between as little as 322 (node 96) and 33,664 (!) friends
(node 59). This is a very interesting result as the number of direct friends should be
assumed to correlate strongly with the number of mentions or replies, but it is not
necessarily the case, as can be seen here. Nodes 15 and 28 have a similar situation
as the last cases. Although node 15 has a very large number of friends/followers
(11,880) –about 40 times larger than the other– they stay among almost similar range
of ranking positions with respect to mentioning the other users in their re-tweeted
tweets. Similarly, but less extreme results can be seen on the Reply layer, where
nodes 103, 26, and 46 show similar rankings despite the fact that node 103 has about
3 and 5 times more friends than nodes 26 and 46, respectively. Vice versa, nodes 40
and 46, both with about 500 friends/followers, show distinct behaviors, especially
with respect to operators with a high andness. In Figure 4b, nodes 2 and 103 have
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similar patterns of ranking and thus located in one category and similarly, nodes 28
and 15 placed in the top left group close to each other.

4 Summary
In this paper, we investigate the influence of the nodes in three different multiplex
network data sets each of which contained a three-layer network and in each layer,
multiple network processes of interest can occur. Since the centrality indices corre-
sponding with these network processes result in conflicting rankings, we propose to
use a fuzzy operator that scales between emphasizing the result of either at least one
or all centrality indices. By comparing the curves for different values of β of one
node in all layers of interest, the overall importance of a node for different network
processes in different but related network structures can be explored. Then, using
two proposed measures in a visualization, the overall ranking pattern of nodes can be
analysed. For the air transportation network, we basically see two different behaviors:
either, the airport has almost the same centrality for all network processes or it is a
very influential node in one or two airlines and unimportant for the remaining one(s).
In the second network data set, the centrality indices were much more conflicting
that resulted in more different ranking behaviors. In the third network dataset we find
that the number of direct followers is not necessarily correlated with other aspects
of communication on Twitter and the exploration shows interesting individuals who
are influential with respect to various, possible network processes despite their low
number of direct followers. In general, the method reveals that centrality indices
are not easily interchangeable because they produce quite different rankings. By
correlating the new insights with external variables, it might even be possible to find
out whether it is a better strategy to copy other peoples’ behavior or to complement
it, i.e. whether the important positions in a network are rather shared by more or less
the same nodes or whether they are partitioned onto different nodes. The answer to
this question will be left to future works.
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[12] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer
networks. Journal of Complex Networks 2(3), 203–271 (2014)
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Abstract Time sliced networks describing human-human digital interactions are
typically large and sparse. This is the case, for example, with pairwise connectivity
describing social media, voice call or physical proximity, when measured over
seconds, minutes or hours. However, if we wish to quantify and compare the overall
time-dependent centrality of the network nodes, then we should account for the
global flow of information through time. Because the time-dependent edge structure
typically allows information to diffuse widely around the network, a natural summary
of sparse but dynamic pairwise interactions will generally take the form of a large
dense matrix. For this reason, computing nodal centralities for a time-dependent
network can be extremely expensive in terms of both computation and storage; much
more so than for a single, static network. In this work, we focus on the case of
dynamic communicability, which leads to broadcast and receive centrality measures.
We derive a new algorithm for computing time-dependent centrality that works
with a sparsified version of the dynamic communicability matrix. In this way, the
computation and storage requirements are reduced to those of a sparse, static network
at each time point. The new algorithm is justified from first principles and then tested
on a large scale data set. We find that even with very stringent sparsity requirements
(retaining no more than ten times the number of nonzeros in the individual time
slices), the algorithm accurately reproduces the list of highly central nodes given
by the underlying full system. This allows us to capture centrality over time with a
minimal level of storage and with a cost that scales only linearly with the number of
time points.
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1 Introduction
In network science, centrality measures assign to each node a value that summarises
some aspect of its relative importance. Such measures arose in the social sciences, but
have now become very widely used by researchers who wish to summarise important
features of large, complex networks [5, 14, 19]. Because matrix representations of
networks are typically sparse, and because centrality measures usually involve the
solution of linear systems or eigenvalue problems, it is feasible to compute centrality
measures on a current desktop computer for networks with, say, a number of nodes
in the millions.

Our focus in this work is the case of time-dependent network sequences [8].
Such data sets may be regarded as three-dimensional tensors, where, along with the
(i, j) coordinates that capture pairwise connectivity, we also have a third coordinate
that represents time [1]. These types of connections arise, for example, when we
record human-human digital interaction through social media, telecommunication or
physical proximity. In [7] the concept of a dynamic communicability matrix was intro-
duced, which converted the time sequence of networks into a single two-dimensional
array, with (i, j) element summarising the ability of node i to communicate with
node j, using the time-dependent sequence of edges recorded in the data. From this
matrix, it is straightforward to compute centrality measures:

• dynamic broadcast centrality takes large values for nodes that are effective at
distributing information,

• dynamic receive centrality takes large values for nodes that are effective at
gathering information.

In a case study on Twitter data, this approach was seen to be successful, in the
sense of correlating well with the independent views of social media experts [10]. It
was also found to outperform the crude alternative of simply aggregating all edges
into a single static network that forgets the time-ordering of the interactions; see
[12] for further discussion. Tests in [4, 13] also showed that dynamic broadcast
centrality can be effective at quantifying the potential for the spread of disease across
time-ordered interactions.

However, as we explain in the next section, the computation of dynamic broadcast
centrality can be expensive in terms of both storage and computation, as a result of
inevitable matrix fill-in as temporal information accumulates. Our overall aim here is
to address this issue by deriving a new algorithm that delivers good approximations
to the original dynamic broadcast centrality measure while retaining the benefits of
the sparsity present in the time slices.

We note that other approaches to computation of node centrality for time-
dependent networks have been put forward. For example, [15, 16, 17] made use
of paths rather than walks, which, for our purposes, leads to an infeasibly expensive
algorithm. In [18] a block-matrix approach was suggested which allows centrality
measures for static networks to be applied. However, as mentioned in [12], that
formulation does not fully respect the arrow of time.



Preserving Sparsity in Dynamic Network Computations 149

2 Background and Notation
In this section we recall some definitions and notation that will be used throughout.
Let t0 < t1 < · · · < tM be an ordered sequence of time points and let {G[k]}M

k=0 =

{(V[k],E[k])} be a time-ordered sequence of unweighted graphs defined over n nodes.
A graph is said to be unweighted when all its edges have the same weight, which
can thus be assumed to be unitary. Consider the adjacency matrices {A[k]}M

k=0 =

{(a[k]i j )} ∈ Rn×n associated with these graphs at times {tk}M
k=0, whose entries are

defined as

a[k]i j =

{
1 if (i, j) ∈ E[k]

0 otherwise.
In [7] the concept of a dynamic walk of length p was introduced to extend to

the temporal case the well-known concept of a walk of length p in static networks.
Loosely, we have a (possibly repeated) sequence of p+1 nodes connected by edges
that appear in a suitable order. More precisely, a dynamic walk of length p from
node i1 to node ip+1 consists of a sequence of nodes i1, i2, . . . , ip+1 and a sequence
of times tr1 ≤ tr2 ≤ ·· · ≤ trp such that a[rm]

imim+1
6= 0 for m = 1,2, . . . , p. We stress that

more than one edge can share a time slot, and that time slots must be ordered but do
not need to be consecutive.

The concept of dynamic walk was used to motivate the definition of the dynamic
communicability matrix

Q[M] = (I−αA[0])−1(I−αA[2])−1 · · ·(I−αA[M])−1, (1a)
which can be defined equivalently via the iteration

Q[k] = Q[k−1](I−αA[k])−1, k = 0,1, . . . ,M, (1b)
where Q[−1] = I is the identity matrix of order n, 0 < α < 1/ρ∗, and ρ∗ =
max

k=0:M
{ρ(A[k])} is the largest spectral radius among the spectral radii of the ma-

trices {A[k]}. Here the free parameter α plays the same role as in the classical Katz
centrality measure for static networks [5, 9, 14]. For simplicity, our notation does not
explicitly record the dependence of Q upon α .

To avoid overflow in the computations, a normalisation step Q 7→ Q/|Q| should
follow each iteration in (1b). Throughout this work we use the Euclidean norm.

The requirement α < 1/ρ∗ ensures that the resolvents in (1a) exist and can be
expanded as (I−αA[k])−1 = ∑

∞
p=0(αA[k])p. It follows that the entries of Q[k] provide

a weighted count of the dynamic walks between any two nodes in the networks using
the ordered sequence of matrices A[0],A[1], . . . ,A[k], weighting walks of length p by
a factor α p. Hence, (Q[k])i j is an overall measure of the ability of node i to send
messages to node j.

Using the dynamic communicability matrix one can define and compare the
broadcast and receive centrality of nodes by taking row and column sums of the matrix
Q[M], respectively. The broadcast centrality of node i is defined as b[M]

i := eT
i Q[M]1,

where ei ∈ Rn is the ith column of I, the superscript “T ” denotes transposition,
and 1 ∈ Rn is the vector of all ones. Similarly, the receive centrality of node j is
defined as r[M]

j := 1T Q[M]e j. It is straightforward to show that the latter satisfies a
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lower-dimensional, vector-valued iteration given by
r[k] := 1T Q[k] = r[k−1](I−αA[k])−1, k = 0,1, . . .M,

with r[−1] = 1. The receive centrality of the nodes can thus be updated at each step by
solving a single sparse linear system whose coefficient matrix is the latest network
time slice. In particular, this means that we do not need to store and update the
full matrix Q[k] to recover the receive centrality of nodes at level k. By contrast,
to compute the broadcast centrality vector, b[M] = Q[M]1, we need access to the
current dynamic communicability matrix at each step. Intuitively, this difference
arises because,

• given a summary of how much information is flowing into each node, we can
propagate this information forward when new edges emerge: receive centrality
cares about where the information terminates, but

• a summary of how much information is flowing out of each node cannot be
straightforwardly updated when new edges emerge: broadcast centrality cares
about where the information originates.

Our focus here is on the natural setting where data is processed sequentially,
with the centrality scores being updated as each new time slice A[k] arrives. As
confirmed in Section 4 on a real data set, we then face a fundamental issue with the
use of the dynamic communicability matrix: although the time slices are typically
sparse, Q[k] generally evolves into a dense matrix. At this stage, computing dynamic
communicability from (1b) requires us to store a full O(n2) matrix and solve at each
subsequent time point a corresponding full linear system. In the next section, we
therefore develop and justify an approximation where matrix fill-in is controlled so
that the benefits of sparse matrix storage and computation are recovered.

3 Sparsification
To create a sparse approximation, Q̂[k], to the dynamic communicability matrix, Q[k],
we first observe that the original iteration (1b) includes some traversals that are
not very meaningful, e.g., repeated cycles i→ j→ i→ j→ i→ j using the same
undirected edge at the same time point. We thus use an “at most one edge per time
point” alternative to (1b) so as to avoid considering these types of walks and similar
ones:

Q̂[k] = Q̂[k−1](I +αA[k]), k = 0,1, . . . ,M, (2)

with Q̂[−1] = I. As discussed in [7], this matrix product can be interpreted in terms
of network combinatorics; at each time step a dynamic traversal can either wait, as
described by the identity matrix I, or take a current edge, as described by latest adja-
cency matrix, A[k]. In the latter case, the length of the walk (i.e., the number of edges
used) has increased by one, and thus we multiply the corresponding matrix by α . An
alternative interpretation is that we are using a second order Taylor approximation for
each of the resolvents appearing in (1b). This simplification is likely to be reasonable
when either (a) α is chosen to be small, so that short walks are favoured, or (b) the
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powers of A[k] do not grow rapidly with k (which is typically the case for sparse
matrices).

As the time index k increases in (2) the number of nonzeros cannot decrease, and
the matrix Q̂[k] will generally fill in. In order to produce a sparse approximation we
will proceed iteratively. At each step we threshold the matrix at a level θk—this type
of approach has been widely used in large scale machine learning, data mining, and
signal processing; see, e.g., [2, 3] and references therein. Hence, for k = 0,1, . . . ,M
we redefine the iteration to be

Q̂[k] =
bQ̂[k−1](I +αA[k])cθk

‖bQ̂[k−1](I +αA[k])cθk‖2
, (3)

where Q̂[−1] = I and for any nonnegative matrix C = (ci j), the matrix bCc
θk

arises
from setting to zero all entries where ci j ≤ θk.

Remark 3.1. The matrices {Q̂[k]}M
k=0 are non-negative by construction.

3.1 A little twist
From a network science perspective, the approach just presented has a strong limi-
tation. Imagine a user i of Twitter who remains inactive for a long time after each
tweet. After such inactivity, the thresholding may zero out all entries in the ith row of
one of the matrices Q̂[k]. From that time, the ith row of the matrices appearing in (3)
will always be zero, and no subsequent activity of node i will be registered by this
approach.

To mitigate pathological behaviour of this type, we modify (3) so as to keep
track at each step of the behaviour of those nodes corresponding to zero rows in the
iteration matrix. Our final version of the iteration goes as follows:

Q̂[k] = bQ̂[k−1](I +αA[k])cθk +mkA
[k], k = 0,1, . . . ,M, (4)

followed by normalisation, where Q̂[−1] = I, mk is the smallest nonzero entry of
bQ̂[k−1](I +αA[k])cθk , A[k] = αW [k]A[k], and W [k] = diag(w1,w2, . . . ,wn) ∈ Rn×n is
a diagonal matrix whose entries are

wi =

{
1 if eT

i bQ̂[k−1](I +αA[k])cθk 1 = 0
0 otherwise.

The matrix A[k] keeps track of those edges that appear at step k and would otherwise
get lost. Indeed, the matrix product W [k]A[k] returns a matrix that has nonzero entries
(if any) only in the rows corresponding to those nodes that have either been inactive
until step k or have broadcast very little information (which thus was thresholded in a
previous iteration). The penalisation by α is added because we are taking one hop in
the network. Finally, the multiplication by mk comes from the fact that a poor choice
of the parameter α may compromise the results. Indeed, the entries of A[k] may be
too large with respect to those appearing in bQ̂[k−1](I +αA[k])cθk , thus leading to a
complete reshaping of the rankings. We refer the reader to Section 4 for an example
of this issue.
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Remark 3.2. It is possible for the contribution added by mkA
[k] to be zero. This

happens when the zero rows in bQ̂[k−1](I +αA[k])cθk correspond to nodes that are
not broadcasting information at step k.

Remark 3.3. Note that if A[k] = 0 for some k, then Q̂[k] = Q̂[k−1], just as Q[k] = Q[k−1].

3.2 On the thresholding parameters
The thresholding parameters {θk} are a key part of the sparsification process. Before
explaining how we select these values in applications, we first describe the types of
contributions that are removed from the approximation to the dynamic communica-
bility matrix when the thresholding is performed. There are two key circumstances
where the thresholding has an effect:

• the value of α p dominates the contribution given by the products of the adjacency
matrices, i.e., there are not too many walks of length p between the two nodes
under consideration;

• the information has not moved from a certain node for a long time and the
normalisation step has made the corresponding contribution smaller than the
other entries.

In both cases, we are dismissing information that has little potential, as it is not
diffused much. Clearly, an over-stringent selection of the parameters θk may lead to
an excessive penalisation of these two types of behaviours. Our strategy is to make an
initial choice for the maximum number of nonzeros that we will allow in the matrices
Q̂[k], for k = 0,1, . . . ,M. Then, as the iteration proceeds, the thresholding value θk is
chosen so as to make bQ̂[k−1](I +αA[k])cθk have approximately this desired level of
sparsity.

We point out that the maximum number of nonzeros one wants to allow has to be
at least n+nnz(A[0]), where nnz(A[0]) is the number of nonzeros in the matrix A[0].
Consequently, θ0 < α . Indeed, if this is not the case, then we will have θk ≥ α for
all k and therefore that Q̂[k] = I for all k.

3.3 Cost Comparison
We are now in a position to quantify, at least approximately, the computational
benefits of using Q̂[k] in (4) rather than the exact matrix Q[k] in (1b) to compute
dynamic broadcast communicability. Because the exact representation Q[k] becomes
full in general, it follows that:

• We have reduced storage requirements by a factor of n.
• We have reduced the dominant computational task at each time step from solving

n sparse linear systems to multiplying two sparse matrices. For general complex
networks with no exploitable structure, if a standard iterative scheme is used to
solve a sparse linear system, each matrix vector multiplication will cost O(n)
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and thus the total cost to compute Q[k] by solving n such linear systems will be
at least O(n2). Instead, the overall cost of computing the product of Q̂[k−1] times
A[k] is O(n), if we assume that there is a fixed number of active nodes at each
time point. Thus, the cost has been reduced by a factor of n.

3.4 Comparing top K lists
The main goal of this work is to match the broadcast ranking of the nodes in an
evolving network using a sparse approximation to the dynamic communicability
matrix. As usual in network science, we are not interested in matching exactly the
rankings of all nodes in the network, but rather to accurately capture the top K� n
most influential broadcasters. Although there is no perfect way to summarise and
compare rankings, it is clear that generic correlation coefficients like Pearson’s
correlation coefficient or Kendall’s tau have the major drawback in this context that
they treat entire vectors, and hence all network nodes.

In order to compare the top K entries of two ranking vectors, an appropriate
index is the intersection similarity [6]. This quantity is defined as follows: given two
ranked lists x and y, consider the top K entries of each, which we denote xK and yK ,
respectively. Then, the top K intersection similarity between x and y is defined as

isimK(x,y) =
1
K

K

∑
i=1

|xi∆yi|
2i

, (5)

where ∆ is the symmetric difference operator between two sets and |S| denotes the
cardinality of the set S. When the sequences contained in x and y are completely
different, the intersection similarity between the two is maximum and equals 1. On
the other hand, when isimK(x,y) = 0 for all K, then the two lists are identical.

It happens sometimes that the two lists differ in the order, but not in the set of
labels of the nodes appearing in them. Behaviour of this type can be easily spotted
by looking at the quantity

`K(x,y) =
|xK∆yK |

2K
, K = 2,3, . . .

If `K(x,y) = 0 for some K we know that xK and yK are permutations of the same set
of nodes.

4 Numerical tests
We have tested the new algorithm on large scale data sets involving email, voice
call and on-line social interaction, and with various values of the parameter α . Due
to space limitations we give representative results with the email data set Enron
[11]. Here, a directed edge from node i to node j indicates that at least one message
was sent from i to j in a one day period, including to, cc, and bcc. We have
information over 1138 days starting 11 May 1999 for 151 Enron employees, Many
of the adjacency matrices are empty, meaning that there are days during which no
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emails are sent. The largest spectral radius is ρ∗ = 4.17, thus the upper limit for α is
0.24.

We allowed for a number of nonzeros proportional to N = cn, where n = n+
1

M+1 ∑
M
k=0 nnz(A

[k]) and c = 10. This is motivated by our aim to work only with
matrices whose sparsity level is compatible with that of the individual network time
slices. Further testing has shown that the performance is not sensitive to c.

4.1 Adaptive Scaling
Before testing the performance of (4), in this subsection we discuss the effect of
including the multiplication by mk. In Section 3 we argue that setting mk ≡ 1 for
all k = 0,1, . . . ,M in (4) may lead to poor results. Clearly, this is not always the
case, but, as we will see here, this choice together with a compounding choice of
the downweighting parameter α , may result in a complete misplacement of the top
ranked broadcasters in the network.

We compute the broadcast centrality vector Q[M]1 and our approximation vector
Q̂[M]1 for seven different values of the downweighting parameter:

α =
0.01
ρ∗

,
0.1
ρ∗

,
0.25
ρ∗

,
0.5
ρ∗

,
0.75
ρ∗

,
0.85
ρ∗

,
0.9
ρ∗

.

Figure 1 displays the evolution of the intersection similarity between the top K =
1,2, . . . ,20 entries of the vectors Q[M]1 and Q̂[M]1 versus K for the different values
of α . The left plot contains the results when mk ≡ 1, while the right plot contains the
results when mk is adapted by setting it to be equal to the smallest nonzero entry of
the matrix bQ̂[k−1](I +αA[k])cθk at each iteration.
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Fig. 1: Evolution of the intersection similarity isimK(Q[M]1, Q̂[M]1) versus K, for
different choices of the downweighting parameter α . Left: mk ≡ 1. Right: mk is set
at each iteration as the smallest nonzero entry of bQ̂[k−1](I +αA[k])cθk . Note the
difference in vertical axis range.

These results show that when mk ≡ 1 the intersection similarity between the two
vectors can be maximum even when comparing only a few top ranked nodes for α as
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Table 1: Top 10 ranked nodes: exact, approximate and with aggregate out-degree.

Q[M]1 48 67 147 73 13 50 137 49 9 139
Q̂[M]1 48 67 147 73 13 50 137 49 9 139
out-degree 67 50 141 13 48 69 107 147 73 70

small as 0.5/ρ∗. The right hand plot in the figure shows how an adaptive choice of
mk can work successfully over a wide range of α choices.

4.2 Centrality Approximation
We now assess the effectiveness of iteration (4) at approximating the broadcast
centrality rankings. Using α = 0.01, the number of nonzero entries in the dynamic
communicability matrix is nnz(Q[M]) = 21097. Note that n2 = 22801, so the matrix
is 92.5% full. Figure 2 scatter plots the resulting approximation to the broadcast and
receive centrality vectors against Q[M]1 and 1T Q[M], respectively. We observe a good
linear correlation at the high end for both cases, indicating that our method correctly
identifies important nodes. The number of nonzeros in the final approximation matrix
Q̂[M] is = 1676, so the level of sparsity has been reduced to around 7.4%.
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Fig. 2: Comparison of exact (horizontal) and approximate (vertical) centralities.

In Table 1 we list the top 10 ranked nodes according to the broadcast centrality.
The first row contains the true result, obtained by ranking the nodes according to
Q[M]1; in the second row we list the top 10 broadcasters according to the ranking
derived from Q̂[M]1 and, finally, the last row displays the result obtained when the
nodes are ranked according to their aggregate out-degree: ∑

M
k=0 A[k]1. As α → 0,

the ranking obtained using the dynamic communicability matrix approaches that
obtained using the aggregate out-degree; see, e.g., [4, 7]. Clearly, however, α = 0.01
is not close enough to zero for this effect to be observed.
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Tables 2-3 contain the values of isimK(Q[M]1, Q̂[M]1) for K = 1,2, . . . ,20 and
`K(Q[M]1, Q̂[M]1) for K = 2,3, . . . ,20. We see that the new method correctly orders
the top 11 broadcasters in the network and correctly identifies the top 20.

Table 2: Intersection similarity between the top K = 1,2, . . . ,20 ranked nodes in
Q[M]1 and Q̂[M]1.

K 1 2 3 4 5 6 7 8 9 10
isimK 0 0 0 0 0 0 0 0 0 0
K 11 12 13 14 15 16 17 18 19 20
isimK 0 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 3: Evolution of `K(Q[M]1, Q̂[M]1) for K = 2,3, . . . ,20.

K 2 3 4 5 6 7 8 9 10
`K 0 0 0 0 0 0 0 0 0
K 11 12 13 14 15 16 17 18 19 20
`K 0 0.08 0.15 0.14 0.07 0 0.06 0 0.05 0

5 Conclusions
Time-dependency adds an extra dimension to network science computations, po-
tentially causing a dramatic increase in both storage requirements and computation
time. In the case of Katz-style centrality measures, which are based on the solution
of linear algebraic systems, allowing for the arrow of time leads naturally to full
matrices that keep track of all possible routes for the flow of information. Such a
build-up of intermediate data can make large-scale computations unfeasible. In this
work, we derived a sparsification technique that delivers accurate approximations
to the full-matrix centrality rankings, while retaining the level of sparsity present in
the network time-slices. With the new algorithm, as we move forward in time the
storage cost remains fixed and the computational cost scales linearly, so the overall
task is equivalent to solving a single Katz-style problem at each new time point.
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Abstract Knowledge is created and transmitted through generation. Innovation
is often seen as a generative process from collective intelligence, but how does
innovation emerges from the blending of accumulated knowledge, and from which
path an innovation mostly inherit? A citation network can be seen as a perfect example
of a generative process leading to innovation. Inspired by the notion of “stream of
knowledge”, we propose to look at the question of production of knowledge under
the lens of DAGs. Although many works look for the evaluation of publications,
we propose to look for production of knowledge within a framework for analyzing
DAGs. In this framework inspired by the work of Strahler, we can also account for
other well known measures of influence such as the h-index. We propose then to
analyze flows of influence in a citation networks as an ascending flow. We propose an
efficient dynamic algorithm for integration with modern graph databases, conducting
our experiment with the Arxiv HEP-TH dataset. Our results validate the use of DAG
flows for citation flows and show evidence of the relevance of the h-index.

1 Introduction
From the ancient times, knowledge passes from individuals to others leading at each
step to more discoveries and innovations. In modern times, with the industrialization
of research, it has become key to track this production of knowledge [16, 27]. Indeed,
it is important for the newly produced innovation to state on which ground it stands,
so peers can judge of the quality of the proposed innovation. An innovation must cite
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its influential sources to give credit to the work it was inspired from and to state its
differences with the competing methods. This is one principle at the heart of the peer
reviewing system enabling and validating the publication of new knowledge.

This process of citing sources is very important because it makes explicit the
transmission of knowledge from prior works to an innovation [5] — and we can
consider each new scientific publication as a container of an innovation. Thankfully,
this production of scientific knowledge can be easily captured in a citation graph. In
this graph, nodes are publications citing other publications. This citation relationship
is oriented and corresponds to a borrowing or derivation of knowledge, and we
suspect that the impact of a publication can be captured in this graph. The production
of knowledge would then be represented as a growing process in a dynamic network.

Key for countries and organizations in modern science, the study of the production
of knowledge is mostly considered from partial indicators to establish rankings and
compare scientists. This gave rise to the development of many measures deriving
from sociometrics [28] including age, field, and other cues. Three major indicators
are often used: the number of citations, the impact factor [25] (which is a time-
related average number of citations of a collection) and the h-index [19]. These are
popular indicators used for the evaluation of scientists, however they can be subject
to controversy [24] and are designed to reflect only the productivity of a scientist
rather than measuring the production of knowledge.

One reason these indicators’ popularity is their simplicity in terms of computing.
However, when previous network analysis was seen as too complex to deploy, modern
graph databases have now grown to ease the analysis of dynamic networks [7].
Inspired by the seminal work from Strahler [26] and from Hirsh [19] we propose
to bring a fresh look at the production of knowledge based on the analysis of flows
in Directed Acyclic Graphs (DAGs). This view is not limited to the production
of indicators but allows a more in-depth analysis of the process and diffusion of
knowledge. The traditional indicators are very effective and it is important that our
framework allows to establish them, while being easily extended.

We first introduce the Strahler numbers [26] and the h-index [19] in a generalized
flow framework, and how those two notions belong to one greater notion of flow, and
introduce our ascending flow – modeled on the notion of flow of knowledge. We
will then discuss parameters of this ascending flow to put it in relation with classical
measures. We propose a dynamic algorithm that allows for quick update. We finally
run experiments on a publicly available dataset, the ArXiv HEP-TH [15].

2 Related works
The study of the production and transmission of knowledge has attracted quite many
scholars in the domains of social and economical science [17], with for example
a focus on the population at the origin of production [29], and of transmission to
business [14]. These studies come a posteriori when observing controlled domains,
with well known sociometric indicators. We are instead interested in the modeling of
the production and diffusion of knowledge.
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Many interesting attempts for modeling the production and diffusion of knowledge
are actually focused on the producer of knowledge themselves, such as in multi-agent
simulation [9, 10]. In these models, the agents are actually interacting to produce
knowledge, and the properties of the resulting interaction network of agents are the
focus of analysis. The agents can actually be tuned to produce different resulting
networks, simulating real world policies [23]. Even on real social networks, the
topology of the networks of the people producing knowledge is the main focus of
complex network research [11], because the focus is often to maximize diffusion in
such network [1]. In contrast, our focus is on the information produced itself and
how it relates to previous works.

A good model for this is the citation graph. It mostly apply to academic research,
but have found its way in complex network research. Numerous works actually focus
on communities [8], and the characterization of the dynamics of the citation graphs
[15]. The closest to the spirit of our research would be the work by Hummon and
Dereian [21] who studied the main paths in the citation network in order to extract
backbones and areas of interest. The question of the efficient implementation of these
cues has been the focus of a previous contribution [4]. An extension of Hummon and
Dereian’s original work has actually been applied to the study of the development of
the h-index [22]. These methods are focused on the path produced by citations and
use them as a base for bibliometrics, without capturing the global flow of information.
We propose in contrast a natural interpretation of flows in DAGs that can easily
capture the same measures used for main path analysis.

One of the most cited work in scientometrics is the Hirsch index [19], globally
known as the h-index. It originally applies to the authors, and is designed to measures
both the quantity and the quality of the authors’ production. It was rapidly followed
by numerous variants and extensions [28]. The most famous possibly is the g-index
of Egghe [13] that is the largest number such that the g articles with the most citations
receive at least a total of g2, averaging the importance of each article. Hirsch [20]
proposes a more restrictive version called h̄-index, normalized to domain or age.
Other variants could be mentioned (such as Bucur et al. [6]), but each is designed
with specific goals. All-in-all, h-index based measures are measures to analyze the
productivity of researchers, but do not allow for the in-depth analysis of production,
in contrary to main path analysis approaches.

Our work roots its contribution in the analysis of flows in DAGs. Traditional
max-flow approaches are quite far from what we define here, because nodes are
always sources of information and edges have infinite capacities — we may be
closer to multicommodity flows [2]. Instead, we mostly take our inspiration from
a different notion of flows, in river streams, as defined by Strahler [26]. Limited to
binary trees, this notion has seen a few extensions [3, 12, 18] with applications to
graph visualization. These versions use flows to highlight and extract most relevant
paths in DAGs and trees and relatively place elements one to another. We will use
this approach and adapt it to the production of knowledge.

In this work we propose to join the different views on knowledge production in
a recursive framework. In section 3, we place in this framework different measures
such as the h-index and Strahler number. Section 4 introduces our proposition of
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a flow that captures the production of knowledge: the ascending flow. Finally, we
provide experimental comparisons on the ArXiv HEP-TH dataset in section 5.

3 Preliminaries
We consider in our setting a citation graph G = (V,E) in which a node ν ∈ V
represents a publication, and a directed edge, hereafter an arc, e(a,b) ∈ E is created
when the article a cites an article b. We consider the graph as being directed acyclic
(or DAG), although real-world data may introduce cycles, this is a marginal case that
we will discard in our study.

In this setting, an author, a journal, proceedings or books can be modeled as col-
lections of publications. Hence, by observing the collective impact of the collection
we can characterize the influence this set of publications. In other words, in our
citation graph formalism, collections are only sink nodes that can be sourced from
the publications themselves. In this work, we will focus on measuring the impact of
individual publications only, that can be trivially reported to authors and collections.

Definition 3.1. For a publication c, its neighborhood N(c) is the set of all the publi-
cations referring to c. The size of N(c) is simply its in-degree d−(c).

From its definition, the h-index applies in general trees of depth 3 and can actually
be seen as a modified version of the Extended Strahler numbers [3], which generalize
Strahler numbers [26] — limited to binary trees — to general trees. In this modifi-
cation, a root node (e.g. an author) does not increase from his maximum valuated
nodes, but instead gets weighted by the maximum Extended Strahler number of his
direct descendants (i.e. the publications).

Strahler numbers have been designed to define the size of river streams based
on a hierarchy of dependent streams. Transmission of knowledge is very similar in
that sense with publications being tributary to prior works they inherit from, and
becoming in turn sources for later works — the h-index then captures the latter
quantity. However, we want a finer measure which could capture the impact of a
publication across all citations it generated.

We defined above our citations graphs to be DAGs, and fortunately, Strahler
numbers have also been extended to DAGs [12, 18]. Herman et al. [18] proposes
a generic framework to compute the importance K of nodes in DAGs — including
Strahler numbers — such as:

K(v) = K(N(ν)) =





c, i fN(v) = /0

F(K(s1), . . . ,K(sp)) si ∈N(v) o.w.
(1)

c designates a constant for terminal cases (leafs, often c = 1), F is an application
of the neighborhood of ν . si represents the successors (or ai ancestors) of node ν .
This framework is nothing but a generic recursive framework, but it allows us to
redefine in it other measures. In this context, counting the number of citations would
only require to modify the application F(N(ν)), such as F(N(ν)) = |N(ν)|= d−(ν).
Similarly, the Strahler number of a node ν is then defined as:
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F(N(ν)) =





1, i f d−(ν) = 0

max(K(s1), . . . ,K(sp))+





p−1 i f all values K(si) are equal

p−2 otherwise

(2)
The application for the h-index then becomes:

F(N(ν)) =





0, i f d+(ν) = 0

1, i f d+(ν) = 1

max(K(k1), . . . ,K(sp)) | |{K(s j)}|= n,with K(s j) = n

(3)

Strahler numbers, number of citations, and h-index impose a discrete limit in
depth which is conceptually an issue — there is no reason not to look for all the
extended consequences of a publication. Instead, Herman et al. [18] propose in their
framework a Flow metric for DAGs to emphasize the distribution of information to
their successor such as:

F(N(ν)) =





1, i f d−(ν) = 0

∑i K(ai)/d−(ai) o.w.
(4)

In which ai represents the ancestors of ν (instead of the successors ki). Note that
this defines a descending flow measure which captures how much information all
nodes in the network receive from a root node ν , but does not give credit to ν for
its production of information. In addition, weights are only initialized by the source
nodes, so no other node can bring to the flow.

4 Ascending flow in citation networks
We provide now a base measure called ascending flow and discuss its complexity. We
then extend it to several variants, such as one that is restricted in depth, hence that
fits better a dynamic context. Two natural definitions help defining our framework
and its integration with existing metrics.

Fig. 1: Ascending flow algorithm: step by step
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Definition 4.1 (Related). Two articles a and b are said to be related if and only if
there exist a path from a to b or from b to a. They are k-related if they are related
and if the shortest path between them is at most of length k.

Definition 4.2 (k-diffuse). A measure of a node ν is k-diffuse when it limits its
computation to a subgraph composed of the k-related nodes of ν

4.1 Ascending flow
We can now model the stream of knowledge as a flow in our citation network. Indeed,
each node — being a publication — produces some information and this production
of information gives credit to their ancestors (in history, or successors in the DAG)
as they refer to them. This translates into the framework as:

F(N(ν)) = ∑

i

K(ki)/d+(ki)+αν (5)

Where αν represents the information created by the publication ν — in practice
we set αν = 1. Hence, the more a publication is influential the more credit it will
propagate to its ancestors. In contrast to the previous Flow metric, our ascendant
flow is not only applied to the reversed DAG, but is also equivalent to the sum of the
flows computed for each sub-DAG induced by each node.

The ascending flow, formalized above, can be implemented as algorithm 4. It is
important to notice that each arc is visited only once and that the total number of
visits of all nodes is also equal to the number of arcs. The time complexity of our
algorithm is then Θ(m) where m is the number of arcs. This key property is inherent
to the pseudo-DAG nature of our citation network. As described in section 3, citation
networks can be converted to DAG with minimum loss of information. However,
even a linear time complexity is often too costly for large dynamic network.

Algorithm 4 ascending flow

Input: A citation network with nodes (articles) and arcs (citations)
An empty dequeue Q (FIFO)

Output: The ascending flow on each node (article) and each arc (citation)
1: Initialize each article v a with flow value αv = 1
2: Color each arc in white
3: Add all leaves in Q
4: while Q is not empty do
5: v← pop f irst(Q)
6: for each w son of v do
7: Color each (v,w) in blue
8: αw← αw +αv/d−(v)
9: if all incoming arcs of w are blue thens

10: Q← push last(w)
11: end if
12: end for
13: end while
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4.2 Depth restriction and dynamic graph
As discussed above, one issue of computing the ascending flow of a node ν from
our definition is that it needs the computation of all successors own influence. Such
a constraint is expansive in the context of a dynamic network, for instance citation
networks — in the case of citation network, publication are usually added, not
removed. To adapt our previous algorithm, we first need to introduce an update
function starting from a single leaf (a new publication). We consider the network
initializes as in algorithm 4 but for the flow value on the nodes — that is kept between
the updates. We then propagate upwards the flow value in all the subgraphs defined
by the ancestors of this publication (Figure 1).

Recall the diffuse property in definition 4.2. Our base measures, the h-index and
the number of citations, are respectively 2- and 1-diffuse by definition, whereas the
ascending flow is ∞-diffuse. In the real-world, we can consider that a publication
that came a few generations after an original will relatively diverge from the original
one, and would marginally contribute to the influence of the previous publication.
The k-diffusion property can then take two forms: either we choose a generational
limit k that cuts the added influence of nodes generated after k generations, or we
can set an evanescence coefficient that progressively attenuates the contribution of a
publication over its ancestors. In the case of a dynamic citation network, a k-diffuse
measure is very quick to compute when k is a small constant as in Figure 2b.

This depth parameter additionally allows us to reconnect with known measures.
For example, the h-index is 2-diffuse and it would not make sense to extend its
definition. In turn, the number of citations — which is also the in-degree (d−(ν)) —
is 1−diffuse. This can then be easily translated in a k-diffuse measure, the k-degree,
which would be the number of publications created until generation k. Then, an
∞-degree would be the number of all publications seeded by ν even indirectly.

5 Experimental results
We now study our framework on a real-world setting. We used an available citation
graph from 2003 KDD Cup: Arxiv HEP-TH[15]1. It consists in an archive of 27,770
publications with 352,807 (internal) citations from the well-known ArXiv website of
pre-prints in the domain of high energy physics theory, archived between January
1993 to April 2003. The resulting graph (Figure 2a) is not acyclic due to the nature of
publications in ArXiv — some publications have been updated with cross-references
to others. We can however consider this graph as pseudo-acyclic because number
and size of the cycles are limited (a few cycles of size 2 and 1 cycle of size 3). In our
setting we simply remove those edges to keep the properties of a DAG. A resulting
excerpt of the graph is shown in Figure 2c.

As we have defined the generalized version of the number of citations in our
framework and the h-index, we compare these measures altogether. We compare the
Pearson and Spearman correlation coefficients of these measures together with the

1 avaiable at: http://snap.stanford.edu/data/cit-HepTh.html
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(a) Arxiv HEP-TH
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Spearman
Pearson h-index ascending flow ∞-degree 1-degree 2-degree 5-degree 10-degree 20-degree 1-flow 2-flow 5-flow 10-flow 20-flow

h-index - 0.821 0.765 0.958 0.954 0.849 0.770 0.765 0.776 0.809 0.807 0.807 0.807
ascending flow 0.546 - 0.758 0.858 0.807 0.764 0.759 0.758 0.961 0.990 0.991 0.991 0.991
∞-degree 0.476 0.267 - 0.715 0.809 0.947 1.000 1.000 0.654 0.710 0.714 0.714 0.714
1-degree 0.768 0.648 0.265 - 0.920 0.794 0.719 0.715 0.856 0.863 0.860 0.860 0.860

2-degree 0.850 0.670 0.375 0.766 - 0.908 0.815 0.809 0.725 0.776 0.775 0.775 0.775
5-degree 0.626 0.347 0.856 0.367 0.546 - 0.952 0.947 0.657 0.714 0.716 0.716 0.716
10-degree 0.483 0.270 0.999 0.268 0.381 0.865 - 1.000 0.654 0.710 0.714 0.714 0.714
20-degree 0.476 0.267 1.000 0.265 0.375 0.856 0.999 - 0.654 0.710 0.714 0.714 0.714

1-flow 0.637 0.694 0.330 0.904 0.638 0.367 0.332 0.330 - 0.987 0.985 0.985 0.985
2-flow 0.664 0.814 0.337 0.892 0.712 0.390 0.339 0.337 0.969 - 1.000 1.000 1.000
5-flow 0.656 0.823 0.341 0.879 0.704 0.392 0.344 0.341 0.964 0.999 - 1.000 1.000
10-flow 0.656 0.823 0.341 0.879 0.704 0.392 0.344 0.341 0.964 0.999 1.000 - 1.000
20-flow 0.656 0.823 0.341 0.879 0.704 0.392 0.344 0.341 0.964 0.999 1.000 1.000 -

Table 1: Comparison of Pearson coefficients (bottom left, correlation of values) and
Spearman coefficient (top right, correlation of ranks) between all measures.
following assumption: if the ascendant flow can reconnect at least partially to the
notion of degree and h-index, we can then validate the relevance of our framework.
Results of the analysis are presented in Table 1 and Figure 3.

First, when comparing the h-index, the number of citations, and the total number
of publications produced by a work, we can notice a clear difference on our four basic
metrics: the number of citations (=1-degree), the number of publications generated
(= ∞-degree), the h-index and the ascendant flow. We additionally varied the depth
of degree and flow in {1,2,5,10,20,∞}. A second observation is that the limitation
in depth of our measure is consistent with what we observe when limiting the depth

Fig. 2: (a) The main connected component of the ArXiv HEP-TH (high energy
physics theory) citation network with 27770 nodes (articles) and 352807 arcs (cita-
tions). (b) Speed comparisons of our algorithm in case of k-diffuse limitations. (c)
An example of the ascending flow metric in an excerpt of 22 nodes (60 edges) of our
dataset, rooted by a publication by Lorenzo Cornalba. The size of nodes corresponds
to their ascending flow in this subgraph. The color of nodes and edges (from blue
to red) is actually their ascending flow in the real global dataset — we can see that
Hong Liu’s publication has probably been a seed for more knowledge than of its
ancestor Lorenzo Cornalba. flows
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(a) h-index × Flow (ranks and values) (b) h-index × ∞-degree (ranks and values)

(c) h-index × 1-degree (ranks and values) (d) ∞-degree × Flow (ranks and values)

(e) ∞-degree × 1-degree (ranks and values) (f) Flow × 1-degree (ranks and values)

Fig. 3: Comparative distribution of ranks and values among 1-degree (i.e. number
of citations of a publications, ∞-degree (i.e. number total of generated publications),
h-index, and ascendant flow. The plots well illustrate the difference between what
those statistics are measuring.

of the k-degree (the most correlated i-flow for a j-degree is when i = j), and the
higher k for the k degree, the more it diverges from the k-flow.

Our main observation, is, by value, the h-index is most correlated to the 2-degree.
This makes complete sense, since the h-index is also limited in depth at 2 for which it
considers a subset of publications. In contrast, when it comes to rankings, the h-index
is most correlated to the 1-degree which is equivalent to the number of citations.
Interestingly, our ascending flow also shares most correlations with the 2-degree as
well and ranks with the 1-degree. This interesting effect may also be observed in
Figure 2c showing that most publications bringing influence to the source publication
has done it already in depth two. The link between the h-index and the degree is
further observable in Figure 3.

In terms of computation, from k = 2, the ranks obtained by the k-flow are .99
similar of those of the regular flow so when a gain of computation is needed, one can
use k-diffuse version of the algorithm (Figure 2b).

Now we can compare publications of a same h-index and published around the
same date which have very different flow measures. We took 2 publications with
very different ascending flows: the first one shows a flow at 11.23 (Figure 4a, left),
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(a) ascending flows (b) 2-flows

Fig. 4: Comparison of direct citations of four publications with h-index =6. The top
node is one original publication, and all other nodes its citing nodes (a) Comparison
of the general ascending flows with two extreme values: left ID920426 (flow=425.4),
right ID9201019 (flow=11.2) (b) Comparison of 2−flows with two extreme values:
left ID9201079 (2−flow=2.3), right ID9201058 (2−flow=21.6). Relative node size
(between couples of pictures) correspond to h-index values for each node. Node color
correspond to, (a) ascending flow, (b) 2-flow.

while the second one displays a flow measure at 425.44 (Figure 4a, right). Their
in-degree does not vary that much (21 vs. 16 for the most influential), however, the
2-degree makes the difference (151, vs. 707). That means in average, the publications
citing the most influential work produce more than four times more citations in turn –
average h-index is 3.2 vs. 10.6. Note also that our measure takes into account how
the information is spread out. In the first case, we have 390 citing edges out, while
we have 171 in the other case.

We repeated the same experiment with two varying 2-flow measures (h-index =6
and similar date of publication): the first one is 2.25 with 10 citations (Figure 4b, left),
and the second one is 21.59 with 20 citation (Figure 4b, right). The average h-index
in the least influential one is actually higher (3.45) than of the most influential (1.80).
However, the most influential has seeded 102 citations (2-degree) vs. 17 edges outs,
when the first one 68 citations for 182 citing out. The flow measures then capture
much more details of the graph of produced by citations than the h-index allows.

6 Discussion and conclusion
We have shown that the production and diffusion of knowledge can be modeled in a
recursive framework that studies flows in DAGs, with a natural interpretation of the
notion stream of knowledge. The framework allows for other known metrics to be
embedded, and for efficient computation on large dynamic graphs. We applied our
different flows and compared them with other known measures. By comparing the
ascendant flow with the h-index we clearly see a correlation. The h-index has been a
very popular indicator and useful for predictions and scientometrics. Our measure’s
interpretation is straightforward, and this correlation goes in favor of the relevance of
the h-index. But we do not fully correlate with the h-index, and many cases that are
oversimplified by the h-index can be finer described by the ascending flow.
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We looked for differences in flow when the h-index gives a same value. We found
cases with large differences, and explain the differences as follows: the h-index
gives a rough estimation of a publication’s production of knowledge, but it does not
take into account how each citation refer to the original work. The flow measure,
even 2−diffuse, is reinforced by two factors. A first one is something similar to
a “community” effect in citations, i.e. when the citations produced also cite each
other in relative proportion, in comparison to citations “outside” that “community”
of citations. For example, this happens when a paper has an influence in developing
a community of research, the large the community, the greater the flow. The second
effect gets more relevant as the depth of diffusion is greater. It is somewhat close
to the hubs and authorities effect: the more citations a paper gets from influential
papers the more influential it will get.

The interpretation of flow we propose is much more flexible than the h-index,
and can fairly support a wide range of parameters for scientists to conduct further
experiments (such as additional weights, edge filtering, depth of influence, etc.). More
than a metric, when studying the influence of a work (or a collection of works), we
argue that the structure of the flow of knowledge it produces, i.e. the DAG generated
by a publication and its citations should be taken into account.

Although our study does not hold for an evaluation for which a comparison with
many other metrics and regression would have been necessary, we still have set
and validated the basis of our framework – in that it comprises well other known
measures. Now, this will allow to take our graphs to another level of complexity –
namely multiplex DAGs. H-index would apply with difficulty in a multiplex network,
but we are currently focusing our effort in studying the ascendant flow in a version
of our citation graphs where different routes could be considered in parallel (because
knowledge does not flow equally in all citation sources). Among our future work
is also the application to the analysis of news documents. Indeed, DAGs also apply
to the study of closely related documents – even if there is no citation relationship,
the time dependency between closely related documents can maintain the DAG
assumption. Extending our study to other databases, such as DBLP, we would like to
conduct case studies on authors and journals this time, to observe the influence of
Nobel prizes or high standard journals.
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[18] Herman, I., Marshall, M.S., Melançon, G., et al.: Skeletal Images as Visual Cues in Graph
Visualization, pp. 13–22. Springer Vienna (1999)

[19] Hirsch, J.E.: An index to quantify an individual’s scientific research output 102(46), 16,569–
16,572 (2005)

[20] Hirsch, J.E.: An index to quantify an individual’s scientific research output that takes into
account the effect of multiple coauthorship. Scientometrics 85(3), 741–754 (2010)

[21] Hummon, N., Dereian, P.: Connectivity in a citation network: The development of dna theory.
Social networks 11(1), 39–63 (1989)

[22] Liu, J., Lu, L.: An integrated approach for main path analysis: Development of the hirsch index
as an example. Journal of the American Society for Information Science and Technology
63(3), 528–542 (2012)

[23] Mueller, M., Bogner, K., Buchmann, T., et al.: Simulating knowledge diffusion in four
structurally distinct networks: An agent-based simulation model (2015)

[24] Pendlebury, D.A.: The use and misuse of journal metrics and other citation indicators.
Archivum immunologiae et therapiae experimentalis 57(1), 1–11 (2009)

[25] Reuters, T.: The thomson reuters impact factor. thomson-
reuters.com/products services/science/free/essays/impact factor/ (2012)

[26] Strahler, A.N.: Quantitative analysis of watershed geomorphology. Eos, Transactions Ameri-
can Geophysical Union 38(6), 913–920 (1957)

[27] Van Raan, A.F.: Measuring science. In: Handbook of quantitative science and technology
research, pp. 19–50. Springer (2004)

[28] Waltman, L.: A review of the literature on citation impact indicators. Journal of Informetrics
10(2), 365 – 391 (2016)

[29] Wuchty, S., Jones, B.F., Uzzi, B.: The increasing dominance of teams in production of
knowledge. Science 316(5827), 1036–1039 (2007)



Abstract Many real-world networks have a nested structure. Examples range from
biological ecosystems (e.g. mutualistic networks), industry systems (e.g. New York
garment industry) to inter-bank networks (e.g. Fedwire bank network). A nested
network has a graph topology such that a vertex’s neighborhood contains the neigh-
borhood of vertices of lower degree. Thus –upon node reordering– the adjacency
matrix is stepwise, and it can be found in both bipartite and non-bipartite networks.
Despite the strict mathematical characterization and their common occurrence, it
is not easy to detect nested graphs unequivocally. Among others, there exist three
methods for detection and quantification of nestedness that are widely used: BIN-
MATNEST, NODF, and FCM. However, these methods fail in detecting nestedness
for graphs with low (NODF) and high (NODF, BINMATNEST) density or are
developed for bipartite networks (FCM). Another common shortcoming of these
approaches is the underlying asumption that all vertices belong to a nested compo-
nent. However, many real-world networks have solely a sub-component (i.e. not all
vertices) that is nested. Thus,unveiling which vertices pertain to the nested compo-
nent is an important research question, unaddressed by the methods available so far.
In this contribution, we study in detail the algorithm Nestedness detection based
on Local Neighborhood (NESTLON) [7]. This algorithm detects nestedness on a
broad range of nested graphs independently of their density and resorts solely on
local information. Further, by means of a benchmarking model we are able to tune
the degree of nestedness in a controlled manner and study its efficiency. Our results
show that NESTLON outperforms both BINMATNEST and NODF.
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1 Introduction
Two vertices are nested if the neighborhood of the one with larger degree contains
the neighborhood of the lower degree one. We call nested component of a graph the
maximum set of vertices that are nested. Following, a graph is nested if the extent
of the nested component is such that it embraces all vertices. This definition applies
in both bipartite and non-bipartite networks. Nested graphs include some common
topologies like fully-connected ones or stars. In real-world networks, some edges
violate the definition of pairwise nestedness given above; in this case, the lower the
number of these violations, the larger the degree of nestedness of the network.

In Ecology, as it was discovered in the last decade, mutualistic networks show
a pronounced degree of nestedness [4]. In Economics, e.g. the New York garment
industry including 10’000 manufacturers over a period of 18 years was found to
exhibit this property as well [15]. Among non-bipartite networks there are several
examples of networks that show large degrees of nestedness: like inter-bank networks
[13], and trade relations between countries [9].

Four methods have gained particular attention for detecting and quantifying
Nestedness in the last decade: Binary matrix nestedness temperature calculator
(BINMATNEST) [11], based on Nestedness Temperature Calculator (NTC) [2],
Nestedness metric based on overlap and decreasing filling (NODF) [1], and Fitness-
Complexity Metric (FCM) [14]. Nonetheless, these methods detect nestedness for
only a specific density range (BINMATNEST, NTC and NODF fail in detecting nest-
edness for high density networks) or a specific class of graphs (FCM was developed
for only bipartite ones).

All four methods assume that all vertices belong to a single nested component
but, in general, this is not necessarily true. Such component might include solely a
subset of vertices while the others lay outside it. Therefore, it is an important research
question to devise a method that identifies the individual vertices that belong to a
nested component. This question remains unaddressed by the methods available so
far.

The widely used BINMATNEST is based on NTC, which compares the focal
adjacency matrix with a “perfect ordered” matrix. The less these two matrices deviate
from each other, the more the graph is judged as nested. However, the matrix of
”perfect order” is a normative concept characterized by a static isocline [2] (i.e. matrix
is filled up to the secondary diagonal). Both methods judge graphs only as nested
if they have this particular ”perfect order”. They fail in detecting graphs that have
locally nested components. This static and normative concept of nestedness relies
only on global information (i.e. irrespective of local neighborhoods in the nested
components). For large datasets it is important to develop methods for detecting
nestedness that rely solely on local information, because they scale better [7].

In this contribution we review the method Nestedness detection based on Local
Neighborhood (NESTLON) that reliably detects nestedness irrespective of graph
density and network type (i.e. bipartite and non-bipartite networks) [7]. Although in
this contribution we focus on non-bipartite graphs (for the sake of simplicity), all the
results are easily extensible to bipartite ones.
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The remainder of the paper is organized as follows. In the next section section
we provide an overview about nestedness in graphs and the current methods for
detecting it. In ”Algorithm” section we review the alternative method NESTLON for
detecting nestedness. In ”Robustness Analysis” section we compare commonly used
algorithms with NESTLON on a benchmarking graph. The final section concludes
and discussed the main contributions of this Paper.

2 The Notion of Nestedness
2.1 Definition of Nestedness
We first give a colloquial definition of nestedness and later a proper mathematical
definition. In a nested graph the neighborhood of a vertex includes the neighborhoods
of vertices which have lower degrees 1. Therefore, by sorting the adjacency matrix of
a nested graph by degree (i.e. the number of direct neighbors) we obtain a stepwise
matrix. For example, a star is nested and has a stepwise matrix. A star’s central
vertex has the highest degree (i.e. this vertex is connected every other vertex) and all
other vertices have degree one (i.e. they are all connected only to the central high
degree vertex) while the neighborhoods of all lower degree vertices are included in
the neighborhood of the high degree vertex. Therefore, the adjacency matrix of a star
has just one large step (i.e. from maximum degree to one-degree).

For a proper mathematical characterization we briefly recapture the nomenclature
for graphs. The adjacency matrix, A, characterizes the topology of a graph object G.
An non-zero entry in the adjacency matrix, ai j 6= 0, indicates an edge between the
two vertices i and j. Each vertex has a degree, ki, which is the number of neighbors it
is connected to. The total number of edges is e and the total number of vertices is n.
N is the set of all vertices and E is the set of all edges. A graph can be decomposed
by the concept of degree partition [10]:

Definition 2.1. Let G = (N,E) be a graph whose distinct positive degrees are k(1) <
k(2) < .. . < k(m) and let k(0) = 0 (even if no vertex with degree 0 exists in G).
Further, define Di = {ν ∈ N : kν = k(i)} for i = 0, . . . ,m. Then the set-valued vector
D= (D0,D1, . . . ,Dm) is called the degree partition of G.

With this concept of degree partition a nested graph can be expressed as follows
[10]:

Definition 2.2. Consider a nested graph G = (N,E) and let D = (D0,D1, . . . ,Dm)
be its degree partition. Then the vertices N can be partitioned in independent sets Di,
i = 1, . . . ,bm/2c, and a dominating set

⋃m
i=bm/2c+1Di in the graph G′ = (N \D0,E).

Moreover, the neighborhoods of the vertices are nested. In particular, for each vertex
ν ∈Di, i = 1, . . . ,m, we obtain the sets of vertices as

Nν =

{⋃i
j=1Dm+1− j if i = 1, . . . ,bm/2c;⋃i
j=1Dm+1− j \{ν} if i = bm/2c+1, . . . ,m.

(1)

1 This definition is for non-bipartite graphs, for bipartite graphs a similar definition holds [4].
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An adjacency matrix is stepwise if the following definition holds [5]:

Definition 2.3. A stepwise matrix A is a symmetric, binary (n× n) matrix with
elements ai j satisfying the following condition: if i < j and ai j = 1, then ahk = 1
whenever h < k ≤ j and h≤ i.

Thus, a nested graph has a stepwise adjacency matrix and its degree partition can be
separated into an independent and a dominating sets.

A measure for determining the filling of an undirected graph is the density.

Definition 2.4. The density of an undirected graph is given by

γd =
2 · e

n · (n−1)
(2)

In the following we propose a measure for counting the number of holes in a
graph. We compare the neighborhoods of two vertices i and j. If the lower degree
vertex j has a neighbor l, which is not neighbor of i, we will count a hole (because it
appears as such in the sorted adjacency matrix). From there, the density of holes can
be computed [7]

Definition 2.5. The total number of holes in an unweighted graph is given by

γh =
∑i, j∈N Θ(ki− k j)∑l∈N(1−ali) ·al j

∑i, j∈N Θ(ki− k j)min(n− ki,k j)
(3)

with Θ(x) the Heaviside function:

Θ(x) =





0 if x < 0;
1
2 if x = 0;
1 if x > 0.

2.2 Detecting and Measuring Nestedness
In this section we briefly discuss three commonly used methods for quantifying
nestedness in graphs. These measures are BINMATNEST (based on the NTC),
NODF, and FCM.

Binary matrix nestedness temperature calculator (BINMATNEST)
NTC performs insufficiently if the number of holes in a graph is high. Therefore,
BINMATNEST uses a genetic algorithm that reorders rows and columns so that
the packing of the matrix increases. The matrix temperature T is a measure of how
equally the edges are distributed across the matrix. If all edges are in the upper left
corner the temperature is minimal (T → 0). If all edges are equally distributed in the
matrix the temperature is maximal (T → 100). The normalized temperature of the
adjacency matrix is given by the following expression [6]:

µBIN =
100−T

100
(4)

If µBIN = 1 (0) the matrix temperature will be minimal T = 0 (resp. maximal T =
100).
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Nestedness metric based on overlap and decreasing filling (NODF)
NODF was developed for bipartite networks of ecological systems [1] but it is
applicable to square matrices, too. This method is independent of row and column
order since it computes the paired nested degree for each pair of both columns and
rows. However, in contrast to BINMATNEST this method does not reshuffle the
matrix. For the whole matrix the sum of nestedness degrees of all paired rows and
columns is the total nestedness normalized by the number of all pairs. The NODF
metric assigns a value MH

i j to each neighboring pair of vertices i j:

MH
i j =

{
0, if ki = k j

ni j
min(ki,k j)

, otherwise (5)

The total number of common edges among the two vertices i and j is given by ni j.
The procedure is carried out for rows (MP

i j) and columns (MA
i j) analogously. Finally,

the total nestedness for square matrices is then given by [12]:

µNODF =
∑

P
i< j Mi j +∑

A
i< j Mi j

2·n(n−1)
n

(6)

An advantage of NODF is its independence of matrix shape because it goes
through both rows and columns [12]. However, this method fails in detecting nested-
ness for nested graphs of low and high density because it cancels out all terms for
vertices of same degree.

Fitness-Complexity Metric (FCM)
FCM ranks vertices in an iterative and non-linear process [14]. The iteration process
couples a fitness term to a complexity term. Since FCM was solely developed for
bipartite networks, we will not use it as a benchmark in this contribution.

2.3 Benchmark Graphs
We require a solid benchmarking framework for comparing robustness and reliability
among different nestedness detection methods. A benchmark graph needs to differ in
its network characteristics (i.e. degree distribution, graph density, vertex centrality,
etc.) but keep a certain level of nestedness. The authors of [8, 9] propose a coherent
formation process for generating nested graphs with a single exogenous parameter
α that influences the topology of the generated graphs fundamentally. This network
formation process has two contrasting dynamics, edge creation and severance. First,
the edge creating dynamics allows each vertex to create an edge to the most central
vertex in its second-order neighborhood (i.e. the neighbors of its own neighbors)
with a probability α . Second, each vertex may severe the edge to the least central
neighbor in its first-order neighborhood with the complementary probability 1−α .
By changing α we can tune a nested graph between two limiting cases. On the
one hand, we obtain a star topology for α → 0 and, on the other hand, we obtain a
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fully-connected graph for α → 1. A first-order phase transition exists at the critical
value α = 1/2 [8].

The degree partition for the independent set of the nested graph is given by the
following definition [9]:

Definition 2.6. For 0 < α ≤ 1/2 and n→ ∞ the asymptotic expected proportion of
vertices nk in the independent set with degrees k = 0,1, ...,k∗ if given by

nk =
1−2α

1−α

(
α

1−α

)k

(7)

where

k∗(n,α) =
ln
(
(1−2α)n
2(1−α)

)

ln
(

1−α

α

) (8)

In this contribution we utilize this network topology to create benchmark graphs.
In addition, it is possible to weaken the perfectly nested topology by an incremental
increase of random rewiring of edges. This process works as follows. First, for a
randomly chosen vertex we determine all of its next neighbors. Second, a connection
to a randomly chosen neighbor is cut and the focal vertex is connected to another
vertex to which it previously was not connected to. If a vertex is isolated or is
connected to all nodes in the network, nothing happens. The total number of rewired
edges enew is given by the parameter ρrew. These two quantities are linked in the
following way: enew = ρrew ·n. The higher ρrew the more edges get randomly rewired.
This process can be seen as a simplification of other rewiring mechanisms in nested
networks [3].

3 Algorithm
In this section we briefly review the algorithm NESTLON as a method for detecting
a nested component in graphs and its constituents [7]. The simple main concept
behind the algorithm is to follow the definition of nestedness closely. NESTLON
judges whether the neighborhood of a vertex includes the neighborhood of lower
degree vertices in an iterative manner. A vertex belongs to the nested component if it
respects the local definition of nestedness to an acceptable degree.

The method iterates through the connected component of a graph starting with the
highest degree vertex and, therefore, is applicable on both bipartite and non-bipartite
graphs. The procedure is analogous for either in-degree or out-degree (for simplicity
we refer to the term degree in the following). We use the algorithm on a graph that is
sorted by degree centrality. The algorithm performs the following steps subsequently:

Algorithm: Nestedness detection based on Local Neighborhood (NESTLON)
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Conventions:
n Number of vertices in the graph.
ki Degree of vertex i.
N

(1)
i First-order neighborhood of vertex i.

N
(1+)
i Extended first-order neighborhood of vertex i

(
N

(1)
i ∪{i}

)
.

ζi Number of positive confirmations that the neighborhood of vertex i
includes the neighborhoods of its first-order neighbors.

Λ List of candidates (i.e. vertices that might belong to nested component).
|·| Number of elements in a set.

Input:
A Adjacency matrix of the graph object.
θcon Confirmation parameter of neighborhood similarity-
θnest Parameter for counting focal vertex to nested component.

Output:
Vnest Elements of nested component (i.e. vertices that belong to nested component).

Algorithm NESTLON
1: Vnest ←{}
2: Λ ←{i∗}; i∗/ki∗ = max(ki)
3: while Λ 6= 0 do
4: for i ∈Λ do
5: ζi← 0
6: for j ∈N

(1)
i do

7: if

∣∣∣∣N
(1+)
j ∩N(1+)

i

∣∣∣∣

min

(∣∣∣∣N
(1+)
j

∣∣∣∣,
∣∣∣∣N

(1+)
i

∣∣∣∣

) > θcon then

8: ζi← ζi +1
9: Λ ←Λ ∪{ j}

10: end if
11: end for
12: if ζi∣∣∣∣N

(2)
i

∣∣∣∣
> θnest then

13: Vnest ←Vnest ∪{i}
14: end if
15: end for
16: end while

The outcome of the algorithm is a set of vertices that belong to the nested compo-
nent Vnest . Dividing the number of nested vertices by the highest degree of the graph
is then a measure of the size of the component:
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µNEST =
|Vnest |

max(ki)
, with i ∈ N (9)

This method has several important features. It is independent on the adjacency
matrix shape and size. In contrast to NODF it calculates nestedness for rows and
columns independently. Compared to NODF and BINMATNEST it can detect nested
graphs irrespective of their density. We will investigate the robustness of the algorithm
in the next section.

4 Robustness Analysis
A robust algorithm can detect the nested component independently of degree distri-
bution, graph density, matrix shape and matrix size. Such a robust algorithm should
identify all vertices that fulfill the criterion of nested neighborhoods (i.e. a higher
degree vertex includes the neighborhood of a lower degree vertex). Therefore, we
can evaluate an algorithm’s robustness on such a benchmark graphs, in which all
vertices belong to a single nested component. We create these graphs with the net-
work formation process, which we already discussed in section ”The Notion of
Nestedness”.

4.1 Calibration of NESTLON
Before we compare the values of robustness among the algorithms we need to
calibrate the two exogenous parameters of the NESTLON algorithm (i.e. θcon and
θnest). The parameter θcon is the confirmation threshold of neighborhood similarity
and the parameter θnest is the threshold for counting a focal vertex to the nested
component.
Calibration of NESTLON: Variation of θcon and θnest
In fig. 4.1 we show the values of Nestedness for the NESTLON algorithm under
variation of both parameters θcon and θnest . The number of vertices the algorithm
counts as nested does not differ for θcon < 1 but decreases for θnest ≥ 0.5. Because
we deal with a perfectly nested graph (i.e. benchmark graph with α = 0.49, ρrew =
0) both parameters shall be set so that NESTLON measures full nestedness (i.e.
µNEST

!
= 1). Thus, we choose θcon < 1 and θnest < 0.5 as reasonable for detecting

nestedness.

Calibration of NESTLON: Adding Noise
In fig. 2 we show the NESTLON’s ability in detecting the nested component on a
benchmark graph with added noise (i.e. random rewiring of edges). In absence of
rewiring (i.e. ρrew = 0) the algorithm includes all vertices as members of the nested
component. For increasing random rewiring (i.e. ρrew > 0) the algorithm counts
fewer vertices as part of the the nested component. This behavior is expected because
the graph looses its nested structure with an increasing number of edge rewiring.
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Fig. 1: Values of Nestedness
for the NESTLON algorithm
under variation of both ex-
ogenous parameters θcon and
θnest . We perform the compu-
tation on a benchmark graph
of size n = 500 and α = 0.49.
Thus, all vertices belong to
a single nested component.
As we can see in the figure
the thresholds are too rigid
for θcon = 1 and θnest ≥ 0.5.
Therefore, we choose θcon <
1 and θnest < 0.5 as reason-
able detection thresholds.

Fig. 2: Adjacency matrices of the benchmark graphs with additional noise: ρrew = 0.0
(top left), ρrew = 1.0 (top center), ρrew = 2.0 (top right), ρrew = 3.0 (bottom left),
ρrew = 5.0 (bottom center), ρrew = 7.0 (bottom right). The vertices that are counted
towards to the nested component by NESTLON are indicated by a yellow dot.

Robustness Analysis: Filling Matrix
In fig. 3 we show the values of robustness measured among the three methods
BINMATNEST, NODF and NESTLON on the benchmark graphs. By increasing α

the matrix filling (i.e. network density γd) will increase, too. The benchmark graphs
are nested by definition for every value of α ∈ [0,1].

Although every benchmark graph is perfectly nested, BINMATNEST misses to
detect all vertices as belonging to the nested component beyond the phase transition
(i.e. α > 1/2). For a fully connected network its genetic algorithm can not establish a
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better packing by reordering rows and columns. NODF fails in detecting nestedness
for graphs with low (i.e. α < 1/2) and high density (i.e. α > 1/2). Because this
method cancels out all rows and columns of same degree it has a strong bias towards
low nestedness for both low and high density graphs. However, NESTLON indicates
an entirely nested network for every graph density (i.e. µNEST = 1 for every value of
α ∈ [0,1]).

Robustness Analysis: Adding Noise
In fig. 4 we compare the measured values of robustness among the three algorithms
for increasing random rewiring ρrew. In absence of rewiring (i.e. ρrew = 0) the graph
is still perfectly nested and, thus, we expect nestedness close to µ = 1. For increasing
rewiring (i.e. ρrew > 0) we expect that the nestedness decreases because the density
of holes increases. BINMATNEST and NESTLON count all vertices to the nested
component for ρrew = 0, whereas NODF recognizes only less than half of the vertices.
By increasing noise NESTLON is significantly more parsimonious than the two other
methods in judging vertices as nested. NODF has even a minimum at ρrew ≈ 4.5.
Beyond this minimum NODF detects a larger fraction of nested vertices although the
graph increasingly converges to a random graph.

Fig. 3: Robustness in detecting the nested
component among BINMATNEST,
NODF and NESTLON on a benchmark
graph. By definition all realizations of the
benchmark graph are nested for all values
of α . We perform the computation on a
graph of size n = 200. The graph density
(i.e. γd) increases with α , whereas the
density of holes (i.e. γh) stays zero.

Fig. 4: Robustness in detecting the nested
component among BINMATNEST,
NODF and NESTLON on a benchmark
graph with added noise. With increasing
random rewiring ρrew the nested structure
of the benchmark graph dissolves (i.e.
increasing density of holes γh). We
perform the computation on a graph
of size n = 200 and with α = 0.45 (i.e.
γd ≈ 0.029).
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Conclusion
In this contribution we reviewed the novel method termed NESTLON for detecting
a nested component in graphs. As shown, widely-used algorithms such as BIN-
MATNEST and NODF compute unreasonable low values of nestedness on bench-
mark graphs with either low density (i.e. γd <

1
2 ), NODF, or high density (i.e. γd >

1
2 ),

NODF and BINMATNEST. The method NESTLON overcomes these limitations and
is applicable on both bipartite and non-bipartite graphs. The algorithm is purely based
on the mathematical definition of nestedness and utilizes, thus, only local information.
For the robustness analysis we created benchmark graphs with a network formation
process. This network formation process allows us to tune the degree of nestedness
in a controlled manner. In future work, we want to extend NESTLON to graphs with
more than a single nested component.
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Abstract While network analysis is more than 70 years old, the analysis of paths in
complex networks is yet almost negligible. Here, we introduce different measures of
computing the pairwise similarity of paths, either simply based on the elements in
the paths, their sequence, on the graph in which they are embedded, or incorporating
all three features. Based on ground-truth in a data set concerning how people solve a
one-player puzzle, we show that the classification of the paths using the similarity
measures in a hierarchical clustering approach performs best for the similarity mea-
sures which integrate all three features. We thus give first evidence that path similarity
measures provide another dimension to mine and analyze complex networks.

1 Introduction
The analysis of complex networks has become a large and active field in which a
broad variety of results has been published. In many cases, entities use the network
as environment and move from node to node. The most obvious example is human
navigation in spatial networks, travels in a transportation network, users surfing the
WWW, but also game players exploring the problem space of the game, or students
using an e-learning environment by following different paths through interlinked
documents and media. In all these examples, the entities move on paths (or trails or
walks) through the network which are usually neither the shortest path nor totally
random (we will use the term path, if not explicitly stated otherwise, it includes
walks and trails). But while there has been research concerned with human mobility
patterns in a broad sense [4, 6], there has been almost no work which considers the
actual paths taken. Consider for example the network shown in Figure 1 which shows
which paths humans have taken in it. All humans navigating in this network started
in the leftmost node and aimed at reaching the nodes in the bottom-right corner
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Fig. 1: (a) An example for a Rush Hour board. The red car needs to be removed from
the board. A legal move consists of horizontal (vertical) move of one horizontally
(vertically) placed car. (b) Each node represents one state of a puzzle and two states
are connected by an edge if there is a legal move between them; some states represent
the solution of the puzzle. The width of an edge is proportional to the number of
users that made this move. Paths from a distinct starting state of the puzzle are called
solving when they reach one of the states representing the solution of the puzzle.

of the picture. The thickness of the edges corresponds to the number of humans
who used this edge in their path. It is astonishing that there are some paths in the
network which are used more often than others although they are not necessarily the
shortest ones. A human eye can also recognize that there are some paths which are
more similar to each other than others. Also in other cases, it makes sense not to
treat every path as a single path, but to find groups of similar paths and use these
groups for further analysis. This can help to find common or distinguishing patterns
in the paths and reduces the large amount of taken paths into representative groups.
If such a clustering procedure is able to partition given paths into groups such that
the paths within one group share elementary structural commonalities, it can be used
in different application scenarios. By clustering paths of students in an e-learning
environment, one might be able to identify different learner types and structure the
materials accordingly. Grouping paths of players solving a puzzle can be used to find
different strategies to solve the game. Clustering paths in a road network can lead to
a procedure for identifying different means of transportation.

However, such a clustering requires a similarity measure. A similarity measure
needs to be able to incorporate the most essential information contained in a path
and weight them in an appropriate way. Therefore, the question arises of how to
quantify the similarity of paths. It is surprising that there has been no approach
proposed to measure the similarity of paths in complex networks and to group paths
by similarity. Thus, in this paper, we: (i) provide seven first similarity measures for
paths in networks which are either based on the elements contained in the paths, or
on their sequence, on their embeddedness in the network, or on all three features,
(ii) compute the proposed similarity measures for all pairs of paths of a benchmark
data set with more than 13000 paths from 20 different networks (of the same kind),
and (iii) for each of the networks, we cluster all paths with a hierarchical clustering
approach with each of the proposed measures, and (iv) evaluate the results with

(a) (b) Problem space and human navigation
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respect to a property of the paths that we set as ground-truth. It is crucial to note that
this work does not the aim at developing a classifier that partitions the paths according
to the ground truth. This could be easily achieved by using other path-features or
external features. The main goal is rather to evaluate the proposed similarity measures
whether they are able to distinguish between structurally different paths.

The article is hence structured as follows: Section 2 gives an overview of research
from other fields. Seven similarity measures for paths are introduced in Section 3.
Section 4 gives the details of our approach for clustering paths, including the used
data set (Sec. 4.1), the used ground truth and evaluation methods (Sec. 4.2), and the
results (Sec. 4.3). Section 5 summarizes the findings of the article.

2 Related Work
While we know of no articles that proposed a similarity measure of paths in a complex
network using their embeddedness in it, work that is related to the presented can be
found in several different areas of research: In applications like video surveillance
systems, it is desirable to track moving objects through consecutive video frames
and to extract their trajectories. In order to automatically recognize anomalous
movements of objects, a system needs to be able to distinguish between regular
and anomalous trajectories. For this reason, there are several approaches how to
compare and group trajectories of moving objects [1, 3, 15, 19]. The most often used
similarity measures are the length of the longest common subsequence [3, 19] and the
Hausdorff distance [12]. In the analysis of trajectories created from tracking moving
individuals by (GPS) sensors, the Frchet distance has been extensively studied and
applied [7], for example for detecting recurring patterns in trajectories [2]. In the
context of web mining, it is beneficial to cluster similar user web sessions, for example
for commercial or didactic interest, which is why there are several approaches to
cluster sequential data. While Wang and Zaı̈ane propose a clustering method for web
sessions based on sequence alignment [20], Kumar proposes a new similarity metric
for sequential data [13]. For comparing general sequential data, Moen, Mannila
and Das presented several approaches [16, 17, 18] which use a measure similar to
the longest common subsequence and eventually incorporates the similarity of the
contained events themselves. Clustering of sequences has also been applied in order
to make predictions, for example by Laasonen on routes of mobile phone users [14].
However, although some of these approaches can be adapted to paths, they do not
consider the complex network in which the paths are embedded in. Taking into
account the underlying complex networks is additional information which—as we
will show in the following—will yield better results when finding groups of similar
paths. Additionally, a systematic evaluation of possible similarity measures of paths
has been not provided yet.
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3 Similarity Measures for Paths
Definitions Let G = (V,E) with V = {v1, . . . ,vn} and E ⊆ V ×V denote a simple,
connected, undirected, and unweighted graph. We define a path P in G as finite
sequence P = (p1,ep1 , p2, . . . , p`−1,ep`−1 , p`) with pi ∈ V for all i ∈ {1, . . . , `} and
epi = (pi, pi+1) ∈ E for all i ∈ {1, . . . , `−1}. Note that we do not require the edges
or nodes of a paths to be distinct. Some authors would thus call P a walk. Since the
considered graphs are simple, a path is uniquely determined by its node sequence and
the notation can be simplified to P = (p1, p2, . . . , p`) which is used in the following.
Let V (P) = {p1, . . . , p`} and E(P) = {ep1 , . . . ,ep`−1} denote the set of nodes and
edges which are contained in a path P, respectively. The length |P|= `−1 of a path P
is defined as the number of (not necessarily distinct) edges. It holds that |P| ≥ |E(P)|.
Furthermore, let I(P) = {1, . . . , `− 1} be the set of node indices of path P. For
two nodes v,w ∈V , we define the distance of v and w as the length of the shortest
path between v and w. If there is no path from v to w, it is set d(v,w) := ∞. In the
remainder of this article, we assume that G is a connected graph, hence d(v,w)< ∞

for all v,w ∈V . For a path P and a node v ∈V , we define the distance of v and P as
d(v,P) = min

{
d(v,w)

∣∣w ∈V (P)
}

.
In the following, we assume that we have a graph G and a set of paths P(G) of

valid paths in that graph. The research question is how to cluster these paths into
coherent groups, given a suitable similarity measure σ : P(G)×P(G)→ R. In order
to derive meaningful similarity and distance measures for paths, the most essential
information contained in them needs to be determined. There are three obvious pieces
of information contained in any path: (i) the elements contained in the paths, i.e., its
nodes and edges, (ii) the order of the contained elements, and (iii) the position of
the contained elements in the graph, i.e., their distance to the elements of the other
path. Thus, as a first approach to determine the similarity of two paths, they can
either be modeled as sets and existing measures for comparing sets can be used, or
they can be modeled as sequences and existing measures for comparing strings or
sequences can be used. Finally, paths can be considered as objects in the network,
which allows incorporating the distance of the path’s nodes in the graph into the
similarity measure.

Element-based measures If a path is represented as a set of nodes or as a set of
edges, well-known similarity measures for sets can be used, such as the number
of common nodes or edges, or—as its normalized version—the Jaccard index [9].
The measures (normalized) node set similarity σnss (σN

nss) and (normalized) edge set
similarity σess (σN

ess) for two given paths P,Q ∈ P(G), are then defined accordingly
(cf. Table 1).

Order-based measures If a path is understood as a sequence of nodes, similarity
measures for sequences can be used, for example the longest common subsequence
of the two paths [8]. For a path P = (p1, p2 . . . p`−1 p`), a subsequence of P is defined
as any sequence of nodes which can be obtained by deleting nodes from P. Note that
a subsequence of a path in a graph is not necessarily a valid path in that same graph
anymore. For two paths P, Q, let lcs(P,Q) denote the length of their longest common
subsequence. The corresponding LCS similarity σlcs is as defined in Table 1, the
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normalized similarity measure is obtained by dividing lcs(P,Q) by the length of the
longer path (see Table 1).

Table 1: Definitions of the similarity and distance measures for paths P,Q. σ and
σN denote unnormalized and normalized measure in the first and second columns,
respectively, similarly for distance measures δ .

Position-based measures While the previously proposed similarity measures only
take into account nodes or edges contained in the paths or their order, we also propose
four measures which consider the position of the paths in the network. The motivation
is that even two paths that do not share a single edge can be close or distant within
the graph they are embedded in. For example, if two people drive from the same
city to the same other city, but one on a highway and one on country roads next to
the highway, the two paths should be rated as more similar than if one drives from
north to south and the other from east to west. The idea of the following measures is,
thus, to calculate the distance in the graph from each node in P to a corresponding
node in Q and to calculate the average of these node distances. A position-based
distance measure for two paths P and Q is defined as δ (P,Q) = ∑i∈I(P) d(pi,qG(i))
for a mapping function G : I(P)→ I(Q) which determines the counterpart for each
node. The main problem is to find the appropriate counterpart of each node. A first
naive proposal for G constraints the distance measure to paths with equal length
and matches the i-th nodes of the paths with each other. For two paths P,Q with

σ (N)
nss |V (P)∩V (Q)| |V (P)∩V (Q)|

|V (P)∪V (Q)|
σ (N)

ess |E(P)∩E(Q)| |E(P)∩E(Q)|
|E(P)∪E(Q)|

σ (N)
lcs lcs(P,Q)

lcs(P,Q)
max{|P|,|Q|}+1

lcs(P,Q) length of longest
common subsequence of
P,Q

δ (N)
sad ∑i∈I(P) d(pi,qG(i))

δsad(P,Q)
�

Gsad identity function,
|P|= |Q|= �−1

δ (N)
mad

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑�

i=1 d(pi,Q) if � > k

∑k
i=1 d(qi,P) if � < k

min{∑�
i=1 d(pi,Q),∑k

i=1 d(qi,P)}

δmad(P,Q)
max{|P|,|Q|}+1

Gmad(i) = j s.t. d(pi,q j)
minimal, |P|= �−1, |Q|=
k−1

δ (N)
comappa1 minG∈Gcomappa1

{
∑i∈I(P) d(pi,qG(i))

δcomappa1(P,Q)

max{|P|,|Q|}+1

|P| ≥ |Q|, Gcomappa1(P,Q)
set of surjective and order-
preserving functions G :
I(P)→ I(Q)

δ (N)
comappa2 minG∈Gcomappa2(P,Q)

{
∑(i, j)∈G d(pi,q j)

δcomappa2(P,Q)

max{|P|,|Q|}+1

Gcomappa2(P,Q) set of
left-total, right-total,
order-preserving relations
G ⊆ I(P)× I(Q)

}

}
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|P| = |Q| = `− 1, G is set to Gsad(i) = i for all i ∈ {1, . . . `− 1}}. This yields the
(normalized) simple average distance as defined in Table 1. The simple average
distance is a distance metric, but has two main deficiencies: it is only applicable to
paths of equal length, and the matching function G might not be a good choice in
many cases. For these reasons, we also consider the matched average distance which
matches each node of P onto the node of Q which is closest by its graph theoretic
distance. Since it seems reasonable to map each node of the longer path onto a node
of the shorter path, we get for two paths P and Q with |P|= `−1 and |Q|= k−1 the
measure δmad , as defined in Table 1. The normalized matched average distance δ N

mad
is obtained by dividing by the length of the longer path. For this distance measure, the
corresponding mapping function is thus Gmad(i) = j such that d(pi,q j) is minimal.
Note that with this mapping, it might happen that there are nodes in the shorter path
which are not matched at all, although it is the shorter path of the two. Furthermore,
while the simple average distance takes into account the order of the nodes in the
path by the restrictive mapping Gsad , this quality is lost by weakening the restrictions
to the node mapping. By mapping each node of P onto its closest node in Q (or vice
versa), the mapping allows for example that the last node of P is mapped onto the
first node of Q. It follows directly that this measure does not satisfy coincidence
since two paths with identical node sets, but where the nodes occur in different order
will have a matched average distance of 0 although they are not identical.

In order to avoid this, we require G to be a surjective function which considers
the order of the nodes: we say that G : I(P)→ I(Q) is order-preserving if for all
i, i′ ∈ I(P), it holds that i ≤ i′⇔ G(i) ≤ G(i′). Let Gcomappa1(P,Q) be the set of all
functions G : I(P)→ I(Q) with these properties. The corresponding distance measure
called (normalized) CoMapPa1 distance δcomappa1 (for COnsecutive MAPping of
PAths) is then obtained by taking the least expensive of these mappings (see Table 1).
Note that Gcomappa1(P,Q) = /0 if |P|< |Q|. A dynamic programming approach can
be used to compute this measure in O((|P|− |Q|+1) · |Q|) assuming that the graph
distances are precomputed.

The last distance measure to be introduced is a refinement of the CoMapPa1
distance leading to the CoMapPa2 distance measure. The CoMapPa1 distance mea-
sure exhibits an asymmetry because the longer path (P) is mapped onto the shorter
path (Q): while each node of P is mapped onto exactly one node of Q, several nodes
of P may be mapped onto one node of Q. In order to fix this issue, let Gcomappa2 be
the set of all relations G ⊆ I(P)× I(Q) which are left-total, right-total, and order-
preserving (where a relation G is order-preserving, if for all (i, j),(i′, j′) ∈ G, it
holds that i≤ i′⇔ j ≤ j′). The corresponding distance measure, i.e., the (normal-
ized) CoMapPa2 distance δcomappa2 (δ N

comappa2), is then defined as in Table 1. For
two paths P and Q, this measure can be computed in O(|P| · |Q|) using a dynamic
programming approach, assuming the graph distances are precomputed.

Having these seven similarity and distance measures at hand, a data set of more
than 13000 paths in 20 different networks is used to evaluate the proposed measures
and give the proof of concept that clustering paths into groups is a viable way of
mining complex networks.
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4 Using the Measures for Clustering Paths
In Section 3, seven similarity (and distance) measures for paths are proposed (we
will stick to the term similarity measure, if not explicitly stated otherwise, this term
includes also the position-based measures although they are distance measures). The
following approach clusters paths of a given data set by a hierarchical clustering
approach, separately for each of the proposed similarity measures. We will give
evidence that the similarity measure which incorporates information of the underlying
complex network and the order of the nodes in the paths, i.e., the CoMapPa2 distance
yield the most intuitive results for finding functional groups of paths. We start by
providing information about the used data set before the method, the evaluation
scheme, and the results are described.

4.1 Data
The networks of the data set are problem spaces of a board game such that the paths
represent solutions of players. We consider the board game Rush Hour (invented by
Nob Yoshigahara, distributed by ThinkFun Inc. and HCM Kinzel (Germany)) which
is a one-player block sliding puzzle (see Figure 1a). It takes place on a board of 6×6
cells with one designated exit on which blocks are placed horizontally or vertically
which represents a parking lot with parking cars. The blocks can have a length of 2
or 3 cells and a width of 1 cell. The goal of the game is to find a sequence of moves
which allows a particular car to exit the board through the designated exit. A legal
move is to move a car an arbitrary number of cells forwards or backwards, but not
sideways. We call the exact positions of all cars a configuration of the game. We
generate a graph Gc = (V c,Ec) from a Rush Hour start configuration c by taking all
configurations reachable from the start configuration by legal moves as node set V c,
and the legal moves between them as edge set Ec. This graph is called the problem
space associated to configuration c. We consider a Rush Hour game instance as
solved when the cars on the board are in such positions that the particular car can
be removed from the board with one additional move. We call such configurations
solution states. With the concept of the problem space, solving a Rush Hour game
instance can be understood as finding a path from c to a solution state. Such a path is
called a solving path. In the optimal case, the found path is as short as possible.

Source The data set used for analysis was collected by Pelánek and Jarušek [11]
who developed a problem solving tutor (available under tutor.fi.muni.cz) which is a
web-based tool for learning by problem solving and is used in educational contexts. A
detailed description is provided by Jarušek [10]. Among others, the system contains
Rush Hour game instances of different degrees of difficulty. Twenty exemplary
configurations with a sufficient amount of played paths were selected for analysis.
Let C denote this set of start configurations of the game instances. The data set
contains the log data of all users of the system how they solved (or attempted to
solve) the instances. It is important to note that users can also skip to the next game,
if they feel they cannot solve the puzzle (or lose interest).

http://tutor.fi.muni.cz
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Preprocessing For each configuration c ∈ C , the associated problem space Gc

is computed1 The problem spaces of the selected games are of the order of several
thousands of nodes each. Any user who attempts to solve a game instance creates
a path in the problem space of the configuration. For each user, each configuration
and each attempt, the generated path is extracted from the log data. Any move
which is done after a solution state was reached is not considered anymore, but
the path is considered as solving path. Let Pc denote the set of extracted paths for
the configuration c. The table available under the given link also contains for each
configuration how many paths were extracted (between 156 and 2934 paths) as well
as the information of how many nodes of the problem spaces were actually visited
by any of the players. Surprisingly, in average only 10% of the nodes were visited
by at least one player.

Clustering For each of the configurations, for all pairs of paths from Pc×Pc, all
of the seven similarity measures are computed. For computing the simple average
distance, the paths were cut to equal length for each configuration. However, in
preceding studies for evaluating all similarity measures on the paths cut to equal
length, the simple average distance has less promising results than the other distance
measures. Thus, and because the simple average distance will be too restrictive for
any application, the results for the simple average distance are omitted, and we only
discuss the analysis of the complete uncut paths. The values of all unnormalized
measures were scaled to the interval [0,1], the values of the similarity measures
were then transformed by 1−σ (N)(P,Q) to result in a distance measure. For each
configuration, the matrices with the similarity values for all pairs of paths are the
input for an hierarchical clustering algorithm with either complete, average linkage
methods or by Ward’s clustering criterion [21]. The results for all three clustering
methods show the same qualitative results and differ very little quantitatively; we
thus only discuss the results of the clustering with complete linkage.

4.2 Ground Truth and Evaluation of the Results

For interpreting the results of the clustering procedures and to evaluate the differ-
ent similarity and distance measures for paths, an evaluation criterion is necessary.
For this, we use a very simple ground truth: a clustering procedure with an appro-
priate similarity measure as input should be able to distinguish between solving
and non-solving paths. It is important to note that the goal of this work is not
the development of a classifier which is able to distinguish between solving and
non-solving paths. This could be done easily by other methods. The primary aim
is to evaluate the presented similarity measures whether they are able to distin-
guish between structurally similar and dissimilar paths. In order to evaluate this,
the semantic feature of the paths of being solving or non-solving is used: a well-

1 A detailed description of the data set and the problem spaces can be found online under
http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf.

http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf
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Fig. 2: Weighted average purity of the clustering results for some exemplary configu-
rations, i.e., the Games 19, 578, 765, and 906.

designed similarity measure should at least distinguish between paths of these two
classes. Hence, for each path of a configuration c, we define the binary attribute
q : Pc→ {0,1} which yields a 1 for a solving path, and a 0 for a non-solving path.
A given cluster γ = {p1, . . . , pm} ⊆ Pc is then called pure if all paths in γ are either
solving or non-solving. Since the requirement that a cluster should be pure, is a
very strict one, we rather consider its purity. The purity of a cluster γ is defined
as purity(γ) = 1

|γ|max{∑pi∈γ q(pi), |γ|−∑pi∈γ q(pi)}, i.e., the maximum of the two
fractions of paths in γ which are solving or non-solving. Note that purity(γ)≥ 0.5
always holds. Let q(Pc) =

1
|Pc|max{∑p∈Pc q(p), |Pc|−∑p∈Pc q(p)} denote the frac-

tion of paths for configuration c which are solving or non-solving.
For a given partition Γ = {γ1, . . . ,γk} of Pc, the average purity of all groups can

be used as an evaluation criterion for the given partition. However, an unweighted
average of the purities has the effect that the average purity is higher if Γ contains
many singletons because they contribute with a purity of 1.0 each. We therefore
consider a weighted average purity for Γ where the purity of each cluster from Γ

contributes proportionally to its size to the average. The weighted average purity for a
set of clusters Γ is defined as purityw(Γ ) = 1

∑γi∈Γ |γi| ∑γi∈Γ |γi| · purity(γi). However,
the optimal number of clusters is not known. We thus consider the weighted average
purity of all possible number of clusters. For a configuration c, the number of possible
clusters ranges from 1 to |Pc|. The weighted average purity for any configuration c
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and for any similarity measure is 1.0 for |Pc| many clusters, and q(Pc) for 1 cluster.
The behaviour between these extremes can then be used as evaluation criterion and
means of comparison between the proposed similarity measures, for example to find
out which similarity measure reaches the highest average purity with the smallest
numbers of clusters.

4.3 Results
For each start configuration c and each similarity measure, the weighted average
purity is computed for each number of clusters between 1 and |Pc|. Figure 2 shows
the results for some exemplary configurations. The possible number of clusters (i.e.,
the number of paths) is drawn on the x-axes, the corresponding weighted average
purity of the clusters on the y-axes. Note that the weighted average purity is always
larger than q(Pc) which is indicated by the dashed line. The first observation is
that clustering with any of the similarity measures yields partitions with a weighted
average purity considerably higher than the corresponding q value. Furthermore,
the CoMapPa1 and CoMapPa2 distance measures perform clearly better than the
purely set- or order-based measures. With these two measures, it is possible to obtain
a weighted average purity close to 1 with only a few clusters. This observation is
supported by Table 2 which presents the weighted average purity for the clustering
results for all similarity measures for some graphs, if the number of clusters is fixed
to 5, 10, 20, or 302. For each game and for each x ∈ {5,10,20,30}, the highest px is
highlighted. Table 2 reveals that for almost all games, the CoMapPa1 and CoMapPa2
distance obtain the highest weighted average purity, often close to 100%. This is even
achieved for game 723 where the number of solving and non-solving paths are almost
equal. Nevertheless, clustering the 2704 paths with CoMapPa1 and CoMapPa2 yields
almost pure clusters when only choosing 5 clusters. Figure 2 also indicates that the
CoMapPa1 and CoMapPa2 measures perform almost equally well when using the
normalized or unnormalized version of the measure. This is not the case for the
set-based and order-based measures: here, the unnormalized measures consistently
yield less good results.

In order to show that these observations are not only artifacts of single games, we
adapt the idea of considering the area under the curve of the corresponding weighted
average purity line. Informally, for a given sequence of weighted average purities
(one entry per possible number of clusters) for one game and one similarity measure,
we consider the area between the corresponding curve and the corresponding q
line. Dividing this value by the size of the area of the “ideal” curve which reaches
a weighted average purity of 100% with 2 clusters, yields the relative AUC. The
relative AUC is computed for every similarity measure and every game. The results
are shown in Figure 3 (left). The observations made for single games can be confirmed
here. The relative AUC is consistently higher for all games for the CoMapPa1 and

2 The table with the results for all configurations is contained in the supplementary material available
under http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf

http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf
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Table 2: The weighted average purity for each of the six similarity measures for a
fixed number of clusters. For each game, results for the unnormalized measure are
presented in the first line, results for the normalized measure are presented in the
second line. px denotes the weighted average purity of the clustering when choosing
x clusters. For each game and each x ∈ {5,10,20,30} the highest px is highlighted.
q(Pc) is denoted by q and gives the fraction of solving or non-solving paths of all
paths for the configuration. All values are percentages. Because of lack of space, the
table only shows the results for a few games. The full table is available online under
the given link.

CoMapPa2 measure, regardless whether the normalized or unnormalized version is
used. The relative AUC for all other measures is smaller and there are high differences
between the normalized and unnormalized versions. When considering the results
shown in Figures 2 and 3 (left), it is striking that the unnormalized versions of the
set- and order-based measures yield clusters with a considerably smaller weighted
average purity than the normalized version. There is the possibility that the similarity
measures only distinguish between shorter and longer paths (because clearly, a
solving path needs to have a certain length while non-solving paths can be short)
and reach high average purity by this effect. Therefore, Figure 3 (right) shows the
relative AUC of the resulting clusters, if for each game, only paths at least as long
as the shortest solving path are considered. The gap between the normalized and
unnormalized versions of the measures clearly decreases, but the general trend of the
previous results is confirmed. Thus, clustering the paths with the proposed similarity
measures can distinguish quite well between solving and non-solving paths. This
implies that solving and non-solving paths show structural differences that can be
detected by such simple similarity measures.

5 Conclusion
In this paper we have shown on a first benchmark data set and a simple ground truth,
that already very simple quantifications of the similarity of paths in complex networks
yield interesting insights into this new dimension of analyzable data. We have shown
that—using a simple clustering algorithm—the measures which incorporate the
underlying graph and the traversal order of the paths, contain the most information to
categorize the paths representing the solving attempts of games into those that finally

σnss σess σlcs δmad δcomappa1 δcomappa2

p5 p10 p20 p30 p5 p10 p20 p30 p5 p10 p20 p30 p5 p10 p20 p30 p5 p10 p20 p30 p5 p10 p20 p30 q

Game 19 69 69 78 84 69 74 81 81 68 71 71 71 87 87 88 89 85 88 89 90 85 85 87 88 67.82
79 79 84 84 68 68 81 84 84 84 84 85 84 86 89 89 85 85 92 94 92 96 96 96

Game 357 72 82 82 87 75 75 81 81 74 81 82 85 90 91 95 95 99 99 100 100 93 98 99 99 71.71
87 87 87 89 82 83 88 89 80 84 87 89 85 90 90 91 95 95 98 100 99 100 100 100

Game 723 55 56 66 74 55 57 58 63 55 57 65 79 95 95 96 96 99 99 99 99 99 99 99 99 54.44
74 90 94 94 55 56 58 61 81 84 93 94 95 95 96 96 96 99 99 99 99 99 99 99

Game 765 76 78 79 79 76 78 78 82 76 77 77 80 86 86 89 91 86 88 95 95 86 86 99 99 76.41
77 80 85 85 76 76 79 86 78 79 84 86 84 89 91 91 82 90 96 96 87 94 98 99
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Fig. 3: Relative AUC of the weighted purity for all paths of all configurations (left)
and when only sufficiently long paths are considered (right).

solve it and those that do not, to a quite high degree. The results imply that similarity
measures which take into account the underlying network structure are best-suited
to find groups of similar paths. However, the results are currently only valid for one
specific data set which is why future work should aim at generalizing and validating
the proposed measures on further data sets. In general, we believe that there is a
wealth of data contained in the paths actually taken in a complex network rather than
in the ones imposed by, e.g., centrality indices that always assume that either random
walks or shortest paths are used. In another paper, Dorn, Lindenblatt and Zweig
showed that centralities based on actual path data are also less prone to artifacts than
classic centrality indices [5]. Thus, an important task for the community in network
analysis should be to obtain such data and to publish it—preferably with ground truth
regarding clusterings, centrality of nodes in the paths, external parameters like time
taken or time stamps at the single nodes, etc.—to mine and analyze it together with
the underlying network structures.
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Abstract The number of spanning trees of a network is an important measure re-
lated to topological and dynamic properties of the network, such as its reliability,
communication aspects, and so on. However, obtaining the number of spanning trees
of networks and the study of their properties are computationally demanding, in
particular for complex networks. In this paper, we introduce a family of small-world
networks denoted Gk,n, characterized by dimension k, we present its topological
construction and we examine its structural properties. Then, we propose the de-
composition method to find the exact formula for the number of spanning trees of
our small world network. This result allows the calculation of the spanning tree
entropy which depends on the network structure, indicating that the entropy of low
dimensional network is higher than that of high dimensional network.

Key words: number of spanning trees, complex network, small world network,
decomposition method, spanning tree entropy.

1 Introduction
In nature, networks are everywhere around us. Owing to their relevance to many
real systems, some of them are called complex networks. In recent years, they have
been studied mainly focusing on fractals, scale free, small world [1, 13]... It could
be applied to some real-world networks such as the world-wide web [6], social
networks [9], mathematics, physics, etc... These networks contain a hierarchical
property: “self-similarity” [11] which replicate their structure and their dynamics.
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To analyze these complex networks, we need theories to understand their inherent
and emergent properties [8]. We need new formal models of these networks so that
we can predict accurately their performance, assert the guarantees of reliability, and
ensures the survivability and the accessibility of communication. The graph theory
has a powerful combinatorial tool to understand the relationship between the structure
and the function of networks. This tool can be represented by a Spanning tree [14]
which is one of the most important varieties of sub-networks to characterize the
complex network constructions and understand their dynamical processes. It provides
useful insights about the analyzing of the mechanism of self-similarity in complex
networks. The notion of spanning tree is defined as a subgraph without cycle in other
words a tree that has the same vertex as the main graph and some or all its edges. The
applications of spanning trees of a network are often in computer networking. For
example, if we have a redundant topology, the presence of loops generates broadcast
storms that paralyze the network. To avoid routing loops, the spanning trees disable
redundant links and restore the connection between the network nodes. In this work,
Our goal is to determine the number of spanning trees of a network or what is called
the complexity of a network [12]. The benefit of calculating this number is to evalu-
ate the complexity of a network and to analyze its reliability [5]. This number can
be obtained by computing the determinant of a submatrix of the Laplacian matrix
corresponding to the network (Kirchhof’s matrix-tree theorem [3]). However, for a
large and complex network, the evaluation of this determinant is very difficult and
even impossible. Most of the recent works have tried to nd some alternative methods
in order to avoid the tedious calculations of the largest determinant as needed by the
algebraic method and enumerate the spanning trees for large and complex networks.

In this paper, we rely on the principle of a process of “Divide and Conquer” which
divides a problem recursively in sub-problems, solves each of this sub-problems and
then merges the partial results for a general solution. An example of this technique
is the decomposition method: to calculate the number of spanning trees of a wide
planar network, first, we represent it as graph and we cut it in two, three, ..., n
subgraphs. Then, we calculate the number of spanning trees of each of subgraphs.
Finally, we collect the results to obtain the complexity of the main graph. The use of
this technique is due to its ease to discover the spanning trees of a complex network.
In order that this method is relevant, we must investigate how we reduce the main
graph and we have several possibilities to do it. In this work, we study the case where
subgraphs are connected by one vertex (cut following one vertex).

In this article, we introduce a class of small world networks denoted Gk,n where k is
its dimension and n is the current iteration. This type of small world networks(SWNs)
is a new model structures, which arises in the complex systems.Much attention
has been paid to the study of this kind of SWNs, especially for the dimension
k = 3, because it plays a notable role in the analysis of real-life complex systems
[13], including the Internet, social networks, protein networks in the cell, tensor
networks [10]... First, we present the construction of two models of SWNs: A
particular case of the Small World Network G3,n having the dimension 3 and a general
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case of the Small World Network Gk,n having the dimension k. Then, we analyze
their structural properties and we evaluate their complexity. Finally, we compute the
entropy of their spanning trees which depends on their structure indicating that the
entropy of low dimensional network is higher than that of high dimensional network.

2 Related work
The enumeration of spanning trees of a planar graph is not always easy, especially
for a large graph. In order to facilitate this calculation, we propose a combinatorial
technique which is based on the decomposition of graphs. This method aims to cut a
graph in different parts or subgraphs satisfying certain constraints and optimizing
a certain objective function. This partitioning problem has many applications such
as clustering of documents, design electronic integrated circuits, load balancing for
parallel machines and image segmentation. In this section, we define the decompo-
sition method of a graph and its various combinatorial properties and we quote the
main theorems which we needed to calculate the number of spanning trees for our
network.

Definition 2.1. Let G =C1 •C2 be a planar graph obtained by connecting C1 and C2
with one vertex v1. i.e., C1 and C2 are connected subgraphs which intersect exactly
in one vertex v1(see Figure 1).

Fig. 1: A graph G =C1 •C2

Property 2.1. Let G be a planar graph of type G =C1 •C2:

• C1 and C2 have a common vertex v1 and a common face (the external face).
• VG =VC1 +VC2 −1, EG = EC1 +EC2 and FG = FC1 +FC2 −1.
• If we remove the vertex v1 of the graph G, the resulting graph is not connected.

Theorem 2.1. If we have a planar graph G such that G =C1 •C2. Then, the number
of spanning trees of G is given by:

τ(G) = τ(C1 •C2) = τ(C1)× τ(C2). (1)

Complexity Analysis of Small-World Networks” and Spanning Tree Entropy“
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Proof. Each path that connects a vertex of C1 to a vertex of C2 must pass through v1.
The Laplacian matrix associated with a graph G =C1 •C2 is as follows:

After deleting the row and the column of the vertex v1, we obtain this matrix:
(

Mn1,n1 0
0 Mn2,n2

)

In calculating the determinant, we obtain: τ(G) = τ(C1)× τ(C2).

Theorem 2.2. (Generalization of Theorem 2.1) Let G be a chain of planar graphs
defined by G =C1 •C2 • ...•Cn (one of the following graphs in Figure 2). The number
of spanning trees in G is given by the following formula:

τ(G) =
n

∏
i=1

τ(Ci). (2)

Fig. 2: Star graph and chain graph
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3 The particular case of the Small World Network G3,n having
the dimension 3

In this section, we introduce a most known kind of small world networks G3,n having
the dimension 3. It has been extensively used quantum walks [2, 7], tensor net-
works [10]... G3,n is a particular case of a class of SWNs. We present its construction,
determine their structural properties and analyze its complexity.

3.1 The construction and the structural properties of the Small
World Network G3,n

A class of small world networks denoted by G3,n with n is the current iteration is
constructed as follows: At n = 0, we have a simple node. At first iteration, G3,1 is a
simple triangle. For n > 1, each node in the graph of the previous iteration is replaced
by a new triangle. Thus, each of the newly appeared triangles contains exactly one
node of the graph of the previous iteration. The growth process to the next iterations
continues in a similar way. For illustration, in Figure 3, we present 4 iterations of
G3,n.

Fig. 3: A class of Small World Networks G3,n having the dimension 3

G3,0 G3,1 G3,2

G3,3

Complexity Analysis of Small-World Networks” and Spanning Tree Entropy“
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The structural properties of the small world network G3,n are presented as:

• The number of nodes of G3,n is calculated as follows: From Figure 3, we notice:
VG3,n = 3VG3,n−1 = 32VG3,n−2 = 33VG3,n−3 = ...= 3n−1VG3,1 = 3nVG3,0 .
So the number of nodes of G3,n is: VG3,n = 3n.

• The number of edges of G3,n is calculated as follows: From Figure 3, we notice:
EG3,n = 3EG3,n−1 +3

EG3,n−1 = 3EG3,n−2 +3
EG3,n−2 = 3EG3,n−3 +3

...
EG3,2 = 3EG3,1 +3
EG3,1 = 3EG3,0 +3

We multiply the equation of EG3,n−1 by 3 , the equation of EG3,n−2 by 32 and so on
until the last equation EG3,1 which will be multiplied by 3n−1. Summing all the ob-
tained equations, we can find: EG3,n = 3nE3,0+(3×30+3×31+ ...+3×3n−1).
So the number of edges of G3,n is: EG3,n = 3× 3n−1

2 .

• The number of faces of G3,n is calculated as follows: From Figure 3, we notice:
FG3,n = 3FG3,n−1 −1

FG3,n−1 = 3FG3,n−2 −1
FG3,n−2 = 3FG3,n−3 −1

...
EG3,2 = 3FG3,1 −1
EG3,1 = 3FG3,0 −1

We multiply the equation of FG3,n−1 by 3 , the equation of FG3,n−2 by 32 and so on
until the last equation FG3,1 which will be multiplied by 3n−1. Summing all the
obtained equations, we can find: FG3,n = 3n− (30 +31 +32 + ...+3n−2 +3n−1).
So the number of faces of G3,n is: FG3,n = 3n− 3n−1

2 .

3.2 Evaluation of the Complexity of the Small World Network G3,n
having the dimension 3

The complexity of a complex network is very difficult to determine since classical
approaches, such as the calculation of the determinant or the eigenvalues of the
Laplacian matrix, are infeasible or even impossible for a large small world network.
Therefore, we use the decomposition method that facilitate this computation to obtain
the exact analytical expression for the number of spanning trees of the particular case
of the small world network G3,n.
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Theorem 3.1. : Let G3,n denote a class of small world networks having the dimension
3. The complexity of G3,n is given by the following formula:

τ(G3,n) = 3
3n−1

2 (3)

Proof. From the Figure 3, we see that G3,n contains several subgraphs as triangles
G3. Using Theorem 2.2, we obtain:τ(G3,n) = ∏

T3,n τ(G3) = τ(G3)
T3,n with T3,n is

the number of triangles in G3,n. From our network, we see:
T3,n = 3×T3,n−1 +1

T3,n−1 = 3×T3,n−2 +1
T3,n−2 = 3×T3,n−3 +1

...
T3,2 = 3×T3,1 +1
T3,1 = 3×T3,0 +1

We multiply the equation of T3,n−1 by 3 , the equation of T3,n−2 by 32 and so
on until the last equation T3,1 which will be multiplied by 3n−1. Summing all the
obtained equations, we can find: T3,n = 30 + 31 + 32 + ...+ 3n−2 + 3n−1. So the
number of triangles in G3,n is: T3,n =

3n−1
2 . We replace it in the equation of τ(G3,n),

hence we obtain: τ(G3,n) = 3
3n−1

2 . ut

4 The general case of the Small World Network Gk,n having the
dimension k

In this section, we study the general case of a class of small world networks Gk,n hav-
ing the dimension k. We examine its construction, analyze its topological properties
and evaluate its complexity.

4.1 The construction and the structural properties of the Small
World Network Gk,n

A family of small world networks denoted by Gk,n is characterized by two parameters
k and n, where k stands for the dimension of the cyclic graph and n for the current
generation. The construction of Gk,n is presented as follows: At n = 0, we have a
simple node. At first iteration, Gk,1 is a simple cyclic graph with k nodes. For n > 1,
each node in the graph of the previous iteration is replaced by a new cyclic graph
with k nodes. Thus, each of the newly appeared cyclic graphs contains exactly one
node of the graph of the previous iteration. The growth process to the next iterations
continues in a similar way: Connecting a cyclic graph with k nodes to each node of
the graph in the previous generation one gets the graph of the next generation. In
Figure 4, we illustrate 4 iterations of Gk,n with k = 5.

Complexity Analysis of Small-World Networks” and Spanning Tree Entropy“
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Fig. 4: A class of Small World Networks G5,n having the dimension k = 5

The structural properties of the small world network Gk,n are presented as:

• The number of nodes of Gk,n is calculated as follows:From Figure 4, we notice:
VGk,n = kVGk,n−1 = k2VGk,n−2 = k3VGk,n−3 = ...= kn−1VGk,1 = knVGk,0 .
So the number of vertices of Gk,n is: VGk,n = kn.

• The number of edges of Gk,n is calculated as follows: From Figure 4, we notice:

G5,0
G5,1 G5,2

G5,3
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EGk,n = k×EGk,n−1 + k

EGk,n−1 = k×EGk,n−2 + k

EGk,n−2 = k×EGk,n−3 + k

...
EGk,2 = k×EGk,1 + k

EGk,1 = k×EGk,0 + k

We multiply the equation of EGk,n−1 by k , the equation of EGk,n−2 by k2 and so
on until the last equation EGk,1 which will be multiplied by kn−1. Summing all
the obtained equations, we can find: EGk,n = k× k0 + k× k1 + ...+ k× kn−1.
So the number of edges of Gk,n is: EGk,n = k× kn−1

k−1 .

• The number of faces of Gk,n is calculated as follows: From Figure 4, we notice:
FGk,n = k×FGk,n−1 − (k−2)

FGk,n−1 = kFGk,n−2 − (k−2)
FGk,n−2 = kFGk,n−3 − (k−2)

...
EGk,2 = kFGk,1 − (k−2)
EGk,1 = kFGk,0 − (k−2)

We multiply the equation of FGk,n−1 by k , the equation of FGk,n−2 by k2 and so on
until the last equation FGk,1 which will be multiplied by kn−1. Summing all the
obtained equations, we find: FGk,n = kn−(k−2)[k0+k1+k2+ ...+kn−2+kn−1].
So the number of faces of Gk,n is: FGk,n = kn− (k−2) kn−1

k−1 .

4.2 Evaluation of the Complexity of the Small World Network Gk,n

According to the structural topology of the small world network Gk,n, we can apply
the decomposition method following one node to obtain its number of spanning trees.

Theorem 4.1. : Let Gk,n be a class of small world networks having the dimension k.
The complexity of Gk,n is given by the following formula:

τ(Gk,n) = k
kn−1
k−1 (4)

Proof. From the Figure 4, we see that Gk,n contains several cyclic subgraphs Gk .
Using Theorem 2.2, we obtain: τ(Gk,n) = ∏

Tk,n τ(Gk) = τ(Gk)
Tk,n with Tk,n is the

number of cyclic subgraphs in G3,n. From the figure 4, we see:

Complexity Analysis of Small-World Networks” and Spanning Tree Entropy“
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Tk,n = k×Tk,n−1 +1
Tk,n−1 = k×Tk,n−2 +1
Tk,n−2 = k×Tk,n−3 +1

...
Tk,2 = k×Tk,1 +1
Tk,1 = k×Tk,0 +1

We multiply the equation of Tk,n−1 by k , the equation of Tk,n−2 by k2 and so
on until the last equation Tk,1 which will be multiplied by kn−1. Summing all the
obtained equations, we can find: Tk,n = k0+k1+k2+ ...+kn−2+kn−1. So the number
of subgraphs in Gk,n is: Tk,n = kn−1

k−1 . We replace it in the equation of τ(Gk,n) and

τ(Gk) = k, hence we obtain: τ(Gk,n) = k
kn−1
k−1 . ut

Note: The small world network Gk,n has the same number of nodes and edges as
the dual Sierpinski gaskets [4], but they don’t have the same complexity. This is due
to the repositioning of nodes and how they are connected.

5 The entropy of spanning trees of a class of Small World
Networks.

The asymptotic complexity or the entropy of spanning trees of a network G is a
quantitative measure that compares the number of spanning trees of networks having
the same average degree of nodes [9]. When τ(G): the spanning trees number of G
grows exponentially with its number of vertices as VG→ ∞, there exist a constant:

ρG = lim
VG→∞

ln |τ(G)|
|VG|

(5)

Let ρGk,n be the entropy of spanning trees for Gk,n. This real number is an interest-
ing quantity characterizing the network structure. With the same average degree of
the nodes < z > for a network, the bigger the entropy value, the more the number
of spanning trees compared with other networks having the same average degree.
We calculate and we compare the entropy of spanning trees of our SWN with other
networks having the same average degree in order to determine the most reliable
network with the strongest heterogeneous topology.

Corollary 5.1. : The entropy of spanning trees of Gk,n is: ρGk,n =
ln(k)
k−1

Proof. From the equation 4 and 5, and VGk,n = kn, we obtain:

ρGk,n = lim
VGk,n→∞

ln(k
kn−1
k−1 )

kn = lim
VGk,n→∞

kn(1− 1
kn )

kn × ln(k)
k−1 , hence, ρGk,n =

ln(k)
k−1 .

According to the found formula of ρGk,n , we see that this entropy is the same as
that of Flower network, even if they don’t have the same complexity. This result
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Fig. 5: The spanning trees entropy of Gk,n

shows that our model of SWN and the Flower network are similar in the limit k→ ∞

and they have similar behavior in this limit.
From Figure 5, we notice that the entropy of spanning trees of Gk,n varies with the

dimension k which shows that the spanning trees entropy depends on the basis of the
self-similarity of our SWN (the network structure). Figure 5 also shows the increasing
of the dimension k leads to decrement the entropy of spanning trees of Gk,n. This
indicates that the increase of the self-similarity dimension in our SWNs significantly
decrease the number of spanning trees. To prove this result, we can compare the
entropy of spanning trees of our SWN with different values of k with the entropy of
other networks having the same average degree: The entropy of our SWN with k = 2
is (0,693) the highest reported for networks having the same average dregree. The
entropy of our SWN with k = 3 is (0,549) the same value that the entropy of the Hanoi
networks [15]. The entropy of our SWN with k = 5 is (0.402) the lowest among all
other networks having the same average dregree 3, which means the entropy of low
dimensional network is higher than that of high dimensional network. This reflects
the fact that the low dimensional network of our SWN has more spanning trees than
the high dimensional network. According all these results, we conclude that our class
of small world networks Gk,n having low value of dimension k is more robust and its
structural topology has stronger heterogeneous than Gk,n having high value of k.

6 Conclusion
Complex networks are an emerging and powerful tool that can be used in real-life
complex systems. They are applied in communication networks, social networks,
epidemiology, synchronization, etc... In this paper, we drew on ideas from graph
theory to analyze structural properties and the complexity of a classe of small world

Complexity Analysis of Small-World Networks” and Spanning Tree Entropy“
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networks. We found its number of spanning trees by using the decomposition method.
The knowledge of this number allows to calculate its spanning tree entropy indicating
that the entropy of low dimensional network is higher than that of high dimensional
network.
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Abstract In understanding an unknown network we search for metrics to determine
how close an inferred network that is being analyzed, is to the truth. We develop a
metric to test for similarity between an inferred network and the true network. Our
method uses the eigenvalues of the adjacency matrix and of the Laplacian at each
step of the network discovery to decide on the comparison to the ground truth. We
consider synthetic networks and real terrorist networks for our analysis.

Keywords: graph comparison metrics, Laplacian, eigenvalue distribution,
Kolmogorov-Smirnov Test.

1 Introduction and Motivation
The successful discovery of a network is of great interest to the Network Sciences
community. Many algorithms have been proposed for network discovery. But when
have we discovered enough of the Network? For a given network G, we utilize
its subgraphs representing consecutive snapshots Gn (1≤ n≤ N with GN = G), as
G is discovered through monitor placement that light up the network. By lighting
up G, we mean that certain nodes and edges of G are being discovered by using
monitors on the nodes (monitors light up the node, its incident edges and adjacent
vertices as defined in [6], while the remaining of the network is unknown as shown
in Figure 1 for Boko and Noordin Top networks described in this paper. We compare
consecutive snapshots (subgraphs) Gn at step n in the inference as the network is
being inferred (1 ≤ n ≤ N). We present an analysis of the sequence of Gn to the
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Fig. 1: Lighting up two dark networks: Boko and Noordin Top (click on the picture
for the movie)

ground truth network G = GN , which provides information about when enough of
the network has been discovered. We develop a comparison metric using Sequential
Laplacian and Adjacency Matrix Eigenvalue Distribution Comparisons. Four case
studies, mixing synthetic and real terrorists networks, are explored in this paper to
test the viability of the comparison metric. The first case study examines a synthetic
network and the remaining case studies examine real terrorist (or dark networks)
including Noordin Top [14], Boko Haram [4], and Fuerzas Armadas Revolucionarias
de Colombia (FARC) [5].

2 Background
In mathematics, an established metric for graph comparison is isomorphism. Two
labeled graphs G and H are isomorphic if there exists a one-to-one correspondence
φ from V (G) to V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H) [2].
Comparing graphs based on isomorphism has a binary outcome: the graphs are either
exactly the same (isomorphic), or they are different (non-isomorphic). However,
in practice we prefer a measure that yields a range of similarity values for the
non-isomorphic ones, and converges to 1 as we approach isomorphism.

Many method were introduced to compare graphs: the original network recon-
struction in systems theories started in the 1960s [10]. Intuitive approaches consider
the percent of nodes and edges discovered during the inference of the network [6].
That is, they measure the percent of a network G that has been discovered at step
n in network Gn through tracking |V (Gn)|

|V (G)| and |E(Gn)|
|E(G)| . But these don’t capture the

http://faculty.nps.edu/rgera/papers/BokoHaram.mp4
http://faculty.nps.edu/rgera/papers/noordin.mp4
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cardinality of sets of nodes and edges discovered, but not so much the network.
The website http://faculty.nps.edu/rgera/projects.html [8] can be used to visualize the
lighting up of the networks, and algorithms can be tested live on preloaded networks
or custom networks, as desired by the user. The movie in Figure 1 was created using
this website.

Other common metrics for measuring similarity use comparison of degree dis-
tributions, density, clustering coefficient, average path length, Maximum Common
Subgraph, Graph Edit distance, number of spanning trees, and Hamming Distance.
Many graphs have the same degree distribution, or clustering coefficient, and so on.
Individually, none of these metrics comprehensively assesses topological similarity,
rather each is some measure of node matching between networks. Methods that
integrate all of these measures are desired. Similar efforts have been explored by
mapping networks to vectors of the above properties, and then clustering the vectors
based on naı̈ve distance methods. However, the choice of features (and their weights
if desired) is done manually which is not optimal.

Other methods to include Graph Kernels [9] which miss exactly the features
presented above and more, such as community structures. Counting Graphlets [13]
has been explored, but this is a computationally intensive technique. Other com-
plementary techniques include Best-effort Pattern Matching [17], DeltaCon [11],
Spectral analysis [19], and structural similarity of local neighborhoods [20]. A new
research direction uses genetic algorithms and machine learning [1].

In this research we introduce two metrics to compare the topology of the networks
using the eigenvalues of the Adjacency matrix and of the Laplacian. The question
of interest in the network discovery problem is whether we have discovered the
entire network. In general we cannot answer this question as it requires knowledge of
”ground truth.” However, it is always feasible to compare a sequence of discovered
sub-graphs and analyze the similarity of neighbors in any sequence of sub-graphs.
Spectral graph theory is concerned with understanding the structural properties of
the graphs using the spectra or eigenvalues and eigenvectors of the graph. Eigenvalue
analysis is used to describe the behavior of a dynamic system [18], and in our case,
the behavior of a network representing the system. To see its relevance in comparing
networks, note that eigenvalues measure the node cluster cohesiveness or community
structure that has widely been studied in network science. Moreover, the eigenvalues
represent the algebraic connectivity of the graph [7] and thus the spectra captures the
topology of the graph. The largest eigenvalue and its corresponding eigenvector are
of particular interest capturing the eigenvector centrality of nodes in a graph [3].

In spectral graph theory, Fan Chung [3] examined the distribution of eigenvalues
of the graph. Most of this research is focused on the correlation of the range of the
distribution of eigenvalues to the type of graph [3]. However, some research has
been conducted on the behavior of the distribution of the eigenvalues of the graph.
Mihail [12] suggests that there is a correlation between the power law distribution of
the nodes of the graph and the distribution of the eigenvalues. In his analysis of several
real graphs, including the Internet, he found that if the degrees of the graph d1...dn
were power law distributed, then there is a high probability that the eigenvalues of
the graph will be power law distributed and take on the values

√
d1...
√

dn [12].

http://faculty.nps.edu/rgera/projects.html


212 Crawford, Gera, House, Knuth, Miller

Of special interest for our analysis are eigenvalues the Laplacian L = D−A,
where D is the degree matrix, and A is the adjacency matrix. Fan Chung supports the
idea that the distribution of the eigenvalues of the Laplacian is more closely linked
to the structure of the graph than only using the eigenvalues of the adjacency list [3].
The Normalized Laplacian (hereafter Laplacian) contains the degree distribution as
well as the adjacency matrix information from the graph. While spectral analysis was
previously use to cluster similar trees and synthetic graphs [19], we use the spectra
with a different methodology.

Nonparametric statistical tests can capture whether two graphs are similar without
actually knowing the true network. We compare two samples (subgraphs) and test
the assumption they came from the same distribution (network). The alternative
hypothesis is there is some type of change between the two samples, such as inferring
more of a network. Ruth and Koyak introduce a new nonparametric test where the
first m of N observations X1 · · ·Xm · · ·XN are assumed to follow distribution F1 and
the rest are from F2. This allows us to see a “shift point” at Xm+1 where our samples
are no longer from the same distribution [15].

3 Methodology: Eigenvalue Distribution
One perspective on network discovery is to consider any subgraph as one of many
possible outcomes from some discovery process, given a true underlying graph. For
a simple graph G(V,E), with |V (G)| = n, and |E(G)| = α , there are 2α possible
subgraphs on N vertices. In real-world applications, say if α = 1200, the count of
possible subgraphs is grows rapidly: 21200 is on the order of 10360. Any discovered
subgraph is one of many possible random outcomes. we search to determine how can
we determine whether one collection of discovered nodes and edges is very similar
to the underlying graph.

Let Gn be a sequence of graphs recorded while lighting up some given graph G,
where, if n < m, then Gn was discovered before Gm, and Gn ⊆ Gm, ∀n ≤ m ≤ N.
Let Λn be the list (or vector) of ordered eigenvalues for Gn, and let Λ be the vector
of eigenvalues from the (true) underlying graph G. Note these are not eigenvectors
- each is a vector of eigenvalues. Then if GN = G, it follows ΛN = Λ . During the
process of discovering the network, we will not achieve ΛN = Λ , but we expect that
Λn→Λ as n increases. Similarly for the vector of eigenvalues of the Laplacian.

We conduct a numerical experiment to test whether we observe convergence of the
KS test p-value in practice. We choose a graph, and using the Network Visualization
Tool [8] we run a discovery algorithm as our method of establishing the sequence
of nodes and edges discovered as shown in Figure 1. The algorithm is not relevant:
it merely creates the sequence of subgraphs. We chose Fake Degree Discovery, a
degree greedy algorithm that discovers the network using the degree of undiscovered
nodes [16], see https://github.com/Pelonza/Graph Inference/blob/master/. As discov-
ery progresses, we obtain a sequence of graphs that get more similar to the ground
truth, and can be used to validate our methodology.

https://github.com/Pelonza/Graph_Inference/blob/master/Clean_Algorithms/FDD.py


Graph Structure Similarity using Spectral Graph Theory 213

We apply the Kolmogorov-Smirnov (KS) test, the nonparametric analog of the
well-known chi-square test, to compare a sample of data to a known distribution
and measure the “goodness of fit.” We assume the distribution of eigenvalues for
each graph snapshot Gi arises randomly from a process driven by the structure of
an underlying graph, rather than assuming observations are drawn from the same
distribution.

We test the null hypothesis Λn =Λm for n < m. For large steps values n and m, we
expect that when the difference between n and m is small, that we would fail to reject
this hypothesis. This leads to the conclusion that the subgraphs are similar. Note that
failure to reject the null hypothesis does not imply the hypothesis is explicitly true.
Rather, it means we have no evidence that it is false. Thus we should not conclude
Λn = Λ when we fail to reject the null hypothesis.

4 Results and Analysis
We discuss our experiments using a synthetic network in Section 4.1, and verify them
by using our methodology on real terrorist networks in Subsection 4.2.

4.1 Numerical Experiment Outcomes on Synthetic Networks
We apply our algorithm to the base case graph: a randomly generated Erdős-Rény
graph with 350 nodes and 3068 edges. When applying the Fake Degree Discovery

Fig. 2: Erdős-Rény: (a) Comparison of the Sequential Steps Plotting the Percent of
Nodes/Edges (b) Comparison of the p-values of Sequential Steps (n against n+1)
using the Adjacency Eigenvalue Distribution

algorithm to this network, the maximum number of monitors placed to discover the
whole network is 210, which is used as the“terminal” step for our plots. The first plot
of Figure 2 shows the percent of nodes and edges discovered during this process.

In practice, network discovery is a sequential process and the true underlying
graph is not available for comparison as done so far. Therefore we do not have the
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luxury to compare against ground truth, and so we need to determine whether the
KS test is useful when comparing sequential inferences. The second plot of Figure 2
shows that when only a few monitors are placed, many vertices and edges may be
discovered in the graph, and thus p oscillates at first, being sensitive to the change
in network from step n to step n+1. While later in the discovery process, when a
monitor discover little new information, the KS test has a high p-value, meaning the
consecutively discovered graphs are very similar. The erratic behavior of the KS test
p-values rapidly stabilizes through the inference, and remains high as expected.

In Figure 3 we plot the distribution of the adjacency matrix’ eigenvalues for the
graph obtained at step 20 alongside the graph at step 170, with each overlaid on the
eigenvalue distribution at the terminal step. The x-axis is the index n of the eigenvalue
λi of the adjacency matrix (notice that the eigenvalues are ranked in a non-increasing
order, and the index is in an increasing order). Notice the difference in distributions
between the two different time frames. Yet, the second plot shows almost identical
distributions for a time frame closer to ground truth.

Fig. 3: Erdős-Rény: Comparing the Adjacency Eigenvalue Distribution in the Dis-
covery (at Step t = 20 and at Step t = 170) Against Ground Truth

The same comparisons for the Laplacian eigenvalue distributions for the same
steps are shown in Figurse 4. This dissimilarity is larger than the one obtained using
the Adjacency matrix. This is due to a Laplacian matrix’ capacity to capture more
information about a graph’s topology than an adjacency matrix. What is similar
between the two graphs is the progressive convergence the early and late steps
demonstrate. We will see that even for real networks, the late step is much closer
than the early step to being aligned with the final graph.

Our final plots of the section shown in Figure 5 demonstrate the behavior of the
KS test throughout the network discovery process against ground truth. In the first
plot we see the adjacency matrix eigenvalue distribution is judged not to be similar
until approximately step 150. Here we see a rapid climb from p-values near zero to p-
values near one. The Laplacian eigenvalue distribution in the second plot shows very
similar behavior, but the steep ascent of the p-values from zero to one occurs later, at
step 190, as it is more sensitive to change due to the extra information captured by
the Laplacian. At step 180 and step 190,100% of nodes have been discovered. At



Graph Structure Similarity using Spectral Graph Theory 215

Fig. 4: Erdős-Rény: Comparing the Laplacian Eigenvalue Distribution Late in the
Discovery (at Step t = 170) Against Ground Truth

Fig. 5: Erdős-Rény: Adjacency Matrix and Laplacian Matrix Comparison of the
Discovery Steps Against the Ground Truth

step 180,88.8% of edges have been discovered, and at step 190, this rises to 90.8%
of edges. Consider the impact of a missing edge when comparing the subgraph to
the full underlying graph. In the adjacency matrix, a missing edge equates to two
missing entries of value 1. But in the Laplacian, in addition to these missing entries,
two diagonal entries representing the degrees of the nodes also differ from the full
graph Laplacian. This explains why the KS test using the Laplacian is less likely
to agree that the graphs are similar: there are additional sources of disagreement
between the Laplacians not found in the adjacency matrices. We will compare the
real networks to these plots, and analyze the similarities and dissimilarities.

4.2 Application to terrorist networks
We apply the methodology of Section 3 to three terrorist networks: Noordin Top [14],
Boko Haram [4], and Fuerzas Armadas Revolucionarias de Colombia (FARC) [5].
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4.2.1 Application to Noordin Top
Noordin Top Network (Figure 6) is the aggregation of 14 different relationship
types amongst 139 terrorists for a total of 1499 edges. This network captures the
relationships of five major terrorist organizations that operate in Indonesia. Noordin
Top is the key broker between these organizations and exercises his influence to
conduct large scale terrorist training events and operations. In this case, monitor
placement during degree discovery process is representative of new information that
is gained about the terrorist network. The plot of Figure 6 shows the node and edge
progression of the discovery algorithm for a quick intuition of discovery.

Fig. 6: Noordin Top and Its Inference: Comparison of the Percent of Nodes/Edges
Discovery Steps Against the Ground Truth

Similar to Figure 5, we present the KS tests for the Noordin Top Network in the
plot of Figure 7 and see the same behaviour. The second plot of Figure 7 also shows

Fig. 7: Noordin Top Inference: (a) Comparison of the Laplacian and Adjacency
Matrix Eigenvalues Steps Against the Ground Truth (b) Comparison of the p-values
of Sequential Steps (n against n+1) using the Laplacian and Adjacency Matrix

that consecutive graphs become more similar as the inference progresses, with more
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noise than the synthetic network. The main differences are in the spikes seen in the
both KS plots potentially due to the real network being disconnected.

4.2.2 Application to Boko Haram
The Boko Haram Network of Figure 8 and is the aggregation of 9 different relation-
ship types (73 edges) amongst 105 terrorists. This network captures the relationships
of an Islamic extremist organization that primarily operates in Nigeria. The plot in
Figure 8 shows the node and edge progression of the discovery algorithm.

Fig. 8: Boko Haram and its Inference: Comparison of the Percent of Nodes/Edges
Discovery Steps Against the Ground Truth

The KS tests plots for the Boko Haram Network against the ground truth and

Fig. 9: Boko Haram Inference: (a) Comparison of the Eigenvalues Adjacency and
Laplacian Matrix Steps Against the Ground Truth (b) Comparison of the p-values
of Sequential Steps (n against n+1) using the Adjacency and Laplacian Matrix

sequentially, for both adjacency and Laplacian matrices are shown Figure 9. Boko
Haram is a disconnected network, with over 60 nodes of degree 0. When very few
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nodes on this network are discovered, the p-value jumps very quickly. The drop in
p-value at step 13 corresponds to a large discovery in the network that is less visible
but detected in the edge and node discovery in Figure 8; and the p-value quickly
stabilizes after.

4.2.3 Application to FARC
In applying our methodology to the FARC Terrorist Network for additional verifica-
tion, we obtained similar results. The FARC Network is visualized as a network in
Figure 10 and includes the aggregation of 10 different relationship types amongst 142
terrorists operating in Colombia, and a total of 1527 edges [5]. The plot in Figure 10
shows the node and edge progression of the discovery algorithm. We also plotted
the KS tests for the FARC Terrorist Network in Figure 11. Here we note volatility
in both the Laplacian and Adjacency KS test plots. This differs from the previous
cases where we observed more stable convergence. We investigate this further to find
an explanation.

Fig. 10: FARC network and its Inference: Comparison of the Percent of Nodes/Edges
Discovery Steps Against the Ground Truth

In the depiction of FARC in Figure 10 one observes two large, dense clusters,
and several outlying clusters. We note that the FARC network is different from the
other networks in what seems to be a crucial way: The clustering coefficient for this
network is very high, at 0.91. The discovery algorithm focused on the big clusters
at first (which can be seen in the plot of Figure 10 as the nodes get discovered
quickly and then they plateau while only edges are being discovered), and then
when nodes in a different cluster are discovered. The KS test detects and reports
a “setback” in the confidence till the entire network has been discovered. Figure11
shows that in the beginning the discovered graph is very dissimilar to the whole
network as it has only a few edges discovered. The second plot of Figure 11 strengthen
that explanation by showing that consecutive discoveries look more similar if the
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eigenvalue of the Adjacency matrix is use, but the sensitivity of the Laplacian depicts
the dissimilarities as it is more sensitive to changes in the graphs compared.

Fig. 11: FARC Inference: (a) Comparison of the Laplacian and Adjacency Matrix
Eigenvalues Steps Against the Ground Truth (b) Comparison of the p-values of
Sequential Steps (n against n+1) using the Laplacian and Adjacency Matrix

4.3 Conclusions
Our numerical experiments show what we anticipated: Using the p-value from a
KS test as a measure of similarity, the distribution of eigenvalues from neighboring
sub-graph adjacency matrices are not always similar statistically, but this similar-
ity measure stabilizes rapidly. Further, comparisons using this metric to the true
underlying graph tend to 1 as the discovery unfolds.

When a representative portion of a graph has been discovered, the p value tends
to stabilize. We base this statement on the rapid climb in the p-value for the KS test
at some critical point, in each of the networks. Since the plots of the p-value, when
comparing sequential steps of the inferred graph, show a steep climb in p-value at
this critical point, which is the point to find a similar graph to ground truth.

We find this same very steep transition occurs much later for the Laplacian. There
are also some known results on the distribution of eigenvalues from the Laplacian,
including characterizations of graphs based solely on normalized eigenvalues. The
Laplacian eigenvalue distribution comparison method is slower to conclude graphs
are similar as it is armed with more information. We found that this delay is due
to the structural differences in the adjacency matrix and the Laplacian. Thus for
the purpose of similarity, the adjacency matrix can give a broad similarity measure,
while the Laplacian is more exact in measuring similarity.

The rapid stabilization of the KS test when comparing consecutively discovered
sub-graphs may offer some utility when comparing graphs in the setting where the
true underlying graph remains unknown or unknowable. The advantage of such a
metric is that it is self-referential: nothing needs to be assumed beyond what has
been discovered. The desirable property of early stabilization can be put to use when
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it fails: After the KS test measure on neighbors stabilizes, and discovery continues,
a break in stability marks a major discovery. For example, if a bridge is discovered
there is a clique on the other end of the bridge, then one can be sure the KS test
p-value will drop. Whether it drops significantly will depend on the relative number
of nodes and edges discovered in the next step compared to the number already
discovered. We observed that when there is a high clustering coefficient, this leads to
increased volatility in our similarity of measure.

We conclude that the use of sequential Adjacency and Laplacian matrix eigen-
value distribution comparisons based on the Kolmogorov-Smirnov Test p-values
is a promising method to guide network discovery. Further work is necessary to
explore and more fully describe the properties observed in this study. Particularly this
method would not differentiate graphs that have the same graph spectrum (isospec-
tral/cospectral graphs) as a theoretical study, as well as more choices of synthetic
models.

Continuing the current research has great potential for comparing graphs and
inferring networks when information is incomplete. A comparison to the Kullback-
Leibler’s (KL) divergence test can also be performed.
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Abstract The structure of a network plays a key role in the outcome of dynamical
processes operating on it. Two prevalent network descriptors are the degree distribu-
tion and the global clustering. However, when generating networks with a prescribed
degree distribution and global clustering, it has been shown that changes in structural
properties other than that controlled for are induced and these changes have been
found to alter the outcome of spreading processes on the network. This therefore begs
the question of our understanding of the potential diversity of networks sharing a
given degree distribution and global clustering. As the space of all possible networks
is too large to be systematically explored, a heuristic approach is needed. In our
genetic algorithm-based approach, networks are encoded by their subgraph counts
from a chosen family of subgraphs. Coverage of the space of possible networks is
then maximised by focusing the search through optimising the diversity of counts by
the Map-Elite algorithm. We provide preliminary evidence of our approach’s ability
to sample from the space of possible networks more widely than some state of the
art methods.

1 Introduction
Almost all complex systems can be modelled, to varying levels of detail, using
networks whereby components of the system can be reduced down to nodes and to
edges connecting them. Such an approach often makes it possible to pick out global
behaviours dependent on the connections and/or relationships between different
elements of the system that either would not have been noticed in isolation or
could not be detected within large data sets [15]. The relationship between network
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structure and behaviour is the subject of much research in many areas such as
epidemiology [3, 9, 18], social media [1] and neuroscience [12]. Where analytically-
tractable mathematical models are needed, two main network descriptors stand out:
degree distribution and global clustering. Interestingly, while there are now effective
and analytically-tractable mathematical models that can handle the degree distribution
well [3, 9, 18], when clustering is also considered, most models will break down or
only operate for networks constructed in particular ways, e.g., networks with non-
overlapping triangles [22]. This sensitivity to how networks are constructed highlights
the fact that, as shown by [4, 8, 10, 19] among others, many network-generating
algorithms introduce changes in structural properties other than that controlled for,
thus undermining both model accuracy and inference of any causal role for the
properties of interest. How to create network null models, i.e., where the properties
of interest are fixed and all other properties are sampled in an unbiased manner, is an
open question. One major step towards realising such goal would be to get a greater
understanding of the space of networks satisfying a given set of requirements, e.g.,
a given degree distribution and a given global clustering coefficient. For networks
of non-trivial size, the space of all such networks is too large to be systematically
explored and therefore a heuristic approach is needed. Our approach relies on two
principles: (a) a parametrisation of networks in terms of sub-graph decomposition,
which significantly reduces the dimensionality of the encoding space when compared
to the adjacency matrix as done in our previous work [17]; and (b) a search of the
space driven by a process seeking to maximise the diversity of the networks being
uncovered, thus biasing the exploration/exploitation trade-off toward exploration. The
design and implementation of these two principles will be detailed in the following
section.

2 Methods
2.1 Network encoding
A key challenge in exploring the space of networks satisfying constraints is that
of network representation. In principle, the network’s adjacency matrix would be a
natural choice because it fully specifies the network. However, it suffers from two
major drawbacks: scalability and unicity (two networks may have a distinct adjacency
matrix but be isomorphic). Our previous work [17] using the adjacency matrix
revealed an extremely wasteful process even for small sized networks (N = 200).
The recently-proposed dk-decomposition [16] offers an attractive alternative through
its use of joint degree distributions of different orders, however, as we will show,
questions remain regarding the biased nature of the network generation process once
the joint degree distributions have been set. Instead, building on our recent work [20],
we propose to parameterise networks in terms of a (arbitrarily chosen) family of
subgraphs (see Figure 1 for a few examples).

Concretely, we use the counts of each of the subgraphs in the family to yield an
adjacency matrix using the cardinality-matching algorithm (CMA hereafter) [20].
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CMA is a method inspired by the configuration model [6]. It assigns a set number
of subgraphs of arbitrary structure in a network with a set degree sequence. Put
simply, it works by assigning to nodes in the network hyperstubs of a certain degree
as specified by each subgraph in the family. For example, triangles (subgraph C3)
will require 3 hyperstubs of degree 2 whereas a Toast (see Figure 1 will involve 2
hyperstubs of degree 3 (corners with 3 edges) and 2 hyperstubs of degree 2 (corners
with 2 edges). These hyperstubs are then selected at random and connected until
there are no more left. When a new subgraph introduces self- or multi-edges, a new
node is selected as in the matching algorithm [13]. When there is no option other
than to add subgraphs over existing links or selecting multiple instances of the same
node, the process is restarted from scratch. To accelerate the process, in this work,
only 80% of the networks’ total edges were allocated to the specified subgraphs. The
remaining edges were allocated as single edges to preserve the degree sequence. As
this process can lead to nodes failing to have the desired degree (typically by ±1),
networks for which more than 20 nodes (out of a total of 1000) did not have the
expected degree were excluded. Analysis of the networks produced (not reported
here for reasons of space but available for an extended version, and see [20]) showed
that the process still provides good control over most subgraphs, particularly (and
advantageously in our context), those inducing clustering (i.e., C3, C4 and Toasts).
Still, to avoid results being biased by a particular realisation, all measures reported in
this paper were calculated by averaging over 5 network realisations. The reliability of
the process is illustrated by Figure 2 which shows a compact spread of values of three
network metrics (global clustering, mean shortest path length, mean betweenness
centrality) for 10,000 realisations of a single network specification.

The choice of subgraphs is somewhat arbitrary and is a source of bias in itself.
Here, we chose 3 subgraphs that induce clustering in the network (they are C3, C4
and toasts, see Figure 1). The other networks are loops that do not induce clustering.
In this paper, only L4 and L5 were used. As a family, they provide flexibility and
redundancy in the control for clustering. These 5 subgraphs have been shown in
previous work to be those for which CMA showed most control over (as assessed
by subgraph counting post realisation – results now shown here but available for an
extended version).

Fig. 1 The set of subgraphs
used to encode networks
(single edges not included).
Subgraphs in the top row
will induce clustering in the
network.
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Fig. 2: Histograms of global clustering (left column), mean shortest path length
(middle column) and mean betweenness centrality (right column) for 10,000 CMA
realisations of a single network specification with predicted global clustering of
0.14± 0.025. The top, middle and bottom rows correspond to regular networks with
degree k = 5, k = 6 and k = 7 respectively.

2.2 Exploration of the space of possible solutions
Our primary objective being an exploration of the diversity of networks preserving a
given degree distribution and global clustering coefficient, our task can be thought of
as a two-part optimisation: (a) of the features that must be shared by a network for it
to be added to the population of valid networks and (b) of the diversity within this
population of valid networks. Multi-objective optimisation is not a new problem and
the more complex variant considered here involving a changing measure of diversity
within an actively changing population has recently been the focus of a number of
methods in the field of genetic algorithms (GAs) [11].

In their simplest form GAs work by taking a starting population of individuals,
which are encoded so that each has a genome that represents the key features being
studied, here, the subgraph composition (expressed in percentage). This population is
then evolved through genetic operations that change the genome of individuals. This
typically involves mutations – the adding or subtracting from parts of the genome
– and recombination or crossover – the combining of two individuals into a new
individual with a new genome. Here, mutations involve changing the prevalence of
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each subgraph by a small number drawn randomly in the interval [−0.1,0.1]. During
crossover between two networks, a new network is created whereby a randomly
chosen number of its subgraph percentages are those of the first network and all
others are those from the second network. For both mutation and crossover, the
subgraph prevalences of the new individual are normalised to sum up to 1. Both
processes have a 60% chance of occurring to either an individual (for crossover) or
an individual subgraph count (for mutation) at each generation. All individuals are
then analysed for their fitness – the objective function in the optimisation process,
here, global clustering calculated using the formula proposed in [7]. Those with the
lowest fitness are either removed, selected for genetic operations less often or both.
This results in a population that, depending on the setting of the GA, moves along
the search space towards areas of high fitness. An important implication is that the
solutions are highly dependent on the choice of the fitness measure, the selective
pressures used at each generation and the way that solutions are stored.

Previous work based on the idea of optimising for diversity includes the genera-
tion of neural networks topologies for control of robots in which diversity of both
behaviour and performance was optimised for [21] and our own work [17] in which
we started exploring the feasibility of using GAs to optimise the diversity of networks
satisfying structural constraints, albeit for small sized networks. The main limitation
of these methods has been their focus on the optimisation of a few individuals to
the best possible fitness over all their objectives (the Pareto front), often leading
them to avoid equally valid/fit regions of the feature space. Here, we employ the
recently proposed Map-Elite method [14] which seeks to map the solution space
through dividing the space into identically-sized multi-dimensional cells that cover
a set range of values for each of the features used to describe the individuals. All
individuals in the population are then placed in one of these cells and when new
individuals are created they are assessed based only on individuals in that same part
of the space. If there is no other in the cell then the individual is deemed novel and
is kept. If, instead, there is another individual already within the cell then only the
individual with the greatest fitness is kept. This method allows for the promotion
of novelty without comparison of the entire population whilst also optimising the
fitness of the population.

3 Results
The experiments reported in this paper sought to map the diversity of networks of
size N = 1000 satisfying the constraint of a homogeneous/regular degree distribution
(with degree 5, 6 or 7 – as three distinct scenarios) and a global clustering coefficient
of 0.14. Although our choice of network encoding is insensitive to network size,
the CMA connection process is not. The size N = 1000 makes the experiments
tractable, when deployed on the high performance computing facility. The three
degrees considered enable us to assess the effectiveness of the method for networks
with more (k = 7) or less (k = 5) flexibility in how to allocate subgraphs. For
example, with k = 5, it would not be possible for a node to share a fully connected
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square (C5) and the degree 3 corner of a toast whereas with k = 7, the same node
could accommodate that and an extra free edge. Our choice of global clustering
coefficient is arbitrary although one should note that depending on the choice of
subgraph family used to encode networks, some clustering values are more likely
than others. With the proposed family of subgraphs and the relatively small degree,
it would be difficult to generate highly clustered networks, and diversity would
be extremely limited. A tolerance of ±0.025 was used in evaluating the clustering
fitness of networks. A tolerance is needed due to (a) the nature of the computation of
the clustering coefficient and (b) the stochasticity in allocating subgraphs and any
resulting byproducts [20]. This tolerance, which is reflected in the histograms of
clustering values in Figure 2, corresponds to a maximum deviation of ± 8 triangles
(subgraph C3) from the expected number of subgraphs and is negligible given the
number of triangles needed to achieve the required clustering.

3.1 Effectiveness of the mapping in terms of space coverage
To provide some quantitative assessment of the effectiveness of mapping, cells were
configured for maximal resolution, meaning that all individuals within a cell would
have the exact same subgraph counts. It should be noted at the outset (but this is
currently the subject of further work) that starting out with maximal resolution is
sub-optimal in terms of managing the evolutionary process. However, for the purpose
of this assessment, it provides as detailed a picture as possible of the proportion of
all possible encodings that is uncovered by the evolutionary process (with the caveat
that with a limited number of generations, the actual number of cells uncovered can
only be a tiny fraction of the total number of cells possible). In the following, when
ignoring the fact that not all combinations of subgraph counts are actually realisable –
graphicality of the network), the total number of cells possible is 1040625000000 =
333×250×250×200×250 and corresponds to the product of the ranges of possible
values taken by the counts of each subgraph in the family (this count is determined
on the basis of the highest-degree hyperstub in relation to the total number of nodes
available in the network). The actual total number of cells is found by subtracting
from the above count those cells that correspond to non-graphical/non-realisable
networks, namely, those where the total number of edges prescribed by the subgraph
decomposition is above (Nk)/2 and where the number of triple hyperstubs from
C4 and Toasts is greater than (k/3)N – the maximum number of triple hyper stubs
allowed by CMA in a network. Coverage of the space at various points during the
process is shown in Table 1. Given the maximum resolution and the fact that each
generation only produces one new network, the actual percentage of coverage is very
small. However, the table shows two important results: (a) the rate at which new cells
are explored in relation to the number of generations is almost 1 suggesting that cells
are not revisited (this would no longer be the case if cells had lower resolution); (b)
the rate at which valid networks are produced is roughly constant as the number of
generations increases.
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k 21,000 gen 42,000 gen 63,000 gen
Explored Valid Explored Valid Explored Valid

5 20783 12995 41546 25952 62286 38852
6 20824 18266 41583 36596 62349 55009
7 20845 18691 40646 36680 62431 56435

Table 1: Number of explored and valid cells uncovered by the evolutionary process
at various time points for the three scenarios (k = 5,6,7) considered. In all cases,
networks have size N = 1000 and the family of subgraph considered is (C3, C4,
Toast, L4 and L5) with a desired global clustering of 0.14±0.025. For reference, the
total number of cells possible (after removal of non-graphical solutions) is ∼ 1012.
Each generation can produce at most one new network.

Importantly, we note that this table does not provide any information regarding
coverage of the space of valid networks, those with correct degree distribution and
global clustering within±0.025 of the desired clustering. Whilst the search is focused
on finding valid cells (rather than all possible cells), we do not have any estimate
for the total number of possible valid networks in the space of all possible networks.
Figure 3 provides a different perspective on this by using low-dimensional projec-
tions of the space of networks explored and valid. Where possible, non-graphical
solutions have been highlighted. The Figure reveals that despite the limited num-
ber of generations (again, corresponding to a very small percentage of all possible
configurations) there is evidence of fairly uniform sampling as far as explored cells
are concerned. The Figure further reveals pair-wise relationships between counts
of subgraphs that reflect the constraints of the problem. For example, when two
clustering-inducing subgraphs are considered (e.g., C4 and Toast) there is a distinct
relationship whereby configurations with larger numbers of C4s have smaller num-
bers of Toast and conversely. Instead when clustering-inducing subgraphs and non
clustering-inducing subgraphs are considered (e.g., C3 and L4) valid configurations
can be found throughout the space of explored solutions. Areas that are not explored
are typically reflecting configurations for which although no graphicality condition
is being violated as far as the particular pair of subgraphs is concerned, no network
realisation is possible when taking into account the other dimensions.

3.2 Comparison with other methods
Whilst the above results point to evidence of diversity in terms of subgraphs a more
useful basis for evaluating the effectiveness of our approach is to assess the extent to
which networks uncovered show greater diversity than can be expected from methods
currently available to generate networks satisfying the same constraints. Since sub-
graphs counts are explicitly controlled by the evolutionary process, they would not be
a fair metric for comparison. Instead, we considered two global structural properties:
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Fig. 3: Low-dimensional projections of the configurations discovered by the evo-
lutionary process (both those that were explored but not necessarily satisfying the
constraints – in blue – and those that were valid – in green) after 63040 generations.
Each dot denotes a network whose coordinates are the counts for the subgraphs
shown in the horizontal and vertical axes. A dot does not define a unique network,
however, as the projection can mask great diversity in the remaining 3 dimensions.

mean shortest path length and mean betweenness centrality (BCm) – although as both
show a high degree of correlation, only betweenness centrality will be reported below.
These properties are important determinants of behaviour in networks [15]. Two state
of the art network generating methods have been used for this comparison: dk-series
decomposition [16] and BigV rewiring [5]. For the former, we used dk2.1 (using code
from [2]) which preserves degree distribution and global clustering (dk2.5 would
also preserve local clustering which is overly specific for our purpose). Since the
dk method requires a seed network to operate, one network was chosen at random
among those generated by our approach. For the latter, the rewiring algorithm was
applied to a single random network with homogeneous degree distribution who was
rewired until desired clustering was achieved (with a maximum of 40000 rewirings).
For both BigV rewiring and dk decomposition, the number of networks generated
was set to the number of networks produced by the GA.
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Figure 4 reveals that the range of mean betweenness centrality for networks
produced by our approach is greater than that of either (or even both of) the dk-
and BigV-produced networks, suggesting that a wider area of the space of solutions
was explored. This holds for all three scenarios (k = 5,6,7). An important correlate
of this finding is that neither BigV rewiring nor dk-decomposition can claim to
generate null models. Interestingly, the networks produced by both methods do not
appear to overlap suggesting that either methods generate networks in different areas
of the space of solutions. Likewise, although our method appears to sample more
widely than BigV rewiring and dk, full overlap only occurs for k = 7 whereas there
is almost no overlap for k = 5. It remains to be seen whether, given more time, our
method would uncover these areas of the space of solutions. Finally, given that the
dk networks were produced from a single seed, it is worth pointing out that there
was no obvious correlation between the betweenness centrality of the seed and the
mean betweenness centrality for the dk-generated networks. The extent to which the
choice of seed conditions the distribution of networks generated remains unclear.

Fig. 4: Histograms of the mean betweenness centrality for the proposed method
(blue), BigV rewiring (red) and dk2.1 (green) for each of the three scenarios: k = 5
(left), k = 6 (middle), k = 7 (right). The same number of networks was used for all
three methods.

4 Discussion
In this paper, we have proposed a new GA-based approach to generating networks
preserving degree distribution and global clustering. Our approach is focused on
maximising the diversity of the networks being created. Since it is impossible to
quantify the extent to which the entire space of solutions has been sampled, we have
provided evidence of the effectiveness of the method by comparing it to two state of
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the art network-generating methods, dk-series decomposition and BigV rewiring and
showing that our method generates more diversity. Whereas coverage of the space
of solutions using our method will depend on the number of generations available,
both BigV rewiring and dk-series decomposition depend on a mixing time being
reached. Care must therefore be taken in making definite statements about the ability
of these methods to sample the range of networks found by our approach. However,
given the same number of steps, there was greater diversity using our approach. This
provides evidence for the usefulness of our method in the evaluation of the level of
bias shown by current network generation methods. Much further work is needed
to strengthen our framework, especially given that it is itself subject to a number of
biases. For example, whilst encoding in terms of subgraphs provides much flexibility
and scalability, it is itself a source of biases. At this time, it is unclear how a different
choice of family would affect the diversity of networks uncovered. On the bright side,
we believe that our starting scenario of networks with homogeneous distribution
and low degree actually made it much harder to find diversity in the networks. The
immediate focus will be to consider heterogeneous distributions with higher degrees.
Whilst it will not affect computation time, it will provide much more flexibility for
the network connection process (CMA) to realise networks (as well as remove the
need to allow for 20% free edges, thus providing further control).
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Abstract Significant advances in high-throughput sequencing technologies raised
exponentially the rate of acquisition of novel biological knowledge in the last decade,
thus resulting in consistent difficulties in the analysis of vast amount of biological
data. This adverse scenario is exacerbated by serious scalability limitations affecting
state-of-the art within-network learning methods and by the limited availability of
primary memory in off-the-shelf desktop computers. In this contribution we present
the application of a novel graph kernel, transductive and secondary memory-based
network learning algorithm able to effectively tackle the aforementioned limitations.
The proposed algorithm is then evaluated on a large (more than 200,000 vertices)
biological network using ordinary off-the-shelf computers. To our knowledge this
is the first time a graph kernel learning method is applied to a so large biological
network.

1 Introduction
Many efforts have been devoted in the last decade to developing automated tools
for large scale automated function prediction of proteins (AFP) [2, 3]. A recent
international challenge for the critical assessment of automated function prediction
[6], highlighted that scalability and heterogeneity of the available data represent
two of the main challenges posed by AFP. From a learning perspective the problem
is further complicated by the different functional annotation coverage in different
organisms that make very difficult the effective transfer of the available functional
knowledge from one organism to another. A possible approach for gene functional
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annotation transfer between species relies on the availability of a collection of orthol-
ogy relationships across interspecies proteins, and on the usage of an evolutionary
relationships network as a suitable medium for transferring functional annotations to
the proteins of poorly annotated organisms [7]. In this scenario a possible solution
could be the application of network based learning methods on multi-species biolog-
ical networks so that annotations coming from well annotated organisms could be
used to effectively transfer functional annotations between species.

Unfortunately this approach is only apparently simple given the serious scala-
bility limitations affecting graph-based learning algorithms (i.e. the popular label
propagation and random walks based methods). These approaches usually rely on
an in-memory adjacency matrix representation of the graph network, scale poorly
with the size of the graph [9], and time complexity may become quickly prohibitive.
When the size and structural complexity of the graph becomes so high that it is not
possible to maintain it entirely in primary memory, alternative strategies (i.e. paral-
lel/distributed computation [4, 11, 12], or secondary memory-based computation
[5, 8, 19]) can be considered. However, at least in the case of the parallel/distributed
computation, the identification of the optimal partitioning of the graph that minimizes
the message passing requirements across a possibly large number of nodes of an HPC
cluster is not immediate, especially in the case of very large and complex networks.

We previously proposed [13] a scalable semi-supervised network-based learning
of protein functions algorithm that can be applied to large multi-species networks and
is implemented using secondary memory-based technologies. Despite the appealing
scalability performances from a learning standpoint this method is a classical random
walk on graph. This paper extends the previous proposal by developing a local
within network learning method based on the Random walk kernel [17] and a
previously developed kernelized functions learning framework [15]. The novel local
and secondary memory-based graph kernel method is compared with the classical
random walks on graphs both in terms of learning performances and empirical time
complexity.

To our knowledge this is the first reported case of application of a local and
secondary-memory based graph kernel method to a very large biological network.

This manuscript is organized as follows. In the next section we introduce our
proposed approach based on the local and secondary memory-based implementation
of network-based algorithms (classical random walks on graph) for the multi-species
AFP problem. We then present the novel random walks kernel local algorithm. We
finally compare the algorithms in a multi-species AFP problem on a large biological
network including 13 species of Eukaryotes and containing more than 200,000
proteins.

2 Local version of the classical Random Walk algorithm
Network-based algorithms learn by exploiting the overall topology of the networks
[14, 15, 18], and their implementations usually require to process in primary memory
a large part or the overall underlying graph. The main drawback of these implemen-
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tations is that big networks cannot be entirely loaded into primary memory using
off-the-shelf machines.

In [13] we developed local implementations of global network algorithms (clas-
sical random walks (RW) on graphs) by iteratively processing only one vertex and
its incident edges at a time. In other words we do not reject to think globally by
exploiting the overall topology of the network, but at the same time we solve lo-
cally by designing implementations of these algorithms through a vertex-centric
programming model [4, 12].

A key feature of all the presented implementations is that the potentially very
large matrices used by the primary-memory based versions of the classical random
walk algorithm as well as of their kernelized versions are never computed nor stored
entirely in main memory. All the learning algorithms presented in this paper were
implemented by considering that:

• the existence of an edge in the network can be exploited as the only medium to
propagate information between the vertices located at its endpoints;

• the knowledge of the set of edges originating from a vertex is enough to define
its direct neighbourhood;

• the computation of the final score of a vertex can be decomposed in many steps
each depending uniquely on the topology of the network and on the status of the
vertices directly connected to the considered vertex;
• the score can be progressively accumulated into a single variable that is local to

the vertices of the network.

RW algorithms [10] explore and exploit the topology of the functional network,
starting and walking around from a subset VM ⊂V of nodes belonging to a specific
class M by using a transition probability matrix QQQ = DDD−1WWW , where DDD is a diagonal
matrix with diagonal elements dii = ∑ j wi j. The elements qi j of QQQ represent the
probability of a random step from i to j. The initial probability of belonging to M
can be set to po = 1/|VM| for the nodes i ∈VM and to po = 0 for the nodes i ∈V \VM .
If pppt represents the probability vector of finding a “random walker” at step t in the
nodes i ∈V (that is, pt

i represents the probability for a random walk of reaching node
i at step t), then the probability at step t +1 is:

pppt+1 = QQQT pppt (1)
and the update (1) is iterated until convergence. Given that a too deep exploration of
the network can lead to a steady state with suboptimal learning performance, it is
common practice to try with different number of predefined steps.

With the RW method at the steady state or at an optimized number of steps we
can rank the vector ppp to prioritize nodes according to their likelihood to belong to
the class M under study.

Looking from a “local” perspective at RW algorithm, the update rule (1) becomes:
pt+1

i = Qi · pppt (2)
where pi is the probability of the ith node, and Qi represents the ith column of the QQQ
probability transition matrix. By recalling that WWW represents the original adjacency
matrix of the graph and Wi its ith column, from (2) we obtain:
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pt+1
i = D−1Wi · pppt =

n

∑
j=1

d−1
j j w ji pt

j (3)

This is the update rule of the random walk resolved at the ith node of the graph, and
can be viewed as a “local” version of (1): by updating all the nodes i of the graph,
1≤ i≤ n, we update the probability vector pppt+1 exactly in the same way of (1).

To compute (3) we need the following “local” data:

1. po
i (that is, the probability of the ith node at start)

2. d−1
j j = 1

∑i w ji
(that is, the sum of weights of the edges coming from j)

3. w ji,1≤ j ≤ n (that is, the weights of the edges going to i)
4. pt

j,1≤ j ≤ n (that is, the probabilities of nodes at the previous step).

If the graph is indirect (an this is the case for AFP problems), the weights of
incoming and outcoming edges are the same, that is ∀i,∀ j wi j =w ji. This implies that
we need to store only the list of edge weights outcoming from i: L(i) = {wi j|wi j > 0}.
This in turn implies that in sparse graphs the spatial (and temporal) complexity at each
node is sublinear. It is easy to see from (3) that the complexity of each iteration of
the algorithm is O(n2), but with sparse graphs, i.e. when ∀i, |{( j, i)|w ji > 0}|<< n,
the complexity is O(n).

3 Local version of the Random walk kernel and Kernelized
Score Functions

In [15] we proposed the kernelized score functions algorithmic framework that gener-
alizes the notion of average, nearest neighbour and k-nearest neighbour distance from
the set of positive nodes in a given network annotated to a specific functional class,
and embeds a general kernel to model the functional similarity between nodes. This
semi-supervised transductive learning method generalizes the guilt-by-association
(GBA) approach [6] by introducing fast and efficient local learning strategies based
on an extended notion of functional distance between the vertices, and adopts also a
global learning strategy by using kernel functions able to exploit the relationships
and the overall topology of the underlying network. The implementations presented
in [15] were all “global” (primary memory-based). In order to significantly im-
prove the scalability of the kernelized score functions we need to consider local
implementations of:

1. The score function
2. The kernel embedded in the score function

The Average, Nearest Neighbour and k-nearest Neighbour score functions [15, 16]
can be naturally implemented in “local” form once we are able to cast in local form
the computation of the underlying kernel. In this work we focus on the Average score
function:

SAV (i,VC) =
1
|VC| ∑

j∈VC

K(xxxi,xxx j) (4)
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where VC is the set of positive vertices i ∈V that belongs to a given functional class
and xxxi,xxx j are features associated respectively with node i and j, usually represented
as real vectors. To compute (4) we need the following “local” data:

1. The ith row KKKi of the kernel matrix KKK
2. The set VC (indices of the positive columns)

The complexity is O(|VC|), that is constant if |VC|<< n.

The “global” version of the 1-step random walk kernel is the following [17]:

Krw = (a−1)III +DDD−
1
2 WWWDDD−

1
2 (5)

Where I is the identity matrix, D is a diagonal matrix with elements dii = ∑ j wi j and
W is the symmetric adjacency matrix of an indirect graph G = (V,E). It is easy to
derive from (5) the following “local” implementation of the 1-step random walk
kernel, where K(xxxi,xxx j), for the sake of simplicity is represented as ki j:

ki j =





d
− 1

2
ii wi j d

− 1
2

j j if i 6= j

(a−1)+d
− 1

2
ii wi j d

− 1
2

j j if i = j
(6)

To compute (6) we need the following “local” data for each edge (i, j):

1. its weight wi j

2. the values d
− 1

2
ii and d

− 1
2

j j

The local computation complexity is constant. To compute the overall matrix the
complexity is O(n2). The q-step random walk kernel with q > 1 can be computed by
following a step-by-step strategy based on this recursive formula: Kq

rw = Kq−1
rw Krw.

3.1 Putting together the Average score and the local version of the
random walk kernel

By putting in (4) the local version of the random walk kernel (6), we obtain a “local”
version of the average score with 1-step random walk kernel:

SAV (i,VC) =
1
|VC| ∑

j∈VC

K(xxxi,xxx j) =
1
|VC| ∑

j∈VC

ki j =

=
1
|VC| ∑

j∈VC

(
d
− 1

2
ii wi j d

− 1
2

j j + 〈i = j〉(a−1)
)

(7)

where 〈z〉 is 1 if z is true and 0 otherwise. To compute (7) we need the following
“local” data:

1. The row WWW i of the adjacency matrix WWW
2. The set VC (indices of the positive columns)

3. the values d
− 1

2
ii and {d−

1
2

j j | j ∈VC}

The local complexity is O(|VC|), that is constant if |VC|<< n.
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The main problem affecting the proposed solution for the local computation of
the Average score based on a random walk kernel is that, using an approach starting
from the adjacency matrix, a certain locality is maintained in the computation of the
1-step and 2-steps but when we compute RWK with 3 or more steps we need the
overall matrix and the “locality” is completely lost.

To overcome the complexity problems raising from the local computation of the
p-step RWK with p > 1, we propose an iterative version of the kernelized score
functions with random walk kernels.

3.2 Iterative computation of the kernelized Average Score function
with p-step RWK

As stated in Section 3.1 the iterative nature of the p-step RWK computation poses
serious challenges from a local implementation perspective and a progressive locality
loss make solutions based on simple modification of the classical random walks
unsuitable for real world big graph. In order to overcome this limitation we propose a
novel representation of the combined RWK-kernelized score functions computation
that better fits the constraints imposed by the analysis of very large graphs and by the
vertex-centric programming paradigm.

More precisely, we propose an iterative formula for computing the Average kernel
score with a p-step random walk for the whole graph. Such formula consists in a
simple matrix-vector multiplication at each iteration.

Recall that for every node i ∈ V the average score of the p-step random walk
kernel starting from VC ⊂V is SAV (i,VC) =

1
|VC | ∑ j∈VC

(K p)i j. Let’s denote the column
vector constructed from SAV (i,VC) by varying i with

SAV (VC) = [SAV (1,VC), · · · ,SAV (n,VC)]
T .

It can be shown that the vector SAV (VC) of average scores for the whole graph
G =<V,E > with a p-step random walk kernel starting from nodes of VC ⊂V can
be computed as SAV (VC) = DDD

1
2 vvvp by the iterative formula

vvvp = MMMvvvp−1 where MMM = [(a−1)III +DDD−1WWW ]

with the initialization vector vvv0 having element

v0
i =

{
1

|VC |
√

dii
if i ∈VC;

0 otherwise.
We will now show how to compute the average score for the p-step RWK using a
local implementation, i.e. on a vertex-based graph computation model.

Consider the ”global” iterative formula vp = MMMvvvp−1; denote by vp
i the i-th element

of vvvp and by I(i) = { j ∈ V : wi j > 0} the incoming neighbors of i in the weighted
graph G. We have

vp
i = ∑

j∈V
Mi jv

p−1
j = ∑

j:Mi j>0
Mi jv

p−1
j .

Since
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Mi j =

{
a−1 if i = j
wi j
dii

otherwise.

we can establish the rule for updating the value of a vertex i in the graph:

vp
i = ∑

j 6=i:wi j>0

wi j

dii
vp−1

j +(a−1)vp−1
i = d−1

ii ∑
j∈I(i)

wi jv
p−1
j +(a−1)vp−1

i . (8)

Finally, using the iteratively computed vp
i value, the vertex-centric score SAV can be

easily obtained:

SAV (i,VC) = d
1
2
ii vp

i (9)
Therefore, in a vertex-based graph computation model, at every update step it is
sufficient to take into account for each vertex i ∈V :

• the old value vp−1
j of all neighboring vertices j ∈ I(i),

• the weight wi j of all incoming edges,
• the weighted in-degree dii

and then use the previous rule for the updating. This kind of computation scheme
can be implemented in any vertex-based graph analytics programming framework.

4 Experimental settings
We applied our methods based on the local implementation of network-based al-
gorithms and secondary memory-based computation to the multi-species protein
function prediction in eukarya. In all the experiments we implemented the network-
based methods using GraphChi, a software library for large-scale graph computation
using secondary memory [8]. All the experiments have been performed using off-
the-shelf desktop computers with a limited amount of RAM memory (4 GB). It is
worth noting that in these experimental conditions random-walk algorithms that store
in primary memory the adjacency matrix of the graph described in Section 4.1 run
out-of-memory due to the limited amount of available RAM.

In the remainder of this section we summarize the experimental set-up and the
characteristics of the data, and then we compare the empirical computational time and
the performance of secondary memory-based implementations of network learning
algorithms for AFP.

4.1 Dataset description and performance evaluation
In order to test the ability of the proposed local methods to scale to large multi-species
networks, we constructed a large genes network (hereafter referred to as Eukarya-
net). All the proteins interactions composing Eukarya-net were downloaded in pre-
computed form from the STRING protein-protein interactions database. STRING
(http://string-db.org/) is a collection of networks composed by real and
predicted gene-gene interactions (based on genetic data, physical data and literature

http://string-db.org/
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data) and aims at providing a global view of all the available interaction data, in-
cluding lower-quality data and/or computational predictions for as many organisms
as feasible. Starting from the STRING interaction data (version 9.05), we selected
all the Eukaryotic species having 10,000 or more proteins. The selected Eukaryotic
species are listed in Table 1.

As class labels for the proteins included in Eukarya-net we used the Gene ontology
[1] (GO) annotations available in STRING (version 9.05). The STRING website
provides flat text files containing a mapping from GO annotations to STRING
proteins and a STRING internal confidence score for each GO annotation, ranging
from 1 (low confidence) to 5 (high confidence). While extracting the GO labels we
considered only the annotations with confidence score 5. We then filtered out all the
GO terms associated with less than 20 and more than 100 proteins (473 GO terms).
We finally randomly selected from this set 50 GO terms.

Performance were evaluated in terms of runtime, Area under the Receiver Operat-
ing curve (AUROC), and Precision at fixed Recall levels using a canonical 5-fold
stratified cross validation scheme.

4.2 Results
Table 2 summarizes the average per-term runtime required to complete a 5-fold
cross validation with the Eukarya-net involving more than 200,000 proteins of 13
multi-cellular eukarya organisms.

Table 1: Selected species from the core region of the STRING protein networks
database

NCBI taxon ID. Species n. proteins

3218 Physcomitrella patens 10352
3702 Arabidopsis thaliana 23576
7227 Drosophila melanogaster 12845
7739 Branchiostoma floridae 16418
8364 Xenopus (Silurana) tropicalis 13678
9031 Gallus gallus 13119
9258 Ornithorhynchus anatinus 13333
9606 Homo sapiens 20140
9615 Canis lupus familiaris 16912
10090 Mus musculus 20023
13616 Monodelphis domestica 15409
39947 Oryza sativa Japonica 13330
69293 Gasterosteus aculeatus 13307
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Table 2: Average per-term empirical time complexity between the compared local
and secondary memory-based network learning methods implementations

Local algorithm per-term empirical time complexity evalua-
tion

1-step RW 21.46s
2-step RW 33.19s
3-step RW 46.69s
1-step RWK (Average score) 21.05s
2-step RWK (Average score) 34.05s
3-step RWK (Average score) 46.25s

We observe that the average computational time is very similar for both the RW
and RWK-based kernelized functions secondary memory-based implementations.
The performance (see Table 3) in terms of the average precision at fixed recall levels
obtained in this test are relatively low, especially when compared with the high
average AUC obtained with the RW at 1, 2 and 3 steps. The observed relatively low
precision can be explained by taking into account that it is more negatively affected
by class unbalance and, in the Eukarya-net network task, the positives are at most 100
while the number of vertices in the network is 202,442 (i.e. the positives are less than
0.05% of the vertices at best). Note that in this case the 2-steps RW achieves the best
AUROC results: it is likely that these results could be due to the connections between
nodes representing proteins coming from different species but further evaluation is
required in order to clarify the observed results.

Table 3: Average AUC, precision at 20% recall (P20R) and precision at 40% recall of
the compared local and secondary memory-based network learning methods across
50 GO terms. Performance estimated through 5-fold cross-validation.

Algorithm AUROC P20R P40R

RW - 1 step 0.8601 0.1449 0.0943
RW - 2 steps 0.9667 0.1329 0.0929
RW - 3 steps 0.9598 0.0927 0.0785
RWK 1 step (Average score) 0.9106 0.2115 0.1422
RWK 2 steps (Average
score)

0.9902 0.2670 0.1605

RWK - 3 steps (Average
score)

0.9680 0.2314 0.1498
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As we can see the best performances in terms of AUROC are obtained at two steps
also with the RWK-based average score function. While the differences in AUROC
performances between the classical and kernelized random walks based methods
are not so big, the same does not hold with respect to the performances in terms of
P20R and P40R (respectively precision at 20% and 40% recall), where the random
walk kernel clearly outperforms the local classical random walk-based gene function
predictor.

Overall, these results show that the secondary memory-based implementation
of kernelized score functions allow the analysis of big networks using off-the-shelf
desktop computers, and achieve results competitive with the classical random walk
algorithm in the multi-species prediction of protein functions.

5 Conclusions
In this work we presented a novel secondary memory-based implementation of a
Random walk kernel network learning method. More precisely, we developed a novel
local and secondary memory-based algorithm able to compute a kernelized score
function (the average score) embedding a p-step random walk kernel. The proposed
algorithm has been applied to the prediction of protein functions in the context of a
multi-species large biological network involving more than 200,000 proteins. The
experimental results show that the local version of the kernelized version of the
random walk exhibits an empirical time complexity comparable with a local RW and
secondary memory-based within network learning algorithm, and outperforms the
classical random walk algorithm for the multi-species prediction of protein functions.
From a more general standpoint we believe that “local” versions of network-based
algorithms, together with an efficient secondary memory-based implementation, can
open new avenues for the analysis of big and complex networks in computational
biology, without the mandatory need of complex clusters of computers or expensive
stand-alone workstations equipped with very large RAM memory.
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Abstract Recommendations are increasingly used to support and enable discovery,
browsing and exploration of large item collections, especially when no clear classifi-
cation of items exists. Yet, the suitability of a recommendation algorithm to support
these use cases cannot be comprehensively evaluated by any evaluation measures
proposed so far. In this paper, we propose a method to expand the repertoire of exist-
ing recommendation evaluation techniques with a method to evaluate the navigability
of recommendation algorithms. The proposed method combines approaches from
network science and information retrieval and evaluates navigability by simulating
three different models of information seeking scenarios and measuring the success
rates. We show the feasibility of our method by applying it to four non-personalized
recommendation algorithms on three datasets and also illustrate its applicability to
personalized algorithms. Our work expands the arsenal of evaluation techniques
for recommendation algorithms, extends from a one-click-based evaluation towards
multi-click analysis and presents a general, comprehensive method to evaluating
navigability of arbitrary recommendation algorithms.

1 Introduction
Websites with large collections of items need to support three ways of information
retrieval: (i) retrieval of familiar items (ii) retrieval of items that cannot be explicitly
described but will be recognized once retrieved and (iii) serendipitous discovery [30].
For a website with a large collection of items, such as an e-commerce website, (i)
can be enabled with a full-text search function. For (ii) and (iii), however, a search
function is generally not sufficient. These types of information retrieval are therefore
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often supported by recommendations that connect items and enable discovery and
navigation.

Users have been found to enjoy perusing item collections such as e-commerce sites
or recommender systems without the immediate intention of making a purchase [14].
More generally, some users prefer navigation to direct search even when they know
the target [29]. For platforms where users immediately consume content, such as
YouTube or Quora, recommendations serve the use case of unarticulated want, and
are therefore a crucial part of the user experience [10]. In item collections that do
not associate descriptions or metadata with content (such as videos) frequently no
clear structuring of items exists, and recommendations play a vital role in the user
interfaces. It is therefore critical for these systems to support discovery via links.

When a website provides recommendations along with each item, the items and
the associated recommendations form a recommendation network—an implicit view
of a recommender system where items are nodes and recommendations are edges.
This type of recommendations are frequent on e-commerce websites, such as Amazon
(”customers who bought this also bought”). Many websites associate a fixed number
of recommendations with each item, which leads to a constant outdegree and a
varying indegree for each node in the network

Knowing more about recommendation networks would give web-site operators
the possibility to assess the effects of recommendations and help to produce recom-
mendations that make it easier for users to discover and explore items. While a few
studies have already looked at recommendation networks and provided first important
insights into the nature and structure of these networks [6, 8, 19, 28], there is no
systematic approach to evaluating the navigability of recommendation algorithms.

This paper presents a general method to evaluate the practical navigability of
arbitrary recommendation networks by using simulations based on three navigation
models established in the literature, namely point-to-point navigation [15], navigation
via berrypicking [2] and navigation via information foraging [27]. The combination
of established techniques from the fields of network science and information retrieval
allows us to present a novel method that extends common evaluation measures
towards a path-based evaluation and expands the arsenal of existing recommendation
evaluation techniques.

We show the feasibility of this method by applying it to four non-personalized
recommendation algorithms on three datasets and investigate their properties. We
also illustrate the general suitability of our method to personalized recommendations
and report initial results for a sample configuration.

2 Related Work
Initially, recommender systems were mostly evaluated in terms of prediction accu-
racy [11]. However, the focus on accuracy has been found to neglect other import
applications of recommender systems such as support for the discovery of novel
items, browsing, or diversified recommendations, and may lead to a bias towards
popular items [8] or a filter bubble effect [24]. For these reasons, a series of evaluation
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metrics for additional properties of recommender systems has been developed. These
metrics include diversity [4, 7], novelty [7, 11], serendipity and coverage [11, 14]
and are considered orthogonal to prediction accuracy.

The evaluation method presented in this paper is rooted in Stanley Milgram’s
small world experiments [23], which laid the foundation for decentralized search.
Kleinberg [16] and Watts [32] later formalized the property that a navigable network
requires short paths between all (or almost all) nodes. Kleinberg also found that
an efficiently navigable network possesses certain structural properties that make
it possible to design efficient decentralized search algorithms that only have local
knowledge of the network [15]. The delivery time of such algorithms is then sub-
linear in the number of network nodes. In this paper, we investigate the efficient
navigability of recommendation networks through the simulation of navigation
models based on decentralized search.

The static topology of recommendation networks has been extensively studied
for the case of music recommenders [8, 28]. Their corresponding recommendation
networks have been found to exhibit heavy-tail degree distributions and small-world
properties [6], implying that they are efficiently navigable with local search algo-
rithms. A first study [19] has already explored the reachability and navigability of
the recommender systems of IMDb. The corresponding recommendation networks
were shown to lack support for navigation scenarios. However, the use of diversified
recommendations was able to substantially improve this and lead to more navigable
recommendation networks. A similar methodology has been applied to suggest links
to improve navigability on Wikipedia [18].

3 Evaluation Method
Navigation is at the core of exploration and browsing, which are important use
cases of a recommender system, as many users find browsing pleasant [14], use it to
discover novel content [21] or consume the content along the browsing path (e.g.,
on YouTube). A defining property of online navigation is that the knowledge about
a website is mostly local: users only perceive the links emanating from the current
page and generally only have intuitions about where those links might lead, but lack
global knowledge about the system. In the case of a top-N recommender system,
users are generally only aware of the recommendations with the current item.

The evaluation method we propose makes use of greedy decentralized search
to simulate navigation in recommender systems and measures the success rate.
This model has been used in previous work to analyze navigation dynamics in net-
works [12, 13] and has been found to produce comparable results to human navigation
patterns [20, 31]. At each step, this algorithm evaluates a heuristic for every present
link and greedily selects the one maximizing that heuristic. We take the heuristic to
represent vague intuitions about navigation that users might gain from looking at the
descriptions of recommendation targets. For example, if a user was looking for a new
science-fiction movie, they might be tempted to follow recommendations to other
science fiction movies based on the title, a brief textual description or the displayed
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Point-To-Point Berrypicking Information Foraging

Start Node

Intermediate Node

Target Node

Recommendation

Taken Path

Fig. 1: Information Seeking Scenarios. We use three information seeking scenarios
to study navigability of recommendation networks. The objective in point-to-point
navigation is to find a single goal item. For berrypicking, we cluster the networks and
set the goal of finding any one item in four clusters (shown in gray). For information
foraging, the goal is to find multiple items in a single cluster.

image. We use an implementation that does not revisit previously explored nodes. In
case no unvisited item is present, the simulation backtracks.

A number of information seeking models have been established in the literature.
To investigate the general suitability of recommendation algorithms to navigation
based on different approaches, we evaluate navigation scenarios based on three of
these models: point-to-point navigation [15], berrypicking [2], and information for-
aging [27]. For all scenarios, the start and target nodes in the network are determined
independently of the network structure, i.e., regardless of whether the recommenda-
tion algorithm actually enabled a path between them. This allows us to fairly compare
all recommendation algorithms and shows how well they support navigability. In
what follows, we describe the three navigation scenarios in more detail (cf. Figure 1).

Point-To-Point Navigation Point-to-point navigation [15] represents the task of
finding a single target item in a recommendation network and models the navigational
behavior of users with a specific item in mind that they cannot explicitly describe.
For example, a user could try to find a science-fiction movie with a specific motif
or to rediscover something on tip of their tongue. As such, this scenario covers
point (ii) (”retrieval of items that cannot be explicitly described”) of Toms’s ways
of information retrieval [30]. We then simulate navigation starting at the start node
of a pair and with the objective of reaching the target node. As start-target pairs we
sample pairs of nodes proportionally to how often they were corated by users in the
corresponding rating dataset.

Navigation via Berrypicking Berrypicking is an information seeking model which
regards information seeking as a dynamic process where the information need is
evolving and can be satisfied by multiple pieces of information in a bit-at-a-time
retrieval—an analogy to picking berries on bushes [2]. Berrypicking can be thought
of as covering points (ii) (”retrieval of items that cannot be explicitly described”)
and (iii) (”serendipitous discovery”) of Toms’s ways of information retrieval [30].
We model this scenario based on clusters, which we obtain with k-means based on
the rating vectors. We randomly pick a first cluster and then draw one of the top
four closest clusters based on Euclidian distance randomly. We then repeat this to



A Method for Evaluating the Navigability of Recommendation Algorithms 251

find two more clusters. Starting from a randomly chosen node in the first cluster, the
objective of the scenario is then to reach any node from the second cluster, followed
by any node from the third and then the fourth cluster. In this way, the scenario
models the evolving stages of berrypicking, where users inspect an item and adapt
their information needs based on it.

Navigation via Information Foraging Information foraging [27] is an information
seeking theory inspired by optimal foraging theory in nature, where organisms
have adopted strategies maximizing energy intake. For instance, when foraging
on a patch of food, an animal must decide when to move on to the next patch
(e.g., when finding apples on a tree is becoming too tedious). Some of the same
mechanisms have identified for human information seeking behavior, where humans
try to maximize information gain. Information can be modeled as occurring in patches,
and information seekers as guided by information scent [9]. In a scenario based on
information foraging, we model the scenario of depleting a patch of information. We
assume that the objective is to retrieve nodes in a patch—guided by information scent
in terms of the search heuristic. We take information foraging to model points (ii)
and (iii) (”retrieval of items that cannot be explicitly described”) and ”serendipitous
discovery”) of Toms’s ways of information retrieval [30].

Baselines We evaluate two baseline solutions: An optimal solution uses the shortest
possible paths (that users with perfect knowledge of the network could take). A
random solution performs a random walk with no background knowledge at all.

4 Experimental Setup
We use three datasets for this paper:

• MovieLens is a film recommender systems maintained by GroupLens Research
at the University of Minnesota. For this work, we use their dataset consisting of
one million ratings from 6,000 users on 4,000 movies.
• BookCrossing is a book exchange platform. For this work, we use a 2005

crawl of the website [33]. We use only the explicit ratings, combine ratings for
duplicate books and use ratings from users with ≥ 20 ratings on ≥ 5 books. This
leaves us with roughly 50,000 ratings by 1,088 users on 3,637 books.
• IMDb is a database of movies and TV shows. We use a 2015 crawl of the

website [19], from which we use ratings for items published in 2013 and 2014
and condense them in the same way as for the BookCrossing dataset, resulting
in 2.3M ratings for 6,690 titles by 37,216 users.

We calculate recommendations in the following way: For a given set of items I and
a recommendation algorithm R, we use R to compute the pairwise similarities for all
pairs of items (i, j) ∈ I. For each item i ∈ I, we then define the set of the top-N most
similar items to i as Li,N . We then create a directed top-N recommendation network
G(V,N,E), where V = I, N is the number of recommendations available for each
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item and E = {(i, j) |i ∈ I, j ∈ Li,N}. This method leads to recommendation networks
with constant outdegree and varying indegree—representing a typical setting.

For simplicity’s sake, we investigate recommendation algorithms based on non-
personalized recommendations. The similarities these recommendations are based
on, however, are directly taken from the similarities used in the personalized rec-
ommendation algorithms. They therefore represent the recommendation networks
as an unregistered or newly registered user would see them. For most websites, the
vast majority of visitors does not contribute or register—this is known as the 90-9-1
Rule (90% lurkers, 9% intermittent contributers and 1% heavy contributers) [25, 26].
However, our method is general and also applicable to personalized recommendation
algorithms, which we exemplarily demonstrate in Section 6.

We use the following four recommendation algorithms in this work:

Association Rules (AR) Association rules are based on the market-basket model,
where, in this case, we put all items rated by the same user into a basket and regard
ratings as binary (i.e., rated/not rated). For every ordered pair of items (i, j), we then
rank all items by how much more likely an item is to be consumed after a given item
was consumed (similiar to the Apriori algorithm [1]). Specifically, we compute the
fraction of co-ratings of i and j over the total ratings of i (i.e., the fraction users who
rated both i and j, out of those who rated i). Let Ui be the set of users who rated item
i. We can then compute this as as (|Ui∩U j|)/(|Ui|). To compensate for the popularity
of j, we then divide by the fraction of users who did not rate i but still rated j. Let U i
be the set of users who did not rate item i. We can then divide by (|U i∩U j|)/(|U i|)
to counter the effect of highly popular items that are likely to be co-rated with every
item, but would not be very useful as a recommendation. We then take the top-N
items most likely to be co-rated with it.

Collaborative Filtering (CF) For a given user u and an unrated item i, item-based
collaborative filtering predicts the rating of u for i from a small number of other
items that u previously rated. These other items are commonly selected as the
ones maximizing the centered cosine similarity to i. The rating prediction is then
computed as the weighted sum of their ratings, weighted by their similarity. To obtain
unpersonalized recommendations, we compute the centered cosine similarity of an
item i to all other items j in the dataset and use the top-N.

Interpolation Weights (IW) Interpolation weights are computed in a similar way to
item-based collaborative filtering. However, instead of using a predefined similarity
measure (such as the centered cosine similarity) to weight the contributions of other
ratings, interpolation weights representing the relations between pairs of items are
learned from the data. We use gradient descent to learn item-based interpolation
weights by minimizing the root-mean square error for predictions on a test set [3]
and then use the resulting weights as the similarity measure to obtain the top-N most
similar items to an item.

Matrix Factorization (MF) Matrix factorization describes both items and users of
a recommender system by affinities to a number of latent factors [17]. To find these
factors, this algorithm factorizes the rating matrix U into two matrices as U = QT P
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that represent the associations of users and items with the latent factors. We learn
these matrices by minimizing the root-mean-square prediction error on a test set
with gradient descent. After this minimization, we represent each item by the vector
of its association with the latent factors and compute the centered cosine similarity
between the latent factors for all pairs of items to obtain the top-N most similar items.

As the heuristic for decentralized search, we use the TF-IDF cosine similarity of
brief textual descriptions of titles (namely title and plot summary of IMDb for the
movies and the summary provided by GoodReads for the books). At each step, the
simulation uses this heuristic to select the link leading to the item that has the highest
TF-IDF cosine similarity to the navigation goal. We use a heuristic independent of
ratings to decouple it from the recommendations used to generate the networks. For
sake of brevity, we only report the results for a deterministic greedy search with 50
steps. However, we also evaluated all simulations for 10 and 25 steps as well as with
an ε-greedy approach [12] and found that, while the total success rates decreased,
the relative differences between the approaches did not change.

We evaluate a total of 1,200 navigation simulations per scenario. For the clusters,
we only use those consisting of 4–30 nodes to balance the difficulty. The target of
the navigation for the berrypicking and information foraging scenario is represented
by the centroid of the target cluster. The TF-IDF cosine similarity of a potential link
target l is therefore represented by the average of the similarity between l and all
items in the target cluster.

5 Results
Point-To-Point Navigation The first row of Figure 2 displays the success rate
(i.e., the fraction of successful simulations) for point-to-point navigation. Since the
number of steps per simulation (50) is larger than the distances between all start-
target pairs in the recommendation networks, the optimal solutions (shown in gray
bars) correspond to all start-target pairs between which a path of any length existed.
The optimal solution is therefore a measure of how well a recommendation algorithm
theoretically supports this navigation scenario. The second baseline approach is a
random walk, which shows the success rates achievable by an uninformed random
process and serves to demonstrate that the simulations based on greedy search are able
to exploit the link selection heuristic to reach navigation goals. The simulation for
point-to-point navigation with greedy search for N = 5 recommendations leads to an
average success rate of 6.86%. This indicates that users would be able to retrieve only
a very small share of items in the recommender systems by focused point-to-point
navigation. For N = 20 recommendations, the success rates increase substantially
(average of 24.4%). Recommendations generated by interpolation weights lead to
the best success rates (42–48%).

Navigation via Berrypicking For five recommendations, the success rates for the
case of genre-based clusters are 14.5% on average. With 20 recommendations, this
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Fig. 2: Success Ratios for the navigation simulations. The bars depict the average
percentage of found targets. Baseline success rates are depicted as gray bars (optimal
solutions) and black dots (random walk solutions). Success rates are computed
as the average number of found targets. Recommendation networks generated by
interpolation weights (IW) generally performed best.

increases to to 47%. Since the targets consists of three clusters, a success rate of 33%
indicates that an average of one cluster was found.

The success rates for the IMDb dataset are substantially lower than for the other
two datasets. A more detailed analysis shows that the networks for IMDb are clustered
more strongly than those of the other two datasets. For a dynamic information seeking
scenario such as berrypicking, this means that the simulation of adapting information
needs was not very well supported for IMDb. Overall, reommendations generated by
matrix factorization and interpolation weights fared best.

Navigation via Information Foraging A priori, it is not clear if retrieving multiple
items from the same cluster represents an easier task than retrieving them from

Point-To-Point Navigation

Berrypicking

Information Foraging

MovieLens BookCrossing IMDb
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different clusters, as a cluster of items does not necessarily mean that items are
located in proximity in the recommendation network. However, the resulting success
rates show that items from the same clusters in the network are easier to retrieve:
five recommendations lead to a success rate of 38.3%, and twenty recommendations
to 63.1%. This indicates that the recommendation algorithms are able to use the
characteristics in the ratings to support both genre-based and rating-based clustering.

The success rates again measures the number of found items in a cluster. The
results for this scenario show that the success rates for the baselines, namely the
random walks and the optimal solutions are consistently very high, which also
indicates that the network structures reflect the clustering very well. Whereas for
berrypicking, the simulations on the IMDb dataset perform poorly, the contrary
is the case for information foraging, where the success rates range up to 99%.
This again confirms the strong clustering in these networks, that lead to densely
interconnected regions among similar items and facilitate retrieval in the same cluster.
Recommendations generated with interpolation weights generally fare best.

6 Personalized Recommendations
We now demonstrate the general suitability of our method to personalized recommen-
dation approaches and report initial results for a sample configuration of parameters.
The key difference for personalized recommendations is that a separate recommenda-
tion network emerges for every user based on their rated items. For this illustration,
we follow the approach of Amazon.com, as detailed by Linden, Smith and York in
2003 [22], which consists of two steps: First, a set of similar items is determined
for each item. Second, the items with the highest predicted rating among this set are
recommended. We study two variants of this:

• Pure. We first compute a candidate set of similar items for an item—these are
simply the non-personalized recommendations. Then we select the N items from
this set that have the highest predicted rating for the specific user.
• Mixed. We again compute the set of similar items, but only use the N/2 recom-

mendations with the highest predictions and add the N/2 top non-personalized
recommendations (without introducing duplicates).

For both algorithms, we allow the recommendation of items that the user had
already rated (which is yet another parameter to tune). We note that for this setting,
the differences between the personalized networks for users decrease. When not
allowing this, the resulting recommendation networks show a decrease in navigability
the more items a user has already rated. For sake of space, we only report results for
a restricted set of parameters. The results for the other combinations of parameters
were similar, but we leave it to future work to examine them in more details.

Figure 3 shows the evaluation for recommendations generated by interpolation
weights and matrix factorization for the user with the median number of ratings in
the BookCrossing dataset. The outcome is generally similar to non-personalized
networks. The pure algorithm leads to notably higher success rates for the optimal
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Fig. 3: Navigational Success Rates for Personalized Recommendations. All sim-
ulations were evaluated for BookCrossing, 20 recommendations and personalized for
the user with the median number of ratings in the dataset. The results show that while
the mixed recommendations enable a better optimal solution, the recommendations
did not reflect the intuitions of the navigation simulations very well.

solution, but not for the simulation results themselves. This indicates that while
the mixed algorithm leads to a better connectivity in the networks, this was not
necessarily the case for navigability. This in turn suggests that the recommendations
generated by this algorithm did not capture the intuitions used in the navigation
simulations very well. In future work, the evaluation method proposed in this paper
could be used to develop a more effective personalized recommendation selections.

7 Discussion
We have presented a novel evaluation method that expands the repertoire of recom-
mendation evaluation measures with a technique to assess navigability. The proposed
method evaluates the navigation dynamics of recommendation networks by simulat-
ing three different navigation models, namely point-to-point navigation, navigation
via berrypicking and navigation via information foraging. We believe that applying
this method can broaden our understanding of recommendation algorithms and lead
to a more complete characterization of their properties. In practice, this method
could be used to improve the experiences of users as they navigate recommendation
networks (such as recommended videos on YouTube).

To demonstrate the feasibility of our method, we applied it to three exem-
plary datasets and highlighted differences in navigability for four different, non-
personalized, recommendation algorithms. For five recommendations per item, we
find that the recommendation algorithms we investigate considerably limit the nav-
igability. However, we find that it can be improved by raising the number of rec-
ommendations. For the three navigation scenarios we investigate we find that the
explorative scenarios inspired by berrypicking and information foraging lead to the
best retrieval performance, while the scenario based on point-to-point navigation was
less well supported. While increasing the number of recommendations represents
a simple solution, a large number of recommendations could potentially clutter the
interface and overwhelm users [5]. This shows that there is still a substantial potential

Point-To-Point Navigation Berrypicking Information Foraging
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to improve recommendation algorithms to better support navigation dynamics. As
for the recommendation algorithms, we find that the recommendations generated
by interpolation weights and matrix factorization performed best overall. However,
more work is necessary to confirm these findings.

The selection of algorithms and datasets was naturally arbitrary, but they serve the
purpose of illustrating the evaluation and therefore do not limit our main contribution
of presenting a novel evaluation method. We have shown the suitability of our method
for non-personalized recommendation algorithms and thereby effectively inspected
recommendation networks for users who are either new to the system or simply
browsing without being registered, and have also illustrated the applicability of our
method to personalized recommendations.

The navigation models applied in this method are well-established in the research
community and cover a wide range of typical user interaction scenarios with informa-
tion systems in general, and recommender systems in particular. Greedy decentralized
search, the basis for our navigation scenarios based on these models, has been used
in previous work to analyze navigation dynamics in networks [12, 13] and has been
found to produce comparable results to human navigation patterns [20, 31]. The
navigation models we used do, however, have limitations and were deliberately kept
simple, as the focus of our work was not on the information seeking models and their
validity but on the properties of the recommendation algorithms. However, this does
not limit our work, as our evaluation method does not depend on this particular model,
which can easily be adapted or exchanged in future work. Possible enhancements
to the navigation models could include a teleportation element (as in PageRank)
modeling jumps between items without recommendations.

In summary, our work extends common evaluation measures of recommendation
algorithms towards a path-based evaluation. Just as the evaluation of recommender
systems has been shifting from accuracy-based measures towards diversification,
coverage and time-dependent evaluations, we believe that our method helps to push
the frontier of recommendation algorithms towards producing recommendations that
make it easier for users to discover and explore items.
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Community Structure



Abstract A suitable state model can be retrieved from a Karhunen-Loeve Transforma-
tion to build a new decision process from which, we can extract useful knowledge and
information about the identified underlying sub-communities from an initial network.
The aim of this method is to build a framework for a multi-level knowledge retrieval.
So, besides the capacity of this methodology to reduce the high dimensionality of
the data, the new detection scheme is able to extract, from the sub-communities, the
most relevant nodes and the dense sub-groups with the definition and formulation
of new quantities related to the notions of energy and co-energy. The energy of a
node is the rate of its participation on a the whole set of activities while the notion of
co-energy defines the rate of interaction/link between two nodes. These two impor-
tant features are used to make each link weighted and bounded, so that we will be
able to perform a thorough refinement of the sub-community discovery. This study
allows to perform a multi-level analysis by extracting information either per-link or
per-intra-sub-community. This methodology is applied to a real world dataset where
the workload of activities over a set of events is considered.

Key words: Social network analysis, community detection, PCA, KLT, Energy;

1 Introduction
The paper focuses on sub-community detection with, as main ideas, the reduction of
the dimensionality of the dataset in order to maintain the only relevant part of the data.
This can be achieved by analyzing the correlation of the data features. We consider a
stochastic process where temporal and/or spatial correlations might happen in the
features of the data being delivered. It is possible that, to build a framework for the
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scope of sub-community identification in a social network, the data in interest might
be collected in the same location a the same time or in different distant areas at the
same period of time. So, temporal correlations involve in situations where events,
which depend to each other, happen in the same time period in a given location
while spatial correlations appear when the events happen in different locations
or geographic areas at the same time. If two (or more) variables are correlated
in time and/or space, the behavior of an actor should remain unchanged if we
merge the relevant information of the variables. Taking into account all the variables
independently would be out of interest to learn the interactions between actors and to
find their potential relationships. So, the fact to reducing the dimension of the data
should have a positive impact in the reduction of the complexity of the study.

PCA is a powerful tool to find relevant patterns in data of high dimension. Despite
its strength, it has been proven that PCA is very sensitive to its parameter settings. It
was also used extensively with the assumption of linearity and sufficiency of mean
and variance. In the past decade, it has been shown that very bad results were often
obtained since this assumption is not valid [11]. Here, we propose a more elaborated
development of this technique with a robust extension known as the Karhunen-Loeve
(KL) transform [4]. In the best of our knowledge, this work is the first study related
to social network analysis which makes a thorough emphasis of the stochastic nature
of the process under consideration. The temporal correlation that might govern this
process is not favorable to use the classical principal component tool for the scope of
dimensionality reduction. Instead, we propose a more elaborate method base on a
Karhunen-Loeve transform. Nevertheless, some studies, based on PCA, have already
built techniques for sub-community identification. For instance, [2] has proposed
the use of PCA to extract the meaningful variables over a huge number of data
features from the popular Youtube network. The authors of [10] have also provided
a technique based on PCA for the purpose of variables selection in order to reduce
the dimension of the dataset. In [1], the authors performed a principal component
analysis of the rankings produced by 39 existing and proposed measures of scholarly
impact that were calculated on the basis of both citation and usage log data, in order
to learn about the impact of scientific publications in terms of citation counts. In
all those studies, the PCA technique were applied in its original form, so it suffers
to the problems we have mentioned about of lack of linearity and sufficiency of
mean and variance. In the present work, we develop a more robust method where the
PCA approach is suited to perform with stochastic processes and to build a suitable
decision variable for the identification of communities from the initial network.

2 Contribution of this work
This work is dedicated to the implementation of an extended version of the classical
principal component analysis tool, namely the Karhunen-Loeve Transformation
(KLT), in order to build a state model from which we can retrieve a suitable decision
variable for the scope of establishing a convenient algorithm for the purpose of sub-
community detection and analysis of the intra dynamics of the system. The method
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presents several advantages: (i) the possibility to build sub-communities of level α

from an initial large network, (ii) each link between two nodes in a sub-community
is weighted with a rate in [0;1] to quantify the intensity of the relation between
two actors, (iii) each actor will be identify with a weight in [0;1] corresponding to
the degree of his participation to the activities in the network, (iv) after detection
a given sub-community, since each link is weighted, we can identify dense intra
sub-community (i.e. a group of linked actors which have the same weight/energy), (v)
whenever a link is detected between two nodes, we determine the ”qualifier of each
node”. The ”qualifier” is a label we attribute to a node; its value is either ”superior”
or ”inferior”. To derive this property, we evaluate two useful information. First, we
would like to know, between two linked nodes, which one influences much more the
other. The response is that, the node with the highest energy within a detected link
can be consider as the ”superior” and the other the ”inferior”. If the two nodes have
the same energy, we call them ”twins nodes”. Second, the probability of existence
of the link can be bounded in order to know how much energy is necessary, at least,
to maintain the link over time. Whenever the energy of one node in less than the
inferior limit of the bounded interval, the link will disappear.

We will give, in the following, all the definitions and formulations around the no-
tion of energy and bounded link and show how to technically achieve our objectives.

3 Methodology and algorithm for the detection
The purpose of the work is to build a methodology for sub-community tracking
and detection based on the analysis of a huge number of features corresponding
to events/activities for which a group of actors/nodes participate. First, we aim
at finding the main features, to incorporate in our model, by means of extended
principal component analysis. The second relevant issue of this work is related to
the specification of a new detection procedure consisting of merging all the relevant
features into a single process we will label as a ”Decision Variable” (DV). By
analyzing this process for the sub-community tracking operation, we can discover
subgroups of actors using a multi-level thresholding and the notion of ”energy
dissipation” of an actor over the events.

We consider a community of R actors Ω = (a1, . . . ,aR) which perform activities
on a set of K initial correlated events (e1, . . . ,eK). For each event ek, we have a
column vector of size R containing the amount of participation of all R actors to
the corresponding activity. This operation gives us the R×K matrix of correlated
random variables X = (X1, . . . ,XK). On other words, one observes these random
variables through R independent realization vectors xi = (xi

1, . . . ,x
i
K) i = 1, . . . ,R.

After extracting the relevant components from the KL transformation, we can build
our decision variable as a row vector DV = (y1, . . . ,yK). At this point, we can set
a certain number of concepts for our methodology. We introduce the notion of
”energy dissipation” (Ed) to quantify the degree of importance a given actor put on
a series of events. This notion is simple and intuitive. When considering the set of
events/activities, the events for which the actor puts a high degree of importance
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constitutes his energy. For example, we can consider money as energy. When one
goes to buy some products at the market, we can say that he/she is dissipating
a certain amount of his/her energy. In this case, one should buy a ”product A”,
and consequently buy another ”product B” necessary to use the product A. Here,
we can see the notion of correlation between these products/variables. When an
athlete performs several disciplinary exercises in sport, we can view his actions as the
dissipation of his energy over the different events, in order to win a medal. The energy
of an actor is thus quantifiable, its a measure of the strength of his participation the a
series of activities.

If the actor participates actively to all or most of the activities which a high
probability, then his energy increases, otherwise we say that this actor has less energy
according to the ensemble of events happening at a given period of time.

Recall that the DV variable contains the aggregated amount of all actors participa-
tion to all events. So, the energy dissipation Ed of actor i is the row vector defined
as:

Edi =
{

k,/xi
k ≥ DV[k],∀k = 1, . . . ,K

}
(1)

Edi contains all the index of events for which the energy dissipation is greater
than the reference DV. Consequently, we can calculate the total energy of the actor i
as the real value:

Ei =
|Edi|
|DV |

(2)

where |.| indicates the size of a vector.
We will also refer to the notion of ”co-energy” dissipation (CED) as the amount

of energy between two actors according to their participation to the same set of
activities. This quantity is a measure of the mean energy produced simultaneously by
the two actors on the same activities:

CEDi j =
|
(
Edi∩Ed j

)
|

|DV |
(3)

Finally, our detection procedure boils down to fixing a threshold α and to put a
link between actor i and actor j if the rate of their co-energy exceeds the limit α .
This means that the following inequality must hold to add the link:

CEDi j ≥ α (4)
When Eq. 4 holds, hence, the value of CEDi j becomes the weight of the

link between actor i and actor j. And then, this link is bound by the interval[
min(Ei,E j),max(Ei,E j)

]
. By varying the threshold α ∈ [0;1] , one can build many

different sub-communities with the same dataset, each sub-community with a score
α which measures its degree of realization. The algorithm to achieve our aim is
described as follow:

4 From PCA to its Karhunen-Loeve Transform Expansion
The principle of principal component analysis consists at observing a set of ran-
dom variables X = (X1, . . . ,XK) and to seeking for the most suitable non-canonical
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Algorithm 6 Sub-Community Discovering

Input: Ct , a community
Ω(Ct), the sets of actors within Ct
xi = (xi

1, . . . ,x
i
K) the vector of participation of actor i

DV = (dv1, . . . ,dvK) the decision variable
1: α , the link detection threshold

Output: V, a sub-community
2: Calculate Co-Energy dissipation between actors and apply threshold to add link
3: Begin
4: for all (k, l) ∈Ω(Ct), k 6= l do
5: Apply Eq. (1)
6: Edk =

{
p,/xk

p ≥ dvp,∀p = 1, . . . ,K
}

7: Edl =
{

p,/xl
p ≥ dvp,∀p = 1, . . . ,K

}

8: Apply Eq. (3)
9: CEDkl =

|(Edk∩Edl)|
|DV |

10: end for . Apply threshold to decide to put a link, Eq. (4)
11: if CEDkl ≥ α then
12: addLink(V,k, l)
13: end if
14: Return V
15: End

basis (e1, . . . ,eK) to represent the random variables X . By assuming linearity and
sufficiency of mean and variance, the most suitable basis is the one for which the
variance is maximized for each projected component. This basis is then (φ1, . . . ,φK),
where φi is an eigenvector of the covariance matrix of X defined by the quantity
E{(X−µ)(X−µ)T}, where µ is the column vector containing the means of Xi. The
eigenvectors can be retrieved by the equation:

∑φi = λiφi (5)
where λi are the eigenvalues of the above covariance matrix. As the covariance matrix
is positive definite, the resolution of the Eq. 5 gives at most K positive eigenvalues
and K orthogonal eigenvectors. By performing the singular value decomposition
(SVD) on the covariance matrix, we have the basis change matrix U = [φ1, . . . ,φK ]
which contains the eigenvectors φi. After applying PCA, one can easily rewrite the
initial vector of random variables X in the new coordinate system as:

X =
K

∑
i=1

Yiφi (6)

where Yi are jointly independent random variables with mean 0 and variance λi. PCA
replaces the random variables X by a vector of independent random variables Y that
are linearly equivalent. When the dataset under consideration is not in contradiction
with the conditions of mean and variance sufficiency and linearity, applying PCA
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can be a convenient way to reduce to dimensionality of the data. The SVD procedure
can be easily performed with the estimated covariance matrix 1

N−1 xxT to find the
basis change matrix. When the linearity is not guaranteed, using such an orthogonal
basis can result to erroneous interpretation. So we propose an extension of PCA to
stochastic processes.

We consider our sample of dataset X(t = (X1(t), . . . ,XK(t))T as stochastic pro-
cesses that have temporal dependencies, with a covariance function σi, j(τ) =
EXi(t)X j(t− τ) defined over an interval [a,b]. So the Karuhen-Loeve theorem states
that we can rewrite the vector as a series expansion as follow:

Xl(t)=
K

∑
i=1

∞

∑
j=1

Y l
i, jΦi, j(t), (7)

where Y l
i, j are pairwise independent random variables and Φi, j(t) are pairwise orthog-

onal deterministic (non-random) functions defined on [a,b], i.e.:
∫ b

a Φi, j(t)Φ∗m,n(t)dt =
0, for i 6= m or j 6= n. Generally, the basis functions Φi, j(t) are re-scaled such that∫ b

a |Φi, j|2(s)ds = 1.
This theorem extends PCA to a vector of stochastic processes as Eq. 7 is the

equivalent of Eq. 6. The family of deterministic functions Φi, j(t) is an orthogonal
basis for the space of linear stochastic processes and the random variables Y l

i, j are
coordinates of the stochastic process Xl(t) in this new space. We can formally derive
the basis functions Φi, j(t) by solving the following set of linear integral equations:

K

∑
i=1

∫ b

a
σi,l(s)Φi, j(s− t)ds=λl, jΦl, j(t), j > 0. (8)

This set of equations is the equivalent of Eq. 5. The random variables Y l
i, j are

obtained by projecting each stochastic process over an eigenfunction:
Y l

i, j=
∫ b

a Xl(s)Φi, j(s)ds (9)
The KL expansion considers the temporal correlation between time t and t +

as well as the spatial correlation between process Xi(.) and X j(.). This results in a
more complex analysis than the simple PCA described earlier. However, this higher
complexity is unavoidable because of the temporal correlation. Not taking it into
account leads to the errors described in [9].

The Galerkin method [7] can be used to truncate the KL expansion to N terms.
This operation transforms the above integral equations to a matrix problem that can
be solved by applying the SVD technique. This makes it possible to derive the KL
expansion using only a finite number of samples. The Galerkin method generates
a set of eigenvectors in a K×N dimensional vector space, that are time-sampled
versions of the originally continuous function Φi, j(t). Finally, we obtain a discrete
version of the KL expansion as:

Xl [k]=
K

∑
i=1

N

∑
j=1

Y l
i, jΦi, j[k] (10)

We first have to estimate the spatio-temporal correlation matrix. To do so, we
construct a KN× (nN) observation matrix:
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(11)

The matrix

∑̂= 1
n−N−1 xT x (12)

contains all the needed spatio-temporal covariance estimates. The Galerkin method
consists of applying PCA to this large matrix. This results in KN eigenvectors Φi, j[.]
of length KN that are used to construct a basis transform matrix U . The coefficients
Y l

i, j are obtained by applying the basis change transform y = Ux. Applying KL
expansion to K stochastic processes entails diagonalizing a KN×KN matrix (in
place of a K×K matrix in the traditional PCA.

Now if we neglect some of the smaller terms of the expansion (terms with small
values of Var{Y l

i, j}) we obtain a linear approximation of the initial process in a
smaller dimension vector space. The discrete expansion in Eq. 10 is therefore ap-
proximated as:

X̂l(kT )=
L

∑
i=1

M

∑
j=1

Y l
i, jΦ

k
i, j, (13)

where M < N and L < K. This approximation has a noteworthy optimality property.
Among all approximations defined over a linear space of dimension LM, this is the
linear approximation with the smallest approximation error variance Var{X(t)−
X̂(t)}. The basis change transform becomes a KN×LM matrix ULM that contains the
LM eigenfunctions Φi, j[.] in its columns. This is the theoretical basis to use the KL
expansion as a non-parametric and generic technique for modeling a large class of
processes where we cannot reject the linearity and sufficiency of mean and variance.

The expansion in Eq. 13 provides a synthesis method for generating an approxi-
mated process X̂l [k] by a bank of ML filters with Finite Impulse Response equal to
Φi, j[k], k = 0, . . . ,KN; each filter being excited by the random variable input Y l

i, j. By
predicting the values of the realization of the KN random variables Y l

i, j by applying
the basis change matrix to observation X [.], we can use this synthesis filter as a model
to build a decision variable suited to analyze a given community for the purpose of
sub-community detection.

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(1) . . . x1(n−N)

x1(1) . . . x1(n−N +1)
...

. . .
...

x1(N) . . . x1(n)
x2(1) . . . x2(n−N)

...
. . .

...
x2(N) . . . x2(n)

...
. . .

...
xK(1) . . . xK(n−N)

...
. . .

...
xK(N) . . . xK(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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5 Building the Decision Variable
After applying the KL transformation, we retrieve easily the relevant principal
components (i.e. the components with highest eigenvalues) by means of the scree
test of Cattell [3]. Thereafter, we assume that the K linear stochastic processes in
vector X [k] are linear processes, i.e., one can represent them using a dynamic state
space representation as Z[k+1] = AZ[k]+e[k], where Z[k] is a KN dimension matrix
constructed by concatenating N vectors (X [k], . . . ,X [kN]) and e[k] is a vector of KN
independent and identically distributed (iid) random variables. In this work, Z[k]
contains the amount of activities performed by the N actors for the K events. It is
interesting to see that the relation between Z[k] and Z[k+1] in the quantity A can
be interpreted as the influence an event has on another event with respect to the
activity of the actor on that two events. For example, if A = 1, we can say that the
rate of participation of an actor to an event numbered k+ 1 is nearly equal to the
number of involvement of the same actor on an event k. The random variable e[k]
takes into account the error one could do to say that the given two events might be
correlated in case where in reality there is no correlation. Now assuming that the
process vector X [k] is approximated by a finite KL expansion with LM terms, there
is therefore a ULM basis transform matrix that maps Z[k] into the new coordinate:
ζR[k] =ULMẐ[k] (ζR[k] being the reduced coordinate vector of dimension LM). The
inverse projection can be found through Ẑ[k] =UT

LMζR[k]. The Maximum Likelihood
framework [11] can be used successfully to derive an approximation of the process
Ẑ[k] as: Ẑ[k] = ULMUT

LMZ[k]. A one-dimensional decision variable DV is finally
derived as a function of the estimated multi-dimensional process Ẑ[k] as follow:

DV [k] =
(

Q[k]
φ1

)h0

(14)

where Q[k] = ∑ Ẑ[k] (summation of all the raws to merge the whole amount of actor’s

participation on the events) and h0 = 1− 2φ1φ3
3φ2

2
, φi =

m

∑
j=r+1

λ
i
j; fori = 1,2,3. Jensen

et al. [6] give an approximation of this variable by a gaussian distribution of mean
1+φ2h0(h0−1)/φ 2

1 and variance 2φ2h2
0/φ 2

1 .
In [11], the authors have built their decision variable as a function of the prediction

error e[k] = Z[k]− Ẑ[k] and have set Q[k] = e[k]T e[k]. This choice was suitable for
the scope of anomaly detection to tracking anomalous events which might appear
as volume anomalies attacks. The amount of volume anomalies in communication
networks can be positive or negative frequencies. In our work, we can’t use the
same definition since we manipulate the amount of actor’s activities which is always
quantified as positive values in N. Another reason which demonstrate that the use of
the error prediction is inappropriate is that e[k], in favorable conditions, should be a
zero mean process; whenever Z[k] and Ẑ[k] are in accordance, e[k] would be equal
to zero and thus can’t quantify the amount of actor’s activities. So, the convenient
variable able to merge (using the summation Q[k] = ∑ Ẑ[k]) and quantify the amount
of participations of all actors to the activities is the estimated process itself, i.e. the
matrix Ẑ[k].
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6 Validation
We validate our approach on the real world collection of data coming from Red-
dit.com [5]. We use several samples of different sizes and, build four scenarios A,
B, C and D with dimension (N×K, N the number of actors and K the number of
events) 10×15, 10×150, 10×500 and 10×1200 respectively. In Table .1, we give
an idea on the content of the data, in each column vector, we have the total amount
of submissions to an image by the set of actors.

Actors
events e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

1 11 0 11 4 0 2 0 4 18 2 0 6 16 1 0
2 5 0 0 0 0 0 1 0 0 0 2 0 2 0 0
3 1 0 2 0 3 1 1 0 1 0 0 2 1 0 2
4 4 1 0 0 0 1 2 0 7 0 1 0 9 1 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 0 2 0 0 1 0 0 0 0 0 0 4 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: Activities and amount of actor participation to submissions on events.
Scenario A.

Two levels of information can be retrieved from the results. In the first level,
we have the results about the formation of the underlying sub-communities. This
result corresponds to the natural clustering of the different nodes according to the
energy provided by each of them. The second level of information refers to the
characteristics of links and nodes inside the given sub-groups. This refinement
provides useful information when one wants to emphasize and explore some parts of
the network.

6.1 Information about the formation of sub-communities
One of the main objectives of social network analysis is related to clustering in order
to study the similarities inside the network [8, 12]. So, the first result is about the
formation of sub-communities. The graphs in Fig. 1 show all the groups we discover
with the different scenarios. In Fig. 1a, we see a sparse sub-community within two
dense sub-communities. The term ’sparse’ refers to a group of nodes with different
levels of energy. When we observe a group of linked nodes with the same value for
their energy, we consider this group as an inner dense sub-community; here, we have
{1,3,7} and {2,3,7}.

In graphs of Fig. 2, we draw the co-energy participation between two nodes to
emphasise the fact the role of the Decision Variable DV have to set a potential link.
Considering all the events at the same time, a link can be put between two nodes if
the amount of participations of both two nodes, for the same set of events, exceeds
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by far the reference point given by the decision variable. We use circles to identify
the events where the energy of the actors is higher than the reference point. Clearly,
for most of the given events, if the energy of each node exceeds the value of the DV
for that events, then we put a link between the two nodes.

6.2 Information about the intrinsic behavior inside
sub-communities

The second level of information this technique might deliver is about the dynamics of
nodes and their relation inside the detected sub-groups. So, another result is related
to the boundary of each detected link. In Table 2, we have for each node, its total
energy, i.e. the probability of this node to participate to all events. By observing
carefully this table and the graphs of the sub-communities, we see that the bounds
of a link is the interval [a,b], where a and b are the respective total energy of the
specified nodes. And so, the score/weight of a link is always inside this interval, as
we can observe for all links detected. For example, in Fig. 1d, the link between node
#4 (with energy 0.68) and node #7 (with energy 0.74)has a weight of 0.59 and its
bounded interval is [0.68,0.75]. As the network evolves, whenever the energy of a
node belongs out of the interval, the link will disappear. By inspecting frequently
the evolution of the bounded interval, one can retrieve useful information about the
degree of importance of the different nodes by analyzing their energy.

Each of the other scenarios (B, C and D) give also a sparse sub-community.

Fig. 1: Results of the sub-community members identification. In scenario A 1a, we
can observe two dense sub-communities. In the other scenarios (B, C and D), we
obtain only a sparse sub-community. The different scenarios are built with different
size of the vector of events.

7 Conclusion
In this work, we have developed a new technique related to an extended version of
principal component analysis to build a methodology for the purpose of community
detection in a social network. This technique is more elaborated to run within

(a) Sparse sub-
community. Scenario
A with 15 events.

(b) Sparse sub-
community. Scenario
B with 150 events.

(c) Sparse sub-
community. Scenario
C with 500 events.

(d) Sparse sub-
community. Scenario
D with 1200 events.
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Table 2: Total Energy of each actor for the different scenarios.

Energy of the different actors (Eq. 3)
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 Number of events

Ei 0.80 0.66 0.53 1 0.26 0.40 0.60 0 0 0 15
Ei 0.88 0.25 0.86 0.77 0.46 0.25 0.74 0.62 0.15 0.13 150
Ei 0.79 0.26 0.79 0.74 0.23 0.19 0.69 0.46 0.11 0.06 500
Ei 0.86 0.27 0.70 0.68 0.25 0.23 0.74 0.31 0.97 0.55 1200

Fig. 2: Impact of the Co-Energy dissipation between two actors in the link detection
phase. The circles represents events where both the two actors have their co-energy
higher than the reference value in the decision variable DV. These actors are linked
since their co-energy dissipation concern more than half of the events.

stochastic process than the classical PCA which is designed originally to solve the
problem of dimensionality reduction for univariate dataset. The main innovation of
this work is manifold: (i) we define the notion of co-energy between two nodes to
quantify the intensity of their relation, (ii) we can also extract the proper energy of a
given node to know how it influences the overall community, (iii) technically, the
KL-PCA technique makes possible to build a decision variable and to form a state
model from which we apply a decision process to identify each link. The introduction
of the notion of energy make possible to see potential intra sub-communities (i.e.
nodes with the same co-energy) inside a sub-community; (iv) each detected link is
bounded, so we know how much energy is necessary to maintain a link over time. As
a perspective, we plan to learn more the impact of the energy of the nodes. Clearly,
it would be important to know how the amount of energy of given (selected) nodes
should influence the behavior of the community by maintaining this community
stable/unchanged over time or broken up. It would be interesting also to study the
impact of the energy of each node or a set of nodes with high or less energy on the
behavior of the entire network while the network grows in terms of new nodes and/or
the arrival of new data.
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Abstract Finding communities in evolving networks is a difficult task and raises
issues different from the classic static detection case. We introduce an approach based
on the recent vertex-centred paradigm. The proposed algorithm, named DynLOC-
NeSs, detects communities by scanning and evaluating each vertex neighbourhood
by means of a preference measure, using these preferences to handle community
changes. We also introduce a new vertex neighbourhood preference measure, CWCN,
more efficient than current existing ones in the considered context. Experimental
results show the relevance of this measure and the ability of the proposed approach to
detect classical community evolution patterns such as grow-shrink and merge-split.

1 Introduction
A main task in computational network analysis is community detection, that consists
in identifying denser subnetworks related to a specific role (eg. common interests
in social networks, groups of interacting proteins in biological networks...) Though
there is no universal definition for community, many have been proposed: intuitively,
a community is a group of entities whose members have more relations between
them than with the rest of the network. Many definitions and methods exist and keep
being proposed [3, 9].

Most community detection methods to date were designed to process static net-
works (see Section 2), however complex networks change over time and require
methods able to take into account their dynamic (also referred to as temporal or evo-
lutionary) dimension. It has been proved that straightforward use of static community
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detection algorithms at each time step (re-computation) is not relevant, in particular
the output partition is not stable [1].

In this paper, we propose two contributions: first, an event-based detection al-
gorithm relying on a vertex-centred process allowing a fast computation and a
decentralised implementation, as well as a preference measure, Community-based
Weighted Common Neighbours (CWCN) used in the vertex-centred process and
more efficient than existing measures in the considered context.

The rest of this paper is organised as follows. Section 2 presents related works
about static and dynamic community detection methods. Section 3 describes the
principles of the proposed method DynLOCNeSs, and introduces the vertex neigh-
borhood measure CWCN. Experimental results to assess the ability of the method to
capture simple network dynamics are provided in Section 4.

2 Related Works
We first present here static and dynamic community detection methods relevant to
this paper. Other classic methods are reviewed in [3, 9, 27]. Then, we review an
approach more related to the proposed method: the vertex-centred paradigm.

Static Paradigms Numerous static community detection approaches exist in the
literature. They can be generic graph partitioning algorithms or take into account
typical characteristics of the type of network they are designed for, such as power-law
degree and small world effect in the case of social networks.

The main community detection method family is criterion optimisation. A global
or local criterion measuring the quality of a graph partition into communities, such as
the well-known modularity [9], is optimised through several iterations of an algorithm
until convergence. Many existing criteria yield good quality partition (compared to a
ground truth for example), but suffer from different drawbacks such as being subject
to local extremum or resolution limit [10]. This kind of method is also known to be
time-consuming [9].

More recently, label propagation methods [13, 24, 27] offer a decentralised alter-
native. They rely on propagation of a node identifier (“label”) from each vertex to
every other in the network. However, despite being fast and suitable for detection in
a decentralised environment, they have been found not to be stable as well [18, 25].
Moreover, they make massive use of propagation and can overflood the network with
unnecessary traffic, especially in a decentralised environment.

Dynamic Paradigms The changeover from the static to the dynamic case is not
easy. In particular, it depends on hypothesis about the graph evolution model. The
most widespread one considers a dynamic graph as a collection of static graphs,
discretising the dynamic aspect with one graph instance per time step. Naive static
detection on each time step, named static re-computation, has quickly been found to
be unstable [1], especially when using optimisation methods, because the identified
community structure varies too much, unrelatedly to the community evolution. For
example, a good modularity value can be achieved on several very different com-
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munity partitions of the same graph. To address this issue, concepts like temporal
smoothness introduced by Chakrabarti for evolutionary clustering were integrated [6].

But even more than in the static case, taking into account the nature of the
considered networks and the dynamics they are subject to is essential to design
efficient methods [19]. In this context, decentralised methods adaptated to process
the dynamic case have been found to offer good performance, in terms of partition
quality as well as computational efficiency, also offering the advantage of being
easily implemented in parallel frameworks, as it is the case for label propagation
[7, 18]. It is also very popular for applications in specific environments such as small
decentralised mobile networks, like Pocket Switched Networks (PSN), for which
community detection helps to improve network discovery and information routing
[15, 21].

Vertex-centred Methods Finally, vertex-centred approaches have gained popularity
as a promising new community detection method family. They rely on the principle
that some vertices in the network are “leaders” or “seeds” and the rest are followers
[26]. Communities are formed by gathering followers around leaders, like in the Top-
Leaders approach [23]. Although this method is more related to k-means clustering
(re-allocating the leaders) than to a true leader-follower design, the introduced idea
of expanding communities around leaders considering the potential preference of a
follower vertex (resp. a group of follower vertices) to join a leader vertex has been ex-
ploited by numerous algorithms. YASCA [16] greedily expands communities around
seeds and gather communities using ensemble clustering. LICOD [28] starts with
a careful selection of leaders before computing ranked community membership for
each follower, then adjusting preferences and memberships using strategies borrowed
from social choice theories until stabilisation. EMc and PGDc [17] locally expand
around seed via EM or Projected Gradient Descent algorithm, using conductance to
delimit communities. Canu et al. [4] consider each vertex as a potential leader and
build preference dependencies allowing to form communities. True leaders are the
core of the dependencies, where the rest can be considered as followers.

Vertex-centred methods have also attracted attention to develop new dynamic
community detection algorithms: for instance Evo-Leaders, an adaptation of Top-
Leaders [11], mux-LICOD, an adaptation of LICOD for multiplex networks enabling
use on evolving networks [14], OLEM/OLTM [22] that locally optimises modularity
and the original approach of [29] based on weighted-edge graphs, using weight
update rules to cope with the dynamicity together with a fitness function to ensure
partition quality.

We can also cite agent-based approaches like iLCD that consider each vertex as
an agent and apply dynamic evolution rules to simulate the community formation,
yielding a community structure [5].

The major drawback of these algorithms is that they lose one of the initial benefits
of the leader-based approach, i.e. lightness and flexibility. Built on top of Top-Leaders,
Evo-Leaders [11] adds a costly split-merge of community at each time step. mux-
LICOD [14] uses degree centrality and shortest path calculation to compare leaders
and followers. Shortest path computation can be costly if used for each vertex to each
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potential leader. It also relies on an aggregation phase repeated until stabilisation,
though experiments do not reveal whether the stabilisation is fast or not. Finally,
Zakrzewska et al.’s method [29] relies on a fitness function and a set of ad-hoc update
rules and pruning over updates. It is hard to know however how efficient this policy
is, as the experiments proposed by the authors are limited to a comparison with re-
computation of the static counterpart. While faster than static re-computation, which
is generally expected for specifically designed algorithms), the proposed F-score
comparison with the set of static re-computed instances is not meaningful, as static
re-computation has been proved to give unstable results [1].

3 Proposed Approach
This section describes the proposed approach, after defining the considered dynam-
icity model. We sketch its principles and describe in details the algorithm, called
DynLOCNeSs, which requires a vertex neighbourhood preference measure. We
discuss such preference measures and introduce a new one, CWCN.

3.1 Principles
In the following, G = (V,E) denotes an undirected graph, Γ (v) for v ∈V , the set of
v’s neighbours and dv the degree of v. C denotes the set of detected communities and
C(v) the community of v. S⊂V is the leader set, of all vertices being a leader for at
least one other vertex. Each leader s∈ S has a set of followers F(s)⊂V . Alternatively,
a follower f has a set of preferred leaders, denoted L( f )⊂V . Preference measures
between two vertices are denoted using a function σ : V ×V → R+.

Dynamicity We call time step ti, i ∈ N a date corresponding to a given state of the
graph G. The next time step ti+1 occurs when at least an edge changes (appears or
disappears).The vertex events are treated as consequences of the edge moves: a vertex
addition is captured as a new edge connecting a formerly isolated vertex. A vertex
removal is captured in the same way, as the deletion of the last edge connecting this
vertex to the rest of the graph. All edges are equally important, whether old or new.
This model is widely used [12].

We denote Gi = (V,Ei) the state of G and Ci the state of communities at time ti,
eg. G0 is the initial graph at t0. Note that the time interval |ti− ti−1| is not necessarily
constant.

3.2 Proposed Algorithm: DynLOCNeSs
We propose DynLOCNeSs (Dynamic LOcation of Communities in Network Struc-
tures), a vertex-centred approach to detect communities in dynamic graphs, more
precisely a leader-based approach using a vertex neighbourhood preference measure.
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The idea is to change from a batch to an event-based detection and modification
process, and to perform the detection with as little as possible re-computation. Each
vertex must determine whether it should change its leader. If so, it may also change
community.

The proposed method takes as input an initial graph, G0, along with initial com-
munity structure C0 and leader set S0, and only deals with the detection over time.
These initial states can be computed using any leader-based method (see Section 2).
The implementation presented here uses an approach in which each vertex v ∈V is
considered as a potential leader and evaluates its neighbourhood, like iLCD [5] or
Canu et al. [4]. It has the advandage of not pre-selecting a set of leaders, thus not
suffering from the bad seed selection issue.

The main part of the algorithm is the vertex update procedure described in Al-
gorithm 7). It is run when an edge (dis)appears, which is the only event considered
here. The algorithm also relies on a times-step related vertex marking, which is used
to identify whether the leaders or community must be re-computed. The marking is
explained first, and then the vertex update procedure.

Marking A vertex is marked to signify it has changed community, and is meant to
be seen only by the vertex neighbours. The marks made at ti are visible at time ti+1.
Vertices having a marked vertex in their leader set will reconsider their community
membership. This marking is the way to accelerate changes propagation through the
graph, because a community change for a vertex increases the probability of one of
its neighbours to change community too.

Vertex Update Procedure This key procedure is run for a vertex v, either leader or
follower, only if a change occurred in its neighbourhood, the only possibility that
may lead to a community change for v. In this case, at time ti, each vertex v locally
computes all the preferences between itself and its neighbours, ie. all the σ(v,v′) for
all v′ ∈ Γ (v) (see Section 3.3 for discussion about σ ). Because of the neighbourhood
change, a leader (ie. a neighbour vertex maximising σ(·,v)) may have disappear or a
new one appear. If the new preference values imply a change in L(v), the community
of v is also re-evaluated. If that results in C(v) changing, then v marks itself.

Flexibility and Local Computation. The proposed algorithm only uses local com-
putations from each vertex, thus keeping the vertex-centred methods flexibility
advantage. This allows an easy decentralised implementation in Pregel-like frame-
works (see [20]): the vertex program is simple to write and few informations are
susceptible to be shared between parallel processes.

3.3 Preference Measures
The proposed method relies on a vertex neighbourhood preference measure σ :
V ×V → R+, evaluating at which point a vertex v ∈V is close to a given neighbour
u ∈ Γ (v). It must reflect a closeness or attraction dynamics at work in the graph.
For example, in a social network, σ(v,u) must account for the friendship level of
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Algorithm 7 Vertex Update Procedure for time step ti
Require:

v ∈V , a vertex
Γi(v), its neighbours at time ti

Ensure:
Ci(v), updated community for v

1: if Γi(v) 6= Γi−1(v) then
2: recompute v′s preferred leaders: L(v)← argmaxu∈Γi(v) σ(v,u)
3: if L(v) changes or any u ∈ L(v) is marked then
4: Ci(v)← most frequent community among L(v)
5: if Ci(v) 6=Ci−1(v) then
6: mark each v for time ti
7: end if
8: end if
9: end if

v towards u. Such closeness often relies on the quantity of common neighbours
between u and v as detailed below:

We review here three measures as presented in [8] (Section 2.2), and propose a
new proposed measure Community-based Weighted Common Neighbours (CWCN),
taking into account known information community. Section 4 presents results of the
algorithm implementing each of these measures. The mathematical expression is
given for each measure for any u,v ∈V .

Jaccard coefficient of neighbours is an adaptation of the well-known Jaccard
Index for neighbour vertices in a graph, and compares the number of common
neighbours to the total number of neighbours of both u and v. It is defined as follows:

σJac(u,v) =
|Γ (u)∩Γ (v)|
|Γ (u)∪Γ (v)|

(1)

Adamic-Adar is an adaptation of the eponymous measure used for web search and
link prediction. It sums the number of common neighbours between u and v, using
a logarithmic function that gives more importance to “rarer” features, here to less
connected neighbours. It is defined as follows:

σAA(u,v) = ∑
w∈Γ (u)∩Γ (v)

1
log(|Γ (w)|)

(2)

The Preferential Attachment measure is based on the eponymous concept popu-
larised by Barabási and Albert [2]: the tendency of entities having many connections
to attract more new connections than weakly connected ones. It multiplies the neigh-
bourhood sizes of u and v, meaning that preference hugely depends on vertex degree.
Using this measure results in large agglomerations of vertices around hubs. It is
defined as:

σPA(u,v) = |Γ (u)|× |Γ (v)| (3)
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The proposed CWCN measure Community-based Weighted Common Neighbours
is a common neighbour measure weighted by the degree of the vertex being compared.
While similar to the common neighbours |Γ (u)∩Γ (v)|, the degree weighting scheme
“attracts” a vertex much more toward high degree leaders and thus higher density areas
in the graph, related to communities. This follows Barabási & Albert’s preferential
attachment principle [2] but is less strong than the preferential attachment measure
described above. It is defined as:

σCWCN(u,v) = |Γ (u)∩Γ (v)|×dv (4)

4 Experiments
This section presents several experiments supporting the validity of the proposed
method. It compares the effectiveness of various preference measures presented
Section 3.3. The goal of these experiments is to prove the ability of DynLOC-
NeSs (together with an appropriate preference measure) to capture the dynamics of
evolution of the network, and as such is done on small interpretable graphs, with
experiments similar to [12]. The experiments on big graphs (data mining) are left to
future works.

4.1 Protocol
Datasets. We use artificial benchmark graphs to assess the properties and validity of
the proposed algorithm. They are obtained using the generator proposed by Granell et
al. [12]. It keeps the vertex set constant and uses two community evolution patterns:
grow-shrink, where some communities grow (gain vertices) while others shrink (lose
vertices), and merge/split, where merge and splits occur between communities. It can
generate an evolving graph of controlled size and density after one or both patterns,
together with the ground truth community structure. We specify for each experiment
the benchmark parameters used to generate the graphs.

Evaluation Criteria. We use the same criteria for partition comparison as in [12]:
the classical information entropy-based measures Normalised Variation of Informa-
tion (NVI) and Normalised Mutual Information (NMI), both bounded between [0,1].
However, opposite to NVI, a NMI value of 1 indicates that the two partitions contain
the same information (identical) whereas 0 indicates that the partitions are totally
dissimilar. A good community structure partition thus minimises NVI and maximises
NMI. For the mathematical expressions, see [12].

We choose not to use the proposed windowed variant [12] as it does not bring
significant benefit and it is difficult to interpret. As a matter of fact it requires
to carefully select the time window value, which plays a significant role in the
performance evalutation.
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(a) NVI (to be minimised) (b) NMI (to be maximised)

Fig. 1: Comparison for the grow-shrink pattern on 100 time steps

(a) Ground truth (b) With σCWCN (c) With σJac

Fig. 2: (Colors online) Comparative visualisation of the community repartition
between σJac and σCWCN evaluated on the grow-shrink process.

4.2 Preference Measure Comparison
The first experiment is performed in order to compare the effect of the different pref-
erence measures exposed in Section 3.3. We use here the classic planted bissection
model [7, 12]. In this model, the graph is divided into two communities and the
algorithm has to correctly classify each vertex as belonging to one or the other.

The proposed algorithm is tested for each preference measure on two evolution
patterns : grow-shrink and merge-split. For each pattern, 10 instances of a graph of
64 vertices are generated, with intra-community density of 0.5 and inter-community
density of 0.05, for 100 time steps. These values are the ones used in [12]. The
ground truth, shown on Fig. 2a and 4a, is thus made of 2 communities of 32 vertices
each at t0.

Results for the Grow-Shrink pattern are presented on Figures 1 and 2 (the measures
not included in Figure 4 produce only one community at each time step, therefore
the colormap is all black) are the mean of NVI and NMI runs over the 10 graphs,
and a colormap visualisation where each pixel color represents the community
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(a) NVI (to be minimised) (b) NMI (to be maximised)

Fig. 3: Comparison for the merge-split pattern over 100 time steps

(a) Ground truth (b) With σCWCN (c) With σJac

Fig. 4: (Colors online) Comparative visualisation of the community repartition
between σJac and σCWCN evaluated on the merge-split process.

assignment of a vertex (id on the y axis) at a given time step (on the x axis). We
can see that DynLOCNeSs with σCWCN globally detects the grow-shrink bissection
pattern, except that a third community (orange) is identified. This community in fact
replaces the black one at the beginning and the white one at the end: the method takes
the grow-shrink evolution as a transfer between two communities via a third one,
impacting NVI and NMI values. However, the clearly visible grow-shrink triangle
shapes indicate that the evolution pattern has correctly been identified. This is less
obvious for the method with σJac. It detects 14 communities and even if the triangle
shape can be guessed there is a lot of noise and community misassignment.

The other two cases, σAA and σPA, are not pictured because they assign every
vertex to a single community, resulting in an entire black colormap.

The merge-split process is presented in Figures 3 (criteria) and 4 (visualisation).
Again, the measures not included in Figure 4 produce only one community at each
time step, therefore their colormap is black.
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Fig. 5: Speed of execution as a function of the graph size

Merge-Split is less successfully detected than grow-shrink. We observe that σCWCN
finds two communities where σJac finds ten, but the abrupt merge is not correctly
identified, whereas the CWCN variant yields less noise than Jaccard one.

Let aside the merge, the CWCN variant nonetheless achieves better NMI and NVI
than the other methods. The perfect NVI for σAA and σPA during the merge (fig. 3
(b)) can be explained by the fact that both methods only detect one community at
any time step. This is prejudiced when two communities exist, but it is correct during
the merge. It is a side effect related to the chosen planted bissection, but inherently
denotes a poor quality of detection for these two criteria.

Execution Time Because the input and output of dynamic community detection
algorithms depend on the dynamicity model used, it is difficult to compare them. For
example, iLCD input is event-based (edge addition or deletion) and its output is a
chronological sequence of community states. A state change can happen any time
an edge is removed. The consequence is that, if launched on a time step sequence
similar to those used to test the proposed algorithm, the community structure can
vary several times during a same time step. Any heuristic to gather all the changes
made during a time step would inevitably erase information and introduce a bias.

Another example, the multi-step adaptation of Louvain algorithm [1] takes a
sequence of time steps into account, but outputs a unique community structure at the
end of the process and it is not possible to track the evolution of this structure during
the detection process.

A more neutral comparison axis is the execution time, presented below, chosen to
illustrate the performance of the proposed method : six graphs, of 64, 128, 256, 512,
1024 and 2048 vertices respectively, were generated with the same density as in the
previous experiments: 0.05 intra-community and 0.5 inter-community (e.g. 375,000
edges for 1,024 vertices), over 10 time steps.
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We measure the mean time, over 5 runs, taken by DynLOCNeSs and by iLCD to
process each graph. The platform used is a Intel Core i7-2600K CPU @ 3.40GHz
Workstation with 16GB RAM.

Results are presented on Figure 5. We can see that iLCD processing time is
skyrocketing before the method we propose, which is a significant advantage to
process either large graphs or large number of time steps.

5 Conclusion and Future Works
We propose a new dynamic community detection method, named DynLOCNeSs that
consists in a vertex-centred approach to re-compute only a small local fraction of
vertex neighbourhood. The algorithm relies on a vertex neighbourhood preference
measure. We introduced a novel one, CWCN. Experiments on benchmark graphs
show that CWCN yields better results than the other measures and that the overall
method is well able to detect common patterns in community evolution such as
grow-shrink and merge-split.

We are considering additionnal work on the community evolution patterns to better
capture the dynamics and improve the quality of DynLOCNeSs pattern identification.
We are also working on experiments to assess the performance of the method on
large graphs, up to several millions of vertices. We also plan to evaluate the CWCN
criterion over other clustering-related problems.
Acknowledgements This work was performed as part of the Homo Textilus project, supported by
the French ANR agency under the grant ANR-11-SOIN-007.

References

[1] Aynaud, T., Guillaume, J.L.: Static community detection algorithms for evolving networks.
In: Proc. of the 8th Intl. WiOpt’10 Symposium, pp. 513–519 (2010)

[2] Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439),
509–512 (1999)

[3] Bedi, P., Sharma, C.: Community detection in social networks. WIREs Data Mining Knowl.
Discov. 6(3), 115–135 (2016)

[4] Canu, M., Detyniecki, M., Lesot, M.J., Revault d’Allonnes, A.: Fast community structure
local uncovering by independent vertex-centred process. In: Proc. IEEE/ACM Intl. Conf.
ASONAM’15, 823–830. ACM (2015)

[5] Cazabet, R., Amblard, F.: Simulate to Detect: A Multi-agent System for Community Detection.
In: Proc. IEEE/WIC/ACM WI-IAT’11, vol. 2, 402–408 (2011)

[6] Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary Clustering. In: Proc. 12th ACM
SIGKDD Intl. Conf. KDD ’06, 554–560. ACM (2006)

[7] Clementi, A., Di Ianni, M., Gambosi, G., Natale, E., Silvestri, R.: Distributed community
detection in dynamic graphs. Theoretical Computer Science (2014)

[8] Cohen, S., Kimelfeld, B., Koutrika, G.: A Survey on Proximity Measures for Social Networks.
In: Search Computing, no. 7538 in LNCS, 191–206. Springer Berlin Heidelberg (2012)

[9] Fortunato, S.: Community detection in graphs. Phys. Rep. 75–174 (2009)
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Abstract Social networks are a source of large scale graphs. We study how so-
cial network algorithms behave on sparsified versions of such networks with two
motivations in mind:
1. In practice, it is challenging to collect, store and process the entire often con-

stantly growing network, so it is important to understand how algorithms behave
on incomplete views of a network.

2. Even if one has the full network, algorithms may be infeasible at such large
scale, and the only option may be to sparsify the networks to make them com-
putationally tractable while still maintaining the fidelity of the social network
algorithms.

We present a variety of methods for sparsifying a network based on linear regression
and linear algebraic sampling for graph reconstruction. We compare the methods
against one another with respect to clustering. Specifically, given a graph G, we
sample the columns of its adjacency matrix and reconstruct the remaining columns
using only those sampled columns to obtain Ĝ, the reconstructed approximation of G.
We then perform clustering on G and Ĝ to get two sets of clusters and compute their
modularity, fitness and centrality. Our thorough experimentation reveals that graphs
reconstructed through our methodology preserve (in some cases, even improve)
community structure while being orders of magnitude more efficient both in storage
and computation. We show similar results if the target is prominence of nodes rather
than clusters.
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1 Introduction
The ever increasing popularity of social networks has resulted in increasing avail-
ability of massive graphs. Their sheer size renders them unwieldy for carrying out
downstream machine learning operations. Further, such networks are difficult to mea-
sure entirely and often we can only access partial snapshots. We need ways to extract
information from partially observed networks. This is one of the key motivations for
our work, which is to address the question: Are there ways of sampling the edges of
the network (perhaps re-weighting them) so that machine learning on the sparsified
(incomplete) network produces results that are faithful to the full network.

The task of sampling a graph has applications across many domains. For example,
in a social network with a billion nodes, questions arise like: who are a person’s
potential friends or who are the leaders and influencers of a given group of people? In
a very large research collaboration network, we may want to know which researchers
are leaders in a particular field or who are the best collaborators between different
fields. In a product rating setting, sellers may want to know which products (movies,
books) in one genre are a gateway to another genre. Getting a bird’s eye view of
these large networks (and many other types of networks) can be instrumental in
solving interesting problems quickly. In this paper, we propose ways to address these
problems using techniques from graph sparsification and reconstruction.

As discussed later in the related work section, there is a body of research accu-
mulating in the Linear Algebra community which tries to approach this problem by
treating the networks as matrices. The benefit is that the spectral structure of matrices
can be preserved up to a finite rank if the samples are chosen carefully. In this work,
we use these techniques in the social network analysis (SNA) setting. We also use
linear regression in one of our methods where we choose a subset of the columns of
the adjacency matrix of the full dataset and regress on the remaining columns to get
our estimate.

The essence of our work is visualized in Fig. 1. The dataset could be in multiple
formats but we represent it as an adjacency matrix A with A(i, j) = A( j, i) = w if
there is an edge e between ith and jth node with weight w > 0. Let ri be the ith row
of A. We choose a small subset of the columns of A. This corresponds to choosing
certain nodes from the graph and all the edges that those nodes are involved in. Then
using the symmetric property of the adjacency matrix, linear regression and linear
algebraic sampling methods (see section 3) we reconstruct the missing edges and
nodes. The weights of the edges in the new graph will change depending on the
probabilities with which the rows of A are chosen. We call the adjacency matrix
of our reconstructed graph (which corresponds to the modified dataset) Â. Now, to
evaluate the performance of our method, we compute clustering metrics on this new
dataset. We compare them with those obtained from the full dataset.

We formulate two problems in this study:

1. Given A, sparsify to Â, so that machine learning tasks on Â are faster and produce
almost as accurate predictions as from A.
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Fig. 1: Outline of our workflow. The dataset is represented as an adjacency matrix.
The columns of this matrix are sampled to yield a new adjacency matrix which has
new weights for its edges. A new graph is constructed by reconstructing the missing
edges using this adjacency matrix. The clustering metrics are computed on both the
full and sampled graphs.

2. Knowing nothing about A, identify a few columns to sample to get Â, so that
machine learning tasks on Â are more efficient and produce almost as accurate
predictions as from A.

To give a better idea of this process, we illustrate it by using a toy graph accom-
panied by the corresponding adjacency matrix A in Fig. 2. Each of the edges in the
graph is assumed to have a unit weight unless it is shown thicker in which case it
would mean that it has a weight w > 1.

Fig. 2: A toy graph and its associated adjacency matrix

Let the columns 1,2,3 and 6 be sampled from A. The entries in the unseen
columns 4 and 5 are partially populated by using the symmetric nature of A. We apply
our reconstruction techniques on these sampled columns and the partially populated
columns to get estimates of A. In one method (Algorithm 8), we use linear regression
to guess the unseen edges and in the other method (Algorithm 9) we rescale the
weight of the seen edges by

√
1/pi where pi is the probability of ith being chosen to

“make up” for the lost edges. For example, if columns from A are chosen uniformly,

1

3

2

5

4

6

1 2 3 4 5 6

1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 1 0 0
4 0 0 1 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0
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then pi = 1/6. Let the estimates obtained from these two very different approaches
be Â1 and Â2 respectively. We show the corresponding graphs in Fig. 3. Finally, we
perform clustering (see Section 3.4) on Â1 and Â2 and compute some metrics (see
Section 3.5) to measure the performance of our algorithms. Fig. 3 also shows the
clustering on Â1 and Â2. Note that all the nodes of the same color belong to the same
cluster.

Our Contribution and Summary of Results
In this work we examine the feasibility of sampling and reconstructing large graphs
when we do not have access to the entire graph while proposing two methods to
address the problem. We simulate the issue of having incomplete graphs by choosing
a subset of the full graph and working only with this small subset to build the unseen
graph. Specifically, we choose some well-known metrics pertaining to graphs and use
them as a yardstick to measure the performance of the different sampling algorithms
which treat graphs as matrices. Our main contribution is to show that it is feasible to
extract useful information from incomplete graphs and designing two algorithms to
do so.

Some of the key observations that we were able to make are discussed below.
We were able to improve the modularity of the clusters even when progressively
sampling only 0.15% of the nodes and their related edges. The expansion of the
clusters actually improved and was better in the sampled datasets. We were able to
achieve this by using only a tiny fraction of the time required for processing the full
graph. For example, the Amazon dataset (see section 3.6), which has over 300,000
nodes and 900,000 edges, took almost an hour to be evaluated while with just 0.45%
of the data, we were able to evaluate it with reasonable accuracy in about 6 minutes.
Some metrics were more robust to sparsification than others. Prominence (centrality)
measures weren’t preserved as well as clustering metrics. We believe the reason for
this is that clustering is inherently more robust compared to centrality in the sense
that it is less specific. A more detailed analysis can be found in section 4.

2 Related Work
There is some work done related to sampling of graphs. A few researchers [23], in
a collaborative effort, compared breadth first search random walk based sampling

Fig. 3: Toy graph and clustering for its estimates
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methods and their conclusions were not promising. In a relatively older work [20],
the authors came up with a scheme where a few “landmark” nodes are selected
beforehand and the shortest path distances between two nodes are estimated based on
that at runtime. The “landmark” node in a way summarizes a few nodes and thus can
be treated as a representative for those nodes. This is not sampling of edges or nodes
per se but we are mentioning this work because it tries to make the graph “small”
before going ahead with downstream computations. However, another work [21]
actually samples the edges and keeps the number of nodes unchanged in order to
achieve faster graph clustering. They rank the edges using a similarity heuristic and
then retain a set number of edges per node. Another interesting work [22] treats the
graph as an electrical network and computes effective resistances of the edges and
sparsifies the graph. There has been some prior work [13] which looks at sampling
of graphs but they only sample randomly and do not consider graphs as matrices.
Another work [14] contains a comparison of community detection algorithms on
graphs but does not take into consideration the issues arising from working with
large scale graphs.

There is another line of work which looks at computing centrality measures on
large graphs quickly and efficiently. For example, in [24] the authors try to use virtual
nodes in graphs in an attempt to quickly compute betweenness centrality. They
assume the graphs are large, sparse and lightly weighted and inject virtual nodes into
them and then compute betweenness centrality. One of the breakthrough works [6]
significantly reduces the time required to compute betweenness centrality. Later work
[4] proposed further improvements, so we think running those algorithms on sampled
graphs would greatly increase the size of datasets on which such computations are
feasible; especially when combined with parallel methods like multi-threading [15].

Another approach, perhaps very relevant to the kind of sampling algorithms that
we study in this paper, is the use of matrix sparsification techniques with a goal of
sparsifying them as discussed in [1] and [3]. Finally, [16] covers a lot of randomized
algorithms aimed at obtaining an approximation of a matrix.

We do not perform a thorough survey of all the clustering algorithms available
as it is beyond the scope of this work. Interested readers can refer to [9] for such
an analysis. In our work, we compare clustering metrics, as we will discuss soon,
computed on large graphs and their reconstructed counterparts.

3 Methodology
In this section we discuss the algorithms, metrics, datasets and experimental setup
used in this paper. We investigate two methods of solving the problem of reconstruct-
ing incomplete graphs. We use MATLABrTM notation in Algorithms 8, 9.

1. Linear Regression: Given the square symmetric adjacency matrix A ∈ Rn×n

of graph G with n nodes, we randomly choose k < n (k� n if n is very large)
columns of A. Let this be X ∈ Rn×k. We can use the symmetric property of A to
partially fill out Y ∈ Rn×(n−k). The indices of the k columns that were selected
are stored. Now, we use linear regression to get an estimate Ŷ of Y . We have
Ŷ = X(X†Y ) where X† represents the Moore-Penrose pseudo-inverse of X .
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We get the estimate Â ∈ Rn×n of A by using X , Ŷ and indices of k sampled
columns. The above process is shown in Algorithm 8.

Algorithm 8 Linear Regression

1: A = get_adjacency_matrix(G) . Graph G is given
2: K = randsample(N,k) . Store the indices of k chosen columns
3: X = A(: ,K); Y = 0k×n−k . Get the k columns from A
4: Y (K, :) = X(N−K, :)T . Use symmetric properties of A to partially fill Y
5: Ŷ = X(X†Y ) . Perform Linear Regression to build unseen graph
6: Â = 0n×n . The new adjacency matrix
7: Â(:, K) = X . Sampled columns
8: Â(:, N−K) = Ŷ . Reconstructed columns

Note that Algorithm 8 can be applied multiple times to the full adjacency matrix
to get multiple reconstructions of the graph. These estimates can then be com-
bined to get a new estimate. In fact, in section 4, we test this approach by taking
up to three estimates while evaluating the performance.

2. Linear Algebraic Sampling Method: In this approach, we initially choose k
columns randomly from A. Instead of working with two matrices X and Y like in
1, we work with only one Xi ∈Rn×n matrix. The way X1 is built is as follows. The
chosen columns are rescaled by a factor of the probability with which they were
chosen. This acts as the reconstruction step because in a way we are accounting
for the missing information by giving more importance to the entries that we
have. In addition, since A is symmetric, we further fill X1 using this information.
Now, we use one of the sampling algorithms which will be described in Section
3.3 to get a set of probabilities to further sample A. Using this set of probabilities,
we will have k more columns. We can build X2 in a similar fashion to X1. With
these two estimates of A, we can now build Â as follows.

Â = αX1 +(1−α)X2 (1)
where α can be varied between 0 and 1 to get a weighted average of the estimates.
Note that this process can be repeated to get different estimates. This is shown in
Algorithm 9.

3. Sampling Algorithms: The following sampling methods can be used in step 7
of Algorithm 9.

a. Leverage Score Sampling (LVG): Given an m×n matrix A with m > n, let U
denote an m×n matrix consisting of the left singular vectors of A. If the row
vector U(i) is the ith row of the matrix U , then li = ‖U(i)‖2

2 for i ∈ {1, . . . ,m}
are the leverage scores [17] of the rows of A. The leverage scores signify
the “influential” rows that can be “good representatives” of a matrix. We
compute these scores for the given matrix and use them as probabilities for
selecting a particular column from that matrix.
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Algorithm 9 Linear Algebraic Sampling (LAS)

1: A = get_adjacency_matrix(G) . Graph G is given
2: K = randsample(N,k) . Store the indices of k chosen columns
3: X1 = 0n×n

4: X1(:, K) = A(: ,K) . Get the k columns from A
5: X1(K, :) = A(K , :)T . Use symmetric properties of A
6: X1 = diag(P1)×X1 . P1 is the vector of rescaling factors of length n
7: P2 = smpl_algo(X1) . Get a new set of probabilities using one of the

sampling algorithms
8: K = sample(P2, N−K, k) . Get new unseen k columns w.r.t. P2
9: X2 = construct_X(K2,P2) . Repeat steps 3−6 on X2

10: Â = αX1 +(1−α)X2 . Reconstructed Â

b. Dual-Set Sparsification (DSS): Described in [5], DSS is a deterministic
algorithm that selects rows from matrices with orthonormal columns. It is
based on [22] that we reviewed in Section 2. We recommend referring to
Algorithm 1 in [5] to get more details about this method. In short, it returns
a set of n weights out of which r are non-zero, which are the sampling
probabilities for our purposes, for an l×n matrix A of rank k in O(rnk2+nl)
time.

c. Adaptive Sampling (AS): For a detailed discussion of this method refer to
Section 2 in [8]. To summarize, this algorithm does sampling in multiple
iterations and in an adaptive manner. The rows in each new iteration get
picked with probabilities proportional to their squared distances from the
span of the rows that have already been picked previously.

All the algorithms above come with some form of theoretical guarantees for
preserving the spectral structure of the Laplacian [17], [5], [8].

4. SpeakEasy: This [10] is a label propagation clustering algorithm which robustly
detects both overlapping and non-overlapping clusters. The nodes in SpeakEasy
update their labels based on their neighbors’ labels and take into account their
global popularity in the network. Note that we do not aim to improve clustering
performances, but use this state-of-the-art “off the shelf” method. It could be an
interesting extension to this work to use different clustering algorithms.

5. Performance Metrics: To compare the quality of the sparsified graph Ĝ with
the ground truth G we use the clusters and prominence measures obtained from
both graphs. Let the community partition be given for a network G = (V,E)
with |E| edges. Let C be the set of all communities, c a specific community in
C with |c| number of nodes, |E in

c | the number of edges between nodes within
community c, |Eout

c | the number of edges from the nodes in community ci to the
nodes outside c.
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a. Modularity (Q) [18], [19]: Modularity for unweighted and undirected net-
works is defined as the ratio of difference between the actual and expected
(in a randomized graph with the same number of nodes and the same degree
sequence) number of edges within the community.

Q = ∑
c∈C

|E in
c |
|E|
−

(
2|E in

c |+ |Eout
c |

2|E|

)2

(2)

b. Contraction [7]: It measures the average number of edges per node inside a
community. The larger the value of this metric, the higher the quality of the
community. For undirected networks (the ones examined in this work), this
would be 2|E in

c |
|c|

c. Expansion [7]: It measures the average number of edges outside a community.
The smaller the value of this metric, the higher the quality of the community.
Using the previous notation, expansion would be |E

out
c |
|c|

d. Conductance [7]: It measures the fraction of the total number of edges that
have an endpoint outside a community. A smaller value of conductance
means a better community. Conductance is defined as |Eout

c |
2|E in

c |+|Eout
c |

e. Intra-Density [7]: The internal density of a community. The larger the value
of this metric, the higher the quality of communities. For a particular com-
munity c, intra-density is defined as 2|E in

c |
|c|(|c|−1)

f. Fitness [7]: The ratio between the internal degree and the total degree of a
community. Higher the value of fitness, better the quality of the community.
Fitness is defined as ∑c∈C

|E in
c |

|E in
c |+2|Eout

c |

6. Datasets: We used a variety of data sets in our experiments ranging from e-
commerce to collaboration networks to social networks. We summarize the
datasets here.

a. Amazon [12]: This is a product co-purchase network of amazon.com. If
a product is frequently co-purchased with another product then those two
products have an undirected edge between them. There are 334,863 nodes
and 925,872 edges.

b. DBLP Collaboration Network [25]: In this co-authorship network, two
authors are connected if they have published at least one paper together. It
has 317,080 nodes and 1,049,866 edges.

c. Political Blogs [2]: This is a directed network of hyperlinks between weblogs
on US Politics during 2004 general election. It has 1,224 nodes and 19,022
edges.

d. College Football [11]: This network represents the schedule of games be-
tween college football teams in a single season. There are 115 nodes and
613 edges.

e. Zachary’s Karate Club [26]: This network represents the friendships between
34 members of a karate club at a US university during two years. It has 34
nodes and 78 edges.
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4 Performance Analysis
In this section, we describe the experimental setup and the choices that were made for
the experiments. We sampled between 0.15% and 30% of columns from the datasets.
We chose 3 different k’s for each dataset: 500,100 and ,2000 for Amazon and DBLP,
150,225 and 300 for Political Blogs, 30,40 and 50 for Football and 5,7 and 10 for
Karate. Also, for each dataset and each k, we ran 3 iterations of Algorithm 8. This
way, we had 3 estimates of the dataset for each k. We also timed each process and
the comparison between full datasets and their estimates is shown in Fig 5. In case
of Algorithm 9, instead of running the same algorithm three times, we ran it only
once for each of the sampling methods described before. Thus, we again obtained
three estimates. Similar to the earlier process, we timed Algorithm 9 as well and
the performance is shown in Fig 4. The parameter mentioned in Equation 1 was set
to 0.3 to give importance to the latest reconstruction of the dataset. The dark bars
represent the full datasets while the gray bars represent the best performing partial
datasets. Y-axes in both Fig. 4 and Fig. 5 represent the value of the metrics.

After we had the estimates from either algorithm, we performed the task of
clustering on them. We ran the clustering algorithm mentioned in Section 3.4 on
new adjacency matrices to obtain new sets of clustering. Now, with the clustering
set of the full graph and that from the estimated graph, we were able to compute the
community quality measures defined in Section 3.5.

Fig. 4: Performance of Linear Algebraic Sampling Methods
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1. Clustering: We can see that modularity, intra-density, expansion, conductance
and fitness are all very well preserved irrespective of the algorithm or the dataset.
We show the results for the best k and best performing sampling algorithm.
We would like to note that the metrics are also preserved for other values of k.
Readers can refer to the legend in each of the figure to see what k and how many
iterations of running the algorithm (in case of Fig. 5) and with which sampling
algorithm (in case of Fig. 4) produced the best results. For Fig. 4, we use the
notation: 1=LVG, 2=DSS, 3=AS. This, combined with the fact that expansion
has improved (lower the better) in almost every case shows that the reconstructed
graphs have a better community structure. In case of algorithm 8 (Fig. 5), we
learned that running at least 2 iterations provides the best results. We omit the
results for the Karate dataset to conserve space.

Fig. 5: Performance of Linear Regression

2. Runtime: In Fig. 6 it can be seen very clearly that using the algorithms pro-
posed in this paper one can save a tremendous amount of time while preserving
the community structure of the graphs. We show the runtime results only for
Algorithm 8 to conserve space. Both algorithms perform very similarly. The
difference in runtime is very clear for large graphs like Amazon and DBLP.
Processing the full Amazon graph requires about 3500ms while the best per-
forming iteration/sampling algorithm takes less than 500ms. This translates to
our algorithm being roughly 7 times faster. Similar results can be observed with
DBLP and the small datasets.
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3. Centrality: As it was noted in the summary in Section 1, centrality measures like
degree, betweenness and closeness were not as well preserved as the community
structure. However, they tend to be closer to the full graph as we increased the
number of sampled columns k. For example, k = 10,000 on Amazon dataset, for
top 10% nodes in terms of degree centrality, yielded an F-measure of 0.02 and
0.002 for k = 500. In essence, if one is just interested in getting the community
structure of a large graph, with minimal information, then the methodology
proposed in this paper produces results of sufficient quality. If more specific
features of the graph are required then one would have to invest more time and
effort to get more information.

Fig. 6: Runtime of Linear Regression

5 Conclusion
The results presented in this paper show that graphs can indeed be sampled like matri-
ces using sampling techniques from the matrix algebra community while preserving
clustering features. We present evidence that using only 0.15%−30% of the edges
of a graph yields communities whose quality is comparable to that of the full graph,
according to the most important metrics. We think that going forward, with these
results, sampling and reconstruction of large graphs can be considered an important
first step before performing machine learning.
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Abstract Although the problem of partition quality evaluation is well-known in
literature, most of the traditional approaches involve the application of a model built
upon a theoretical foundation and then applied to real data. Conversely, this work
presents a novel approach: it extracts a model from a network which partition in
ground-truth communities is known, so that it can be used in other contexts. The
extracted model takes the form of a validation function, which is a function that
assigns a score to a specific partition of a network: the closer the partition is to
the optimal, the better the score. In order to obtain a suitable validation function,
we make use of genetic programming, an application of genetic algorithms where
the individuals of a population are computer programs. In this paper we present a
computationally feasible methodology to set up the genetic programming run, and
show our design choices for the terminal set, function set, fitness function and control
parameters.

1 Introduction
The community detection problem is not new in the domain of graph theory. The
analysis of communities provides a deeper knowledge of the network’s structure and
the correlation between nodes, which allows the study of the information embedded
into networks. Networks concerning healthcare, infection spread, human interactions,
economics, transportation, trust and reputation are perfect examples where detecting
communities can help to understand the network’s structure.
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The definition of a community itself is controversial. Intuitively, it can be defined
as a set of entities that are close to each other. This notion is quite similar to the
concept of closeness, which is based on a similarity measure and is usually defined
over a set of entities. One of the most acknowledged definitions of community appears
in [1]. This definition has given birth to several algorithms for community detection
[2] [3] which, for the most part, rely on the optimization of a validation function
measuring the quality of the community structure. One of the most commonly
used functions is the modularity function provided by Newman [4]. Approaches
based on modularity optimization have however shown some drawbacks, such as
the resolution limit introduced in [5], the conjectured hardness described in [6],
and the algorithmic infeasibility for large networks or overlapped communities. In
this last case, modularity definition has been further extended to tackle overlapping
structures [7] [8].

This paper presents a novel approach that attempts to infer the previously men-
tioned validation function from the network, aiming at obtaining a result that
”emerges” from the network, without pre-conditions. Ideally, we want to find a
function general enough to properly detect the community structure of several differ-
ent networks. However, due to the difficulty of the problem, stochastic approaches
are often employed to look for near-optimal solutions. One of these stochastic ap-
proaches that has been gaining popularity in solving these kind of problems is the
Genetic Programming (GP) method. GP is a branch of evolutionary computation,
and can be seen as an application of the more well-known genetic algorithms. The
main difference is that the individuals of a population are not strings of bits but
computer programs made of constants, variables, and functions. These pieces of
code are different for each individual of a population, much like each organism has
different genes compared to other individuals of the same species.

Although the idea of making computer automatically solve problems is not
new [9] [10], only recently the technological advancements in the field of computing
speed allows to exploit these techniques to solve more complex cases, including
community detection. Evaluating the community partition quality via GP consists in
finding an individual which can be used as a validation function that allows us to eval-
uate partitions of a network. Of course we would like this function to be as general as
possible, in order to apply it to different networks and still produce reasonable results.
But it is also possible that the application of GP to different networks could lead to
different functions, therefore the question is whether a function that minimizes the
difference among the set of functions related to different networks would exist and
how it could be found. In this paper we show how to build a validation function that
is computationally feasible, and how to apply GP in order to solve the problem. In
particular, in sec. 2 an overview of GP is presented, while its application is illustrated
in sections 3 and 4. Final considerations, together with further works are presented
in sec. 5.
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2 Genetic Programming
The idea of having machines automatically solve problems has always been central
in the domain of artificial intelligence. A relevant problem since the early days of
artificial intelligence is however a machine would solve a problem which solution is
a computer algorithm itself.

GP attempts to take on such challenge by making use of the concepts of evolution-
ary computation, which borrows from nature the idea of the survival of the fittest. It
aims at generating a feasible algorithm that can solve the specified problem without
requiring the user to specify the shape of the solution in advance.

The gist of GP consists in evolving a population of computer programs. Computer
programs which participate in the process are named individuals. At each iteration
of the process, the population is evaluated, and each individual is given a numerical
score named fitness. The better the fitness, the more likely an individual is a solution
to the GP problem. The fitter individuals are then manipulated by the use of genetic
operations in order to generate a better population for the next iteration. The process
continues until an exit condition is satisfied: the fittest individual that was ever bred
among all the iterations will be designated as the solution to the problem. This whole
process is shown in Figure 1.

The GP process is inherently random, and sometimes it produces no meaningful
solutions. However, this randomness allows GP to avoid the traditional pitfalls of
deterministic search algorithms.

Setting up a GP problem means specifying how an individual is constructed in
terms of terminals and functions, defining a proper fitness function and providing
parameters that control the run, including the exit conditions, as summarized in
Figure 2.

2.1 Terminal and function sets
The terminal set is the set of values that are used as arguments of the functions in the
function set. It may consist of:

Fig. 1: Overview of the Genetic Programming process
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Fig. 2: Preparatory steps for the Genetic Programming process

• External inputs of the program, typically represented by named variables like x.
• 0-ary functions, like time(), that may return a different value each time they

are run.
• Constants, either determined before the run or created by mutation.

The function set is very dependent on the application domain. In simple numerical
problems, it may consist of the four basic arithmetic functions (+, -, *, /), but they
could be higher level functions: for example, if we are looking for an auto-pilot system
for a car, functions could include steer(), accelerate(), decelerate()
in a simplest case.

2.2 Fitness function
Defining a good fitness function is perhaps the most crucial step when setting up
a GP problem. A good fitness function should always return large (small) values
for individuals that fit, and small (large) values for individuals less fit, so that the
individual which has the highest (lowest) score is the fittest. It is often the sole
mechanism to provide a high-level statement of the problem’s requirements. For
example, if the GP problem consists in finding the closest rational number for any
real number x, the program floor(x*100)/100, is more fit than the program
floor(x*10)/10, as it gives a more accurate result for all values of x, so it
should receive a better score.

2.3 Control parameters
At last, there are several parameters that need to be configured in order to start the
GP search: the termination criterion, the population size, how the initial population
is created, the probability of applying a genetic operators and so on. Of all these
parameters, the most important two are the population size and the termination
criterion. Regrettably, it is not possible to make general recommendations regarding
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an optimal set of GP parameters, as it strictly depends on the specific application.
However, GP is often robust, and many different parameter values may work.

3 Community structure validation problem
As specified in the introduction, the goal of this paper is to attempt to solve the
problem of community structure validation with a GP approach. The solution takes
the form of a validation function, which is a function that assigns a certain score to a
partition of a network in clusters: the closer to the optimal that partition, the better
the score. For simplicity’s sake, we will say that a partition is better (worse) than
another when it’s closer (farther) from the optimal partition.

Note that in the general case we cannot assume that a better partition always gets
an higher score compared to a worse partition. The validation function might assign
a higher score to worse partitions, depending on its shape. This is the reason why we
will not use the terms ”lower” or ”higher” when considering the validation function
score, rather the more generic ”better” and ”worse”.

Such a function could be used in conjunction with global optimization methods to
find communities: in this case, we want to find the partition that yields the best score,
or get reasonably close to that. However, this is beyond the scope of this paper; for
the time being, it is necessary to first determine if a solution to the problem exists.
Let’s first describe in more formally what we are looking for.

Let’s assume we have an undirected, unweighted network G = (V,E), where V
is the set of nodes and E ⊆V ×V is the set of edges. If we name P the space of all
the possible partitions of G, we are looking for a validation function β : TP→ R
that has a reasonable computational complexity. TP is the space of terminal sets
obtained from all the partitions in P: its generic element is simply the terminal set
of a specific partition P ∈ P. However, the β function is very difficult to handle as
an individual of the GP problem due to the high dimensionality of TP, as it would
require many terminals to provide enough information to describe the whole partition
of the network.

Instead of looking for a validation function as a whole, to reduce the dimensional-
ity of the selection function, we decided to fragment the function β so that it operates
on the terminal sets Te ∈ TE , ∀e ∈ E, which have less dimensions:

β (Te) =
rk

∑
i=1

∑
e∈Ei

f (Te) (1)

f : TE → R is an individual of the population in the GP problem, and TE is the
space of terminal sets obtained from all the edges in E, hence a generic Te ∈ TE
is the terminal set of an edge e = (v,w). This terminal set should contain numeric
information about the nodes that connects. This includes microscopic parameters
like the degree of v and w or their structural difference. However, there are also
mesoscopic (related to the communities e belongs to) and macroscopic parameters
(related to the whole network) that are worth considering even when evaluating the
score of a single edge. For example, it may be worth comparing the degree of v or
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w to the average degree of the nodes within the same community, or to the average
degree of the nodes within the network. Of course we don’t know exactly how the
terminals will be compared within the function f due to the nature of GP, but we
believe that the terminal set must offer the opportunity for such comparisons to
happen.

Finally, note that we are excluding on purpose all (v,w) ∈ E : v ∈ Ci, w ∈ C j,
Ci 6=C j. This simplification is necessary to further reduce the dimensionality of the
terminal sets and the overall complexity of the GP problem, because including these
edges would imply two problems to be addressed:

• It would be necessary for the f to behave differently for inter-community and
intra-community links. This makes the search much harder, so, as far as com-
plexity is concerned, it is better that all the edges are of the same type.

• Inter-community links require more terminals than intra-community links, be-
cause they bear mesoscopic information about two communities instead of one.

In conclusion, our GP problem consists in finding an individual f : TE → R that,
applied to all intra-community edges, will provide a score to a certain partition P ∈ P.
The terminal set will provide access to microscopic, mesoscopic and macroscopic
properties that can be used by the GP algorithm to create a suitable f . In the following
section we describe in detail parameters of the GP process.

4 Methodology
In this section the parameters that characterize the proposed GP run are illustrated.
As already mentioned in section 2, these are the terminal set, the function set, the
fitness function, and all the control parameters such as the population size and the
termination criterion.

4.1 Terminal set
The terminal set was one of the most challenging parameters to define. On one hand,
we want to include several different properties from the network at different levels
(microscopic, mesoscopic, macroscopic), on the other hand too many properties
would raise the complexity of the GP problem, making the solution harder to search
for. We already mentioned in section 3 that we simplified the original problem in order
to make use of a reduced terminal set. If we name the generic edge ei = (vi,wi) ∈ Ei
belonging to the community Ci, the terminal set we decided to make use of is the
following:

• Microscopic Parameters

– degree of node vi;
– degree of node wi;
– structural equivalence between vi and wi;
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– number of edges of vi that point to other nodes in Ci;
– number of edges of wi that point to other nodes in Ci.

• Mesoscopic Parameters

– average degree of nodes in Ci;
– total number of edges in Ci;
– total number of nodes in Ci.

• Macroscopic Parameters

– average degree of nodes;
– total number of edges;
– total number of nodes.

The information concerning each level is very abstract and simple by design: we
don’t want to bias the GP run with excessively refined mathematical models. The
only exception to this could be the structural equivalence, which is computed via the
cosine similarity. If the results suggest that the quality of the solution would benefit
from a larger terminal set, it is of course always possible to add other parameters in
subsequent runs. We could also remove some of the parameters if we see that they
come out unused in the fitter individuals.

4.2 Function set
Contrary to the terminal set, the function set is small, and consists of only five
functions: {+,−,×,÷,

√
}, which are the binary addition, subtraction, multiplication

and protected division and the unary square root operator. The protected division
operator ÷ is defined as:

a÷b =





1, for b = 0
a
b , otherwise

The function set is small for two reasons: having a smaller function set decreases
the complexity of the algorithm, and since most of the used functions are simple,
they have less impact on the overall computation time. Note that there are important
terminals and functions that can be derived from a combination of elements from the
defined terminal and function sets:

• 0 can be written as n−n, ∀n ∈ R;
• 1 can be written as n÷ (m−m), ∀n,m ∈ R;
• n2 can be written as n×n, ∀n ∈ R;
• |n| can be written as

√
n×n, ∀n ∈ R.
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4.3 Fitness
Determining a proper fitness function is also a major challenge, and often the success
of a GP search depends on how accurately the fitness functions validates the correct
solution. In our case, the fitness function needs to evaluate how well our validation
function β (1) behaves. In practice, its behavior is tested by applying it to the ground-
truth partition P∗ and d randomly generated partitions. The scores of these randomly
generated partitions are then compared against the score of the ground-truth partition.
Intuitively, the more a partition Pk is similar to the ground-truth partition, the better
score β should yield.

Unfortunately, comparing the scores as they are gives little or no information
about how accurate is the validation function in scoring a specific partition. Assuming
P∗ is the ground-truth partition, how can we say that β (TP∗) yields the best score
if we don’t know the maximum value that β can assume? Assuming P is a generic
partition, how can we say that β (TPk) is better or worse than β (TP∗) when we don’t
know the shape of β? This is why we decided to measure the correlation between
the difference of the two β scores and the normalized mutual information (NMI) a
measure of how different two partitions are. If the difference is correlated to the NMI,
it means that the β function behaves as desired, and it is a good candidate for our
solution. Note that we could use any kind of difference measurement: we chose NMI
because it is well-studied and has convenient properties [11].

We show how to apply the aforementioned intuitions in order to measure this
correlation and obtain our fitness function ϕ . First, let’s define the basic building
block for our fitness function, which is the function γ : P→ R, defined as following:

γ(P) =
|β (TP∗)−β (TP)|

NMI(P∗,P)
(2)

This function alone does not measure correlation of course. To do that, we need to
consider its standard deviation σγ :

µγ =
d

∑
i=1

γ(Pi)

d
ϕ( f ) = σγ =

√√√√ d

∑
i=1

[γ(Pi)−µγ ]2 (3)

Given the definition of our fitness function, we may conclude that the best individual
f is the one that minimizes ϕ .

4.4 Control parameters
Compared to the other settings, determining the optimal control parameters before-
hand is usually not possible. Things like population size, crossover ratio, number
of generations, are best determined via experimentation. As far as the complexity
parameters are concerned, in principle, we start with a small population (about 50
individuals) and an average number of generations (about 30). These numbers may
be refined according to the performance of the GP framework in terms of the quality
of the results and computing time.
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The crossover ratio, which is the chance that crossover occurs between two genes,
is also an important factor. Normally, each generation is subject to different genetic
operators randomly. Certain individuals will undergo crossovers, others mutation.
The crossover ratio indicates what is the chance of two individuals to crossover.
A traditional approach [12] is to have a crossover ratio of 0.9, while the mutation
ratio is set to the remaining 0.1, and we believe this is a good starting point for our
experiment.

There is also a variety of different genetic operators and strategies that have to
be chosen. For example, it makes sense for certain GP problems to adopt automati-
cally defined functions (ADF), a way to evolve reusable components, but they are
most effective in problems which present some degree of regularity. Also, there are
many different kinds of crossover and mutation operators [13], and the problem of
determining which kind of operator to use is complex [14].

At first, the selection of operators will probably be limited to what the GP frame-
work has to offer. Then, if the results suggest that the GP problem could benefit from
the application of specific operators that are not implemented in the framework, we
may eventually extend the framework by adding the missing operators, or migrate to
a different one.

In conclusion, it is hard to fully specify what control parameters to use without
experimentation. We will proceed using general recommendations about their values,
then we will progressively refine the selection with the feedback obtained from
previous runs.

5 Conclusion
This work presents a novel methodology for community structure validation that
makes use of Genetic Programming (GP). First we described the problem in general,
specifying how can it be treated as a GP problem. The idea is to find a validation
function β that can assign a score to partitions of the network. However, it is not
possible to set up the GP run using a population of validation functions, as it would
make the computation time too long. Hence, we decided to fragment β so that it can
operate on terminal sets with smaller dimensions, reducing the overall complexity.

We also presented a list of viable parameters for the GP run. We used microscopic,
mesoscopic and macroscopic properties of the network to build the terminal set. We
choose few operators for the function set, in order to keep the complexity at minimum.
We designed the fitness function so that it measures how a generic validation function
resulting from a step of the GP run compares to the well-known normalized mutual
information.

In the future we aim at putting in practice the described proposal, and to bench-
mark our validation function against networks which have a known partition in
communities.
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Abstract In this paper we propose a graph-coarsening approach that aims to speed-up
the execution time of graph-based tag recommenders in large-scale folksonomies. A
community detection algorithm in multiplex networks is applied for coarsening the
hypergraph depicting a folksonomy. Experiments on real datasets show the validity
of the approach.

1 Introduction
Social tagging systems, or folksonomies, are popular Web 2.0 tools that allow people
to share and organize large sets of resources such as bookmarks, documents, photos,
etc. Tag recommendation is a core service in such systems [1, 2]. The goal is to
compute the most adequate tag set that a user can apply to annotate a given resource.
This helps in controlling the tag vocabulary set, enhancing hence its usefulness for
resource access and searching while keeping the annotation process user-centred.
This problem has attracted much of interests in the last few years with a variety
of different approaches being proposed [3, 4, 5, 6, 7, 8]. Graph-based approaches
constitute a major trend in this area [9, 10, 11]. These are attractive approaches
since they relay only on mining the induced graph structure of the tagging history
making these independent form the type of annotated resources [5, 6, 7, 8, 12, 13, 14].
Actually, the tagging activity history can be represented as a 3-uniform hypergraph
where all hyperedges involve three nodes of different types: a user, a resource and a
tag.

While graph-based approaches yield interesting results, they often suffer from
high execution times due to the large-scale of handled graphs. In this work, we
propose a graph-coarsening based approach that can overcome this drawback. The
proposed approach is decomposed into two steps: an offline step where the folkson-
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omy hypergraph is abstracted by applying a topological clustering approach to the
three sets of nodes: users, resources and tags, and an online step during which recom-
mended tags are computed. Upon receiving a query composed of a target user and
resource we apply a basic graph-based tag recommendation approach to the abstract
graph in order to compute a set of recommended abstract tags. These will be used to
construct a new reduced graph, called the contextual graph by unfolding the abstract
subgraph composed of the set of recommended abstract tags and nodes representing
the cluster of users (resp. resources) to which the target user (resp. resource) belongs
to. Again the same basic graph-based tag recommendation approach is applied to
this new reduced graph in order to compute the final set of tags to recommend.
Thus the approach consists in replacing the execution of a standard graph-based tag
recommendation approach on a large-scale graph by two executions of the same
approach on two reduced graphs. This is expected to drastically reduce the online
recommendation computation time. The quality of computed recommendations is
also expected to be enhanced since the contextual graph is focused on the query
(target user and resource) avoiding taking into account query-irrelevant data. Main
contributions of this work are :

• Defining a meta topological approach that can be applied to enhance graph-based
tag recommendation approaches in terms of execution time and recommendation
quality.

• Benchmarking different community detection algorithms for multiplex networks
in the context of tag recommendation problem.

• Providing experiments on real dataset.

The remainder of this paper is structured as follows. In section 2 we provide a
quick survey on main topological approaches for tag recommendation. The proposed
approach is detailed in section 3. Experiments on real networks are reported and
commented in section 4. Finally, conclusions are drawn in section 5.

2 Related work
A folksonomy can be formally, represented as a 3-uniform hypergraph G =<V =
U ∪R∪T,Y ⊆U ×R×T > where V is a set of nodes composed of three disjoint
sets : U set of users, R set of resources and T set of tags. Y is a ternary relationship
such that : (u,r, t) ∈ Y if user u ∈U has annotated resource r ∈ R using the tag t ∈ T .
A graph-based, or a topological, tag recommender relies only on mining the structure
of the hypergraph in order to infer the top-k tags that are the most relevant to be used
by a given user to annotate a given resource. Existing topological approaches can be
classified into four main classes:

• Node ranking based approaches [6, 12, 15, 16, 17]
• Link prediction based approaches [8, 10].
• Graph search based approaches [11]
• Clustering-based approaches [5, 7]
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In this work we go steps further by first proposing a graph coarsening approach
based on clustering all the three sets of involved nodes (i.e. users, resources and tags)
each based on similarities in function of their relationships to both other types of
nodes. Then, a set of recommended cluster of tags is computed on the coarsened
graph. This intermediate result is used to extract a contextual graph from the raw
graph of the folksonomy that is focused on the target user and resource (i.e. the
query). A graph-based recommendation approach applied to this later graph in order
to compute the final list of tags to recommend. The proposed approach is detailed in
next section.

3 Proposed approach
Algorithm 10 sketches the outlines of the proposed tag recommendation approach. In
order to treat a recommendation query q = (u,r) defined by a couple of target user u
and resource r, the approach requires the following inputs: G the raw graph of the
folksonomy, Gc : a compression of G and graph-based tag recommendation approach:
tagRecommender(). The later can be any of the graph-based tag recommendation
approaches mentioned in section 2

Algorithm 10 Tag recommendation approach

Require: q = (u,r) #user query
G =< (U,R,T ),E > # a folksonomy graph
Gc =< (CU ,CR,CT ),Ec >::= Compression(G)
tagRecommender() # a graph-based tag recommender

Ensure: Kt : recommended tags
1: Ct

u← c ∈CU : q.u ∈ c
2: Ct

r← c ∈CR : q.r ∈ c
3: q̂← (Ct

u,C
t
t )

4: Kc← tagRecommender(q̂,Gc)
5: Gcontext ← induced subgraph(G,Ct

u,C
t
r,Kc)

6: Kt ← tagRecommender(q,Gcontext)
Return: Kt

The folksnomoy graph compression is done off-line. Upon receiving a recommen-
dation query q = (ut ,rt), the algorithm starts by rewriting the query q in terms of
clusters of users (denoted Ct

u) and cluster of resources (denoted Ct
r) computed during

the graph compression process (line 1 to 3). This step shows clearly one classical
limit of pure graph-based approaches which is the cold startproblem: no recommen-
dation can be computed for new users and/or new resources. Let q̂ be the rewritten
query. The tag recommender function is then applied to the compressed graph Gc in
order to handle q̂. A set Kc of recommended cluster of tags is then obtained. These
will be used along with Ct

u,C
t
r to extract from the raw graph G a contextual graph
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Gcontext defined as subgraph of G defined over the set of nodes in Ct
u∪Ct

r ∪Kc. The
same graph-based recommendation function is applied to the contextual graph in
order to get the final set of tags to recommend. The tag recommendation process
consists then on applying the same recommendation approach twice on two reduced
graphs. This allows reducing the execution time of the whole approach (without tak-
ing into account the time for compressing the raw graph which is done off-line). The
computation of the contextual graph is also expected to enhance the performances
of the recommendation approach since it is expected to avoid taking into account
irrelevant nodes.

A central step in the approach is the graph compression one. The principal of graph
compression is to compute clusters over the three sets of nodes : users, resources
and tags. The graph coarsening consists then in replacing each cluster of nodes by
one abstract node. Clustering algorithms requires defining a dissimilarity function
over the set of items to cluster. But since we are targeting pure topological (or graph-
based) recommendation approach the only information we can harvest over nodes is
their connectivity to other nodes. We use this information to infer relations between
nodes of each type in function of their connectivity to nodes of the other two types.
This is simply done by projecting the raw folksonomy graph on each of its mains
components : users, resources and tags. For each type of nodes we can then infer
two types of relations in function of the other two node’s types. This allows then to
define three multiplex networks, each composed of two layers. A multiplex network
is defined as a multi-layer network where each layer is composed of the same set
of nodes. Each layer defines a set of different links between nodes [18]. One way
to define clusters over each set of nodes consists then in applying a community
detection algorithm to each of the obtained multiplex networks. A wide variety of
community detection algorithms for multiplex networks has been recently proposed
in the scientific literature [19]. A brief review of main approaches is presented in
next section.

4 Community detection in multiplex networks
A multiplex network G is defined as triplet G =<V,E,C > where:

• V is a set of nodes,
• E = {E1, . . . ,Eα} : ∀k ∈ [1,α]Ek ⊆V ×V a set of different α layers; each defin-

ing a different type of relation between nodes in V
• C a set of inter layer coupling links. Different coupling schemes can be defined.

Basic schemes include ordinal coupling and categorical coupling. The first
consists on linking nodes between adjacent layers while the later consists in
linking each node to itself from each layer to every other layer.

In our case, where we have only two-layer multiplex networks, ordinal and
categorical coupling are roughly the same. The problem of community detection in
complex networks is about finding dense subgraphs that are loosely coupled. The
concept of community in a complex network is still fuzzy in spite of the huge number
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of papers that have been published in this field in the last few years [20]. Defining
a community in a multiplex network is even worse since we need to define what is
a dense subgraph in a multiplex network [21]. Despite this difficulty, an increasing
number of work has been proposed in the last few years to deal with this problem.
Existing approaches can be broadly classified into two distinct classes: the first class
regroups work that consist in transforming the problem of community detection in
multiplex networks into the one of commuting communities in a monoplex network.
The second class of work regroups algorithms that generalize existing algorithms to
the case of multiplex networks.

Trivial approaches from the first class are, layer aggregation (LA) and partition
aggregation (PA) approaches. The first consists in simply aggregating layers of a
multiplex network in one layer. A classical community detection algorithm can then
be applied to the aggregated network. Different aggregation schemes can be applied.
In general, the layer aggregation approach consists on transforming a multiplex
network into a weighted monoplex graph G =< V,E,W > where W is a weight
matrix. Different weighting scheme have been proposed including linear combination
[22] and similarity-based aggregation [23].

The principle of partition aggregation approaches is to apply a community detec-
tion algorithm to each layer aside then to combine resulting community structures
into one clustering. This can be made by applying any ensemble clustering approach
[24, 25, 26, 27].

More interestingly, algorithms that extend existing one to the multiplex network
settings have been proposed in different work in the last few years. In [28] a general-
ization of the modularity function has been proposed. This is given by:

Qmultiplex(P) =
1

2µ
∑
c∈P

∑
i, j∈c

k,l:1→α





A[s]

i j −λk
d[k]

i d[k]
j

2m[k]


δkl +δi jCkl

i j




where µ = ∑
j∈V

k,l:1→α

m[k]+C jkl is a normalization factor, and λk is a resolution factor

as introduced [29] in order to cope with the modularity resolution problem. Note that
in our case, inter-layer links are implicit links connecting node i to itself in the others
layers. Therefore we have: Ckl

i j = 0 ∀i 6= j.
By using this multiplex modularity, algorithms that apply greedy modularity

optimization can be directly applied to multiplex networks. An example is the Gen-
Louvainalgorithm [28] that is the generalization of the well-known Louvain algorithm
[30]. Both WalkTrap [31] and InfoMap [32] algorithms have been generalized to
multiplex setting in respectively [33] and [34].

The algorithm Mux-Licod proposed in [19] is a generalization of the seed-centric
algorithm Licod proposed in [35]. We give hereafter some details about this algorithm
since it is used later in experiments reported in this paper. A survey on seed-centric
community detection algorithms is provided in [36]. The following algorithm gives
the general outlines of a seed-centric approach.
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Algorithm 11 General seed-centric community detection algorithm
Require: G =<V,E > a connected graph,
1: C← /0
2: S← compute seeds(G)
3: for s ∈ S do
4: Cs← compute local com(s,G)
5: C← C+Cs
6: end for

Return: compute community(C)

The idea is to compute seeds in the network: nodes or subgraphs that play central
role in the network. Then local communities centred on these seeds are computed.
Lastly, the set computed local communities are used to infer a community structure
over the whole network. The Licod algorithm applies roughly the same scheme.
Seeds are selected to be nodes that have higher centrality degree than most of direct
neighbors. Once seeds are detected, each node in the network rank the list of seeds
according to its local preference to be a member in the seed’s local community. This
is simply done be ranking the list of seeds in function of the length of shortest path
linking the node to it the seed. Ties are broken randomly. Then, each node exchange
with direct neighbors its preference list. Nodes merge preferences of neighboring
nodes, using a classical preference merging algorithm [37]. These two steps of
exchanging preference and merging preference is iterated till stabilization. Each node
will be then assigned to the community of the top ranked seed in the local ranked list
of seeds. Extending this algorithm to cope with multiplex networks is straightforward.
The following concepts should be defined for a multiplex network before applying
the algorithm: The degree centrality, the length of the shortest path between two
nodes and the neighborhood set of a node. The following definitions are applied in
the context of the Mux-Licod algorithm [19]: The multiplex degree centrality of a
node i is computed by the following formula proposed initially in [38]:

dmultiplex
i =−

α

∑
k=1

d[k]
i

d[tot]
i

log


 d[k]

i

d[tot]
i


 (1)

where d[k]
i is the degree of node i in layer k and d[tot]

i = ∑
k

d[k]
i .

The multiplex shortest path is defined by :

SP(i, j)multiplex =

α

∑
k=1

SP(i, j)[k]

α
(2)

where SP(i, j)[k] is the length of the shortest path between nodes i, j in layer k. Finally,
the multiplex neighborhood of a node i is defined by:

Γ
mux(i) = {x ∈ Γ (i)tot :

Γ (i)tot ∩Γ (x)tot

Γ (i)tot ∪Γ (x)tot ≥ δ} (3)

where Γ (i)tot = ∪kΓ (i)[k]. Γ (i)[k] is the neighborhood of i in layer k. δ ∈ [0,1] is a
similarity threshold. This formula stats simple that the multiplex neighborhood of
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a node i is composed of a subset of neighbors of i in all layers that have a Jaccard
similarity above δ .

5 Experiments
We evaluate the proposed tag recommender on two benchmark datasets extracted
from two folksonomies: Bibsonomy a bibliographical reference sharing system and
Deliciousa social bookmark sharing system. These datasets have been provided in
the context of the HetRec 2011 competition [39]. Each dataset is composed of a set
of triadic relationships : connecting a user, a resource and a tag. Table 1 give basic
information about both used datasets.

Dataset |U | |T | |R| # Edges
Bibsonomy 116 412 361 24 297
Delicious 1 867 53 388 69 226 437 593

Table 1: Basic statics describing used datasets

Each dataset is divided into a learning set and a testing set. The size of the test
set is taken to be 5% of the whole dataset. The performances of the recommender
system is evaluated in function of precision of provided recommendations and the
overall execution time. The graph compression time is not included in the reported
execution time.

Let q = (u,r) be a recommendation query in the test set. Let T (u,r) be the set
of tags associated to the couple (u,r) in the test set. Let T̃ (u,r) be the set of tags
returned by the tag recommender system in response to the query q = (u,r). The
precision for the query q is then given by the following formula:

Pr(q = (u,r)) =
|T (u,r)∩ T̃ (u,r)|
|T̃ (u,r)|

(4)

Thus the computed precision does not take into account the order in which tags are
recommended.

The proposed tag recommender has the following parameters :

• The community detection algorithm to apply for graph compression. Two com-
munity detection algorithms are selected, the well known Louvain approach [30]
and Licod [35]. Both algorithms are used in combination with layer aggregation
(denoted LA()) and ensemble clustering (denoted EC()) and in their respective
generalized versions to multiplex networks : GenLouvain[28] and Mux-Licod
[19]. All these approaches are implemented MUNA a Multiplex network analysis
package developed in R [40].
• tagRecommender(): the basic topological tag recommendation approach to use.

FolkRank is applied as a basic tag recommender [6].
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• The number of tags to recommend after applying tagRecommender to the ex-
tracted contextual graph. This is denoted |Kt |. We make vary |Kt | ∈ [1,4] since
most resources have up to 4 tags in both datasets.

• The number of abstract tags to retain after applying tagRecommender to the
compressed graph. This is denoted by |Kc|. For each value of |Kt | we vary
|Kc| ∈ [1,5].

Figure 1a (resp. 1b, 1c, 4) shows the variation of the obtained precision in function
of the number of retained clusters of tags (i.e. |Kc|) when we limit the number of tags
to recommend (i.e. |Kt |) to 1 (resp. 2, 3, 4).

Fig. 1: Variation of average precision in function of |Kt |= 4 and |Kc| on Bibsonomy
dataset

Figures 2a, 2b, 2c, 2d show the results of the same above mentioned configuration
of the tested approach when applied to the Delicious dataset.

First, we notice (across all figures) that the average precision decreases when |Kt |
increases. To illustrate this inverse relationship between precision and |Kt | we plot
on figure 3 the obtained average precision when applying the Mux-licod community
detection algorithm on both datasets, while varying |Kt | from 1 to 4 and fixing |Kc| to
2. Similar trends can readily be figured out for other configurations (through figures
1a to 2d).

This observation is also true for the basic FolkRank approach which yields pre-
cision of 0.65 for |Kt |= 1 and drops to 0.423 when |Kt | is set to 4. This may mean
that the node ranking approach ranks mostly true positive recommendations more
frequently at the top of the result list.

Next, in almost all configurations, the precision (slightly) increases when |Kc|
increase. This is particularly true when using Licod or Mux-Licod for graph com-
pression. The use of Louvain is less sensitive to this issue. This is due to the fact

(a) |Kt |= 1. (b) |Kt |= 2

(c) |Kt |= 3 (d) |Kt |= 4
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Fig. 2: Variation of average precision in function of |Kc| and |Kt | on Delicious dataset

Fig. 3: Variation of average precision in function of |Kt | using Mux-Licod and fixing
|Kc| to 2

that Louvain returns usually huge communities (since it is based on optimizing
the modularity objective function). We notice also that for almost all configuration
the precision increases when increasing |Kc| from 1 to 2. The number of retained
clusters of tags influence the size and the quality of the extracted contextual graph.
It is clear that there is a trade-off to find between having a very focused contextual
graph that might not include relevant tags to recommend and a more larger graph
that will increase also the noise level in the set of tags to explore. |Kc| = 2 seems
to be a good option. We notice also that in all configurations, the graph coarsening
approach yields slightly better results than the basic FolkRank approach. The gain in
precision seems not to be significant (using FolkRank as a basic tag recommender
algorithm), but at least there is no drop in the quality of obtained recommendations
despite the compression process (that leads naturally for some information loss).
More important are the results in terms of execution times. Next two figures show
the on-line execution times for treating test queries for each dataset.

(a) |Kt |= 1. (b) |Kt |= 2

(c) |Kt |= 3 (d) |Kt |= 4
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Fig. 4: Recommendation computation time

Both figures 4a, 4b show that our approach allows a drastic reduction of the
execution time, compared to the FolkRank approach applied directly to the raw
graph. For both datasets, the best execution time is obtained using the Mux-Licod.
This is clearly an encouraging result. Investigations should be continued, mainly
by exploring using other basic graph-based tag recommender in order to enhance
both recommendation quality and keeping execution time as low as we’ve already
obtained.

6 Conclusion
In this paper, we have proposed a graph-coarsening based meta approach for tag
recommendation computation. A core component of the approach is a community
detection algorithm in multiplex networks. Experiments on real-world data shows
that the proposed approach allows decreasing drastically the recommendation compu-
tation time without affecting the quality of obtained recommendations. This approach
can be also used as a benchmark for comparing different community detection al-
gorithms in multiplex network. It provides a clear application-driven evaluation
of community detection algorithms. Seed-centric approaches seem to overcome
modularity-optimization based approaches for community detection. Further exper-
iments are needed to explore the performances gain when applying the approach
using more sophisticated basic graph-based tag recommenders. We target mainly
applying the coarsening approach using a link prediction based tag recommender [8].
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Abstract The feature extraction is a very important step in the music audio classifi-
cation. This task has been performed by renowned descriptors using, in most cases,
the time-frequency approach. In this article we propose a descriptor that performs the
feature extraction in a set of music audio files labeled in symphonic and percussive
music, using parameters calculated within the Euclidean domain. First we calculate
the variance fluctuation series of music signal, after we map this series into visibility
graphs [13]. At the end each audio track will correspond to a network, where the
links are defined by the visibility of variance fluctuations of their respective audio
signal. Then, we measure the strength of the partitions of each network in clusters,
using calculation of modularity. The results of computation of this parameter in sixty
networks showed that percussive and symphonic music can be distinguished and
hierarchized on a growing rang, following a direct correlation with modularity.

1 Introduction
Due to the need to develop computational resources for the organization of large
digital music libraries, the importance of automatic music classification systems has
grown considerably in recent times [19]. Many classification platforms have been
proposed [6, 8, 10, 20], and despite efforts to find a new path [9, 12], most feature
extraction tools use knowledge of the audio signal processing field [2, 7, 23, 26].
Among the most commonly descriptors used in feature extraction are MFCC - Mel
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Frequency Cepstral Coefficients, Spectral Rollof, Spectral Flux, Zero Crossing Rate,
Low-Energy Feature. These algorithms lead their mathematical operations in time-
frequency domain in order to extract of the musical signal, three basic characteristics:
tone texture (timbre), rhythmic content (time, rhythm, pulse), and tonal content
(pitch) [2]. Hoping to cooperate for the growth of new ways to perform feature
extraction in musical audio signals, we propose in this article a way to describe
musical dynamics 1 in audio tracks following a different direction. To make possible
this idea we first captured the loudness of the audio signal from the calculation of the
average intensity of their fluctuations in fixed-size windows [12], creating a series of
variance fluctuations of the original signal. After this, we mapped this series into a
graph, using the geometrical visibility mapping proposed by [13]. In this mapping,
if two points of the series see each other in the Cartesian plane, an edge is created
in the Euclidean plane. Thus the higher the visibility of a point in the series, the
more edges it will have in the graph. At the end of the mapping, the graph inherited
in its structure the visibility of all local peaks with their respective neighborhood
[15]. Consequently, variance fluctuation series with few local peaks, but very visible,
will generate graphs with few hubs, but with a high degree of connections. On the
other hand, series with many local peaks with poor visibility will generate graphs
with many vertices with lower level of connections. The analysis of modularity will
identify if the network structure was created from the series with greater or smaller
local visibility. The experiments suggest that the visibility graph generated from
the variance fluctuations of audio signals that have a strong influence of percussion
activity - like Samba or disco music- have a higher trend to create modules than
audio signals whose orchestration has little or no influence of percussion instruments
and more dynamics nuances, like a string quartet.

2 Related Works
Researchers at the computer music area have used the structural feature of complex
networks to solve various problems related to music information retrieval, such as:
musical taste in internet communities [4], algorithmic composition [25], collaborative
networks between composers [21], music genre classification [5]. In [25] authors
build a network based on pattern analysis of Bach, Chopin and Mozart compositions,
linking the duration of two notes in MIDI (Musical Instrument Digital Interface)
format which co-occur in a melodic phrase, using universal properties found in these
networks to propose rules for algorithmic composition. To analyze the musical tastes
of users from their playlists, [4] uses the basic features of networks where the nodes
are the song titles, and the edges occur between two song titles, if this title appear
in more than one playlist.[5] deals with music genre classification using rhythms
extracted from MIDI database, transforming it into complex networks. In [5] each
rhythmic cell is a node, while the sequences of notes define the links between nodes,

1 The varying levels of volume of sound in different parts of a musical performance.https:
//en.oxforddictionaries.com/definition/dynamics.

https://en.oxforddictionaries.com/definition/dynamics
https://en.oxforddictionaries.com/definition/dynamics


according to a Markov model. [11] combines audio analysis and network structures
to identify communities of artists on myspace website, establishing links between
two artists who have similar tags on social networks, and audio-based similarity using
Mel Frequency Cepstral Coefficients, and entropy. [21] studies the topology and
evolution of networks of western classical music composers, building links between
two composers who co-occur in the same compact disc, linking information about
author, period and style extracted from audio file meta-data. A characteristic that
can be noticed in most scientific papers that use the mapping of complex networks
to understand the music audio phenomena is the absence of structures formed by
links where the nodes are non-symbolic elements. With the exception of [11], which
use audio data in the network vertex in the first of two phases of the mapping, we
have not found in the survey of related work, another study whose network is formed
by the relationship between audio signal points. Considering the survey by [22],
that shows various approaches for music content analysis, we also note the lack of
methodologies that use complex network parameters to perform feature extraction in
audio signals.

Visibility graphs have been created bridges between time series analysis and
complex networks analysis, opening possibilities on time series field by using a
set of new tools. One of this bridges has been used to study long-term correlations,
fractal properties, and self-similarity structures [14, 18] and have found applications
in temporal observations like Nasdaq and S&P500 daily stock indices [24] and traffic
of information packets series [1]. These studies show that the visibility graphs has the
ability to capture local trends of time series and measure them through the network
analysis. Motivated by these studies, we chose the same type of mapping seeking
to identify how much the persistence of an audio signal time series is associated
with the dynamics changes influenced by percussive activity of its musical content.
This article will show that modularity is able to capture the reflections of the self-
similarity and patterns of persistence of loudness embedded in the network, but will
not establish a direct relationship with power laws or the Hurst exponent calculations,
as in [14].

3 Materials and Methods
In this section we first present the database, after we show the methodological
approach to conduct the study of the visibility of an audio signal by using the
modularity of complex networks. We take a set of sixty audio samples with 30
seconds long. Each song is represented by a time series W(i). In this series we
calculate the subset of variance fluctuations V(j). For each V(j) point is evaluated
the ”visibility” in relation to their successors and predecessors, according to the
slope comparisons [13]. At the end of the process the subset V(j) becomes the
graph G(V(n), V(m)), from which is estimated the modularity and the amount of
communities.
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3.1 Database
The audio files used In this article are divided into two groups: Symphonic Music and
Percussive Music. In Symphonic Music were selected thirty compositions for string
quartet or large orchestra. The compositions are divided among Bach concertos,
Mozart symphonies and string quartets by Debussy and Ravel. To represent the
Percussive Music, we chose 30 tracks equally divided into: samba, mangue beat
and disco music. The Samba tracks are songs composed for the celebration of the
Rio de Janeiro carnival from 2005 to 2014. In Mangue Beat there is an influence
of electronic pop-rock music, mixed with a traditional afro-brazilian rhythm called
Maracatú. The ten tracks of disco music gives a good overview of the musical scene
of the 80s. The symphonic and disco music are chosen from GTZAN 2 database,
and samba e mangue beat are from the author’s particular collection. The Percussive
tracks are labeled as Percussive 1 ... Percussive 30, where disco music occupies the
ten first places, samba takes up the next ten, and Mangue Beat the past ten. The
Symphonic networks are labeled as Symphonic 1 ... Symphonic 30, where the eight
first are Bach concertos, the next sixteen networks are Mozart Symphonies, and the
last six are string quartets composed by Debussy, Dutileux and Ravel.

3.2 Calculating The Variance Fluctuation Series
In this section we first calculate the variance fluctuations of a musical signal with the
same methodology used by [12, 16], where the authors consider that the loudness can
be represented by average intensity of the sound over intervals of 0.01 s. Consider
audio music signal represented by the W (i) series, with i = 1 · · ·N. The total number
of points N is a function N = SR.t, where the sampling rate is SR = 11khz and
the time is t = 30 seconds. The set W (i) = W (1), · · · ,W (N), with N = 330,000
is segmented into m-non overlapping boxes λ= 110. For each box j = 1 · · ·m is
calculated by the standard deviation. In jth box we have:

V ( j) =

√√√√√
jλ
∑

( j−1)···λ+1
(W (i)−W ( j))2

λ −1
, (1)

Where the average is given by:

W j =

jλ
∑

( j−1)···λ+1
(W (i))

λ
(2)

This creates the variance fluctuation subseries V ( j) =V 1,V 2, · · · ,V m , with 3000
samples.

2 Gtzan Genre Collection is a database widely used in musical information retrieval research. It
was proposed by 8 and is available at http://marsyasweb.appspot.com/download/
data_sets

http://marsyasweb.appspot.com/download/data_sets
http://marsyasweb.appspot.com/download/data_sets


3.3 Transforming Variance Fluctuations in Graphs
Each variance fluctuation point V ( j), with j = 1 · · ·3000, is considered to be a vertex
of the network. To apply the visibility criterion in the series, we will consider each
point of V ( j) as an ordered pair (x j,Vj), where xj is the point position in the series.
Two vertex (xa,Va) and (xb,Vb) are connected if there is a point (xc,Vc) between the
m such that:

Vb−Vc

xb− xc
>

Vb−Va

xb− xa
(3)

Equation 3 proposed for [13], provides a comparison between the αbc slope (left
side of equation) and αba slope (right side of equation). Whenever αbc > αba there is
visibility between Va and Vb, and their corresponding nodes are connected in the
graph. Otherwise, they do not constitute an edge in the graph. After the equation
3 is applied to all points of the series, following the order j = 1...300, we have the
visibility of each point of a subset V ( j) mapped in a graph (V (m),V (n). This means
that, from this stage, each song is represented by a visibility graph.

3.4 Modularity
After mapping the variance fluctuations into visibility graph, the modularity is
calculated using the Lovain Method [3], based on GEPHI 3 framework for comminity
detection. This algorithm brings a fast unfolding approach for the fundamental
modularity defined for [17], whose equation is

Q =
1

2m ∑
(i, j)

(
Ai j−

ki− k j

2m

)
δ (ci,c j) (4)

Were i and j are nodes of the network; Ai j represents the number of edges between
i and j; ki and k j are the sum of the the edges attached to i and j; m is the sum of
all edges in the graph; ci and c j are the communities of the nodes; and (ci,c j) is a
Kronecker delta function 0 for ci = c j and 1 for ci 6= c j; where ci and c j are the
communities of the nodes.

To maximize the modularity efficiently, Louvain method proposes a method
which uses two stages in iterative repetitions: (1) each node is attributed to their own
community. So the change of modularity is calculated for each node i, removing this
node from its own community C and moving it to the community of each neighbor i.
This value can be easily calculated by:

∆Q =

[
∑in+ki,in

2m
−
(

∑tot +ki

2m

)2
]
−

[
∑in

2m
−
(

∑tot

2m

)2

−
(

ki

2m

)2
]

(5)

3 GEPHI is a free and open-source software that performs visualization and operation of all types of
graphs and networks. Available in https://gephi.org/.

Community detection: an approach to categorize percussive influence on audio signals 325

https://gephi.org/.


326 Dirceu Melo Inacio Fadigas and Hernane Pereira

Where ∑in is the sum of the links inside C; ∑tot is the sum of the links incident to
nodes in C; ki,in is the sum of the links incident to node i; m is the sum of the links
from i to nodes in C and m is the sum of the weights of all the links in the network.
In the second stage the nodes belonging to the same community are united, and then
it constructed a new network where the nodes are small communities. These steps
are repeated until the maximum modularity is achieved and a community hierarchy
is produced.

Since the calculation of modularity depends on a random argument, the algorithm
each time will return different results. With the tested networks there was very little
variation in these results, therefore we considered to all networks a randomly selected
result.

4 Experimental results

4.1 Variance fluctuations
Sixty variance fluctuation series were calculated by reducing the original signal,
approximately 330,000 points for 3000 points. Figure 1 illustrates the variance
fluctuation series of two audio samples. The first represents the Percussive group
and the second the Symphonic group. In Figure 1(a) we have a numerical series
generated from a song with a strong beat of drums, used in traditional Brazilian
rhythm ”maracatu”, and Figure 1(b) the portion of a Mozart symphony performed by
string section of an orchestra, without percussion instruments.

Fig. 1: Variance Fluctuations series of audio signals corresponding to the files: (a)
Etnia by Chico Science & Zoombie Nation; (b) Mozart -Symphony 39 in E flat
Major, K 543. Source: Author

We can notice by visual inspection that the first series is denser than the second,
with less space between ”peaks” and ”valleys”. We can, even without numerical
proof, intuit that these different geometric configurations are associated with the
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peculiar rhythmic activities to their audio signals. The following results present
quantitative basis for characterizing these differences.

4.2 Visibility networks generated from variance fluctuation
We mapped Sixty networks, each with 3000 nodes. The networks are grouped into
two types: Symphonic Networks and Percussive Networks. Figure 2 shows two
networks, representing respectively the Percussive and Symphonic Networks. The
first (Figure 2a) is a mapping of a audio from the 1980s - So Many Men, so Little
Time - played by the Canadian singer Miquel Brown. The second (Figure 2b) is
a network generated by the mapping of the audio Animé Et Três Décidé - String
quartet composed by Claude Debussi, performed by Julliard String Quartet. In these
two representations, the modularity classes appear in different colors, indicating
the communities formed by each network. Sections 4.3 and 4.4 will present overall
results that will give subsidy to infer about trends presented by each group, based on
the magnitude of the difference between the amounts of communities formed by the
two types of networks.

Fig. 2: Visibility Networks of the variance fluctuations of two audio signals. The
colors represent the modularity classes of each network. Source: Author.

The average number of edges of 30 Symphonic and Percussive Networks are,
respectively, 60254±10925 and 23827±2899. The results show a significant differ-
ence between the mean values of edges generated between the two types of networks.
Taking into account that the number of nodes in visibility graphs depends on the
visibility of their points in the series. We can infer that, in mapping a set, the greater
the number of nodes generated, the higher the visibility of the series. This indicates
that, on average, the series that generated the Symphonic networks have greater
visibility than the generating series of Percussive Networks.
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(a) Percussive Network (Q=0.91 e
Nc=24)

(b) Symphonic Network (Q=0.66 e
Nc=7)
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4.3 Modularity
The results of modularity (Q) of the 60 visibility networks are shown in Figure 3.
The networks of each group are indicated with the numbers 1 to 30. We note that
all the Q values for Percussive Network (< Q >= 0.81±0.08) are higher than the
values calculated for Sympohonic Network (< Q >= 0.54± 0.13). The extreme
values of modularity are 0.91 for the visibility network of the song Get Up played by
the british african-pop band Osibisa, and 0.14 for the network of the Symphony 39
in E flat Major - k 543 composed by Mozart. The Symphonic Networks showed a
set of less compact modularity values in the average, with a 12% deviation against
the 8% of the Percussive Networks, even so, the average of the two groups showed
significant differences with a confidence of 95%, according to the Bonholm test. At
this point we can infer, based on the arguments presented in section 4.2, and also on
the Q values calculated, that there is an inverse relationship between visibility and
modularity.

Fig. 3: Modularity of 30 Symphonic (black dots) and Percussive (white dots) Visibil-
ity Networks. Source: author.

4.4 Number of communities
Each Q value calculated in section 4.3 is associated with a number of communities
(Nc) of the network. Figure 4 shows the Nc values calculated for each Q (Figure
3). Globally the amount of network communities follow the same feature found
in the calculation of modularity: exists a very clear distinction between the two
classes, where the Percussive Networks outweigh the Symphonic networks for most
Nc values. The average values obtained were < Nc >= 16.5±4.4 for Percussive,
and < Nc >= 8.8±2.2 for Symphonic networks. Looking locally we can see that
in addition to the distinction into two groups, Nc values of Percussive Network can
serve as a parameter for stratification within the group, in order, for example, the
great distance of the first nine networks Nc values (white dots) to the rest.

4.5 Influence of the randomness in the results
In this section we present the results of a study made about the influence of the
randomness factor in the calculation of modularity. As discussed in section 3.4, the
calculation of modularity is made based on the comparison of information given for
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Fig. 4: Number of communities (Nc) of 30 Symphonic (black dots) and Percussive
(white dots) of Visibility Networks of audio signal variance fluctuations. Source:
author.

edges that exist on the network and edges made randomly. Each time the algorithm is
applied, we obtain a value for the modularity and the number of communities. Table
2 shows ten takes from the calculation of modularity and the number of communities
for one Percussive Network. In this table we can see that in some cases, the algorithm
estimates the same modularity for different Nc values (Takes 2 and 3), and the same
number of communities for different Q values (Takes 5 and 9). This shows that,
due to the random factor, there is no modularity value associated with a unique
modularity class arrangement. In Table 1 we have < Q >= 0.8420± 0.0022 and
< Nc >= 15.90± 0.99 for ten takes. Increasing the number of repetitions to 80
takes we have < Q >= 0.8422±0.0024 and < Nc >= 16.15±0.80. Comparing the
results obtained for the two tests, it is clear that the means and variances of Q and
Nc do not change significantly with increasing the number of takes, and that for this
network there is a great chance that if we choose one of ten or eighty attempts, we
find a value of Q and Nc very close to the same average value.

Now we will show the results that investigate the overall impact of the random
factor in the calculation of the modularity. We calculate ten repetitions of the Nc
of twenty networks (Figure 5). n the x-axes, the networks S1 to S10 (white boxes)
are Symphonic Networks, and networks P1 to P10 (dashed boxes) are Percussive
Networks. We can see that the overall behavior does not change with the recalculation
for each network.

4.6 About sample rate changes
In order to investigate the impact of sample rate changes in results of network
parameters we calculate average degree (< k>), density (∆), modularity (Q), number
of communities (Nc), diameter (D), average path length (L), clustering coefficient
(C), and time processing (TP), of the visibility networks Percussive 11 (samba) and
Symphonic 1 (oboé concert), using three sampling rates (SR): 11025 Hz, 22050 Hz
and 44100 Hz. We use the framework Gephi 0.9.0 to calculate all parameters.

The results in Table 2 show that SR changes do not bring significant differences in
the final statistics, neither alter the trends found in the comparative study between the
two musical groups. The computational processing time recorded for this experiment
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Table 1: Calculation of the modularity of the network ”A walk in the free world”
written by Chico Science and the Zombie Nation with ten repetitions. (Source:
author).

Fig. 5: Number of communities (Nc) of ten Symphonic Visibility Networks (white
boxes) and ten Percussive Visibility Networks (dashed boxes), with ten calculations
each. (Source: author).

had the decisive influence of the diameter and the average path length calculation. To
process only these two parameters, the Gephi spent more than 90% of the total time.
If the calculation of these parameters for many networks is required, the rate of 22
and 44kHz are not recommended. To calculate only Q and Nc the Gephi took around
1 sec for each SR.

4.7 Looking closely at some Percussive and Symphonic Networks
Observing the Figure 3 we can see that some points stood out from the rest of
the group because they have reached discrepant or extreme values. Below we will
discuss the possible causes of this behavior, putting together musical and statistics
similarities.

• Networks P1 to P10 - They achieved greater magnitude and shorter variance in
modularity (< Q >= 0.897±0.015) compared to P11-P30 (< Q >= 0.767±

Take Modularity (Q) Communities (Nc)

1 0.844 16
2 0.844 17
3 0.844 16
4 0.839 17
5 0.839 15
6 0.843 16
7 0.842 17
8 0.845 14
9 0.843 15
10 0.844 16
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Table 2: Network parameters of networks Percussive 11 (P11) and Symphonic 1
(S1) for 3 different sample rates used in his respective audio samples before network
mapping.

Network SR (hz) V E < k > ∆ Q Nc D L C TP (sec)

P11
11025 3000 18866 12.58 0.004 0.857 17 7 3.85 0.837 23
22050 6000 41500 13.85 0.002 0.875 19 10 3.745 0.845 160
44100 12000 83179 13.87 0.001 0.918 27 9 4.296 0.849 734

S1
11025 3000 65115 44.74 0.015 0.657 8 4 2 0.860 90
22050 6000 152262 50.754 0.008 0.714 10 4 1.998 0.878 61
44100 12000 299272 49.895 0.004 0.682 8 5 2 0.902 3180

0.064)) and Symphonic networks (Section 4.3). Looking at the distributions of
vertices per community, of all networks, we observed higher homogeneity in
P1-P10 distributions. This contributed to these networks have obtained greater
modularity than the others. Fig 6 shows the distribution of vertices per community
of P6, representing P1-P10 networks, and P27, representing the others percussive
networks. Comparing the two distributions we can notice greater homogeneity
in P6, which reached modularity 0.902, while P27, with less homogeneity got
Q=0.839. Musically the P1-P10 networks represent songs of the eighties, which
is characterized by danceable groove on every song, dominated by the constant
pulse of bass and drums without much dynamics variation. We can speculate
that this ”musical homogeneity” may have strongly influenced the statistical
uniqueness that made these networks stood out from all others.

Fig. 6: Distribution of vertices per community of the networks:(a) Percussion 4 -
Disco Music, and (b) Percussion 27 - Mangue Beat. Source: Author.

• Networks S16, S19, S24 - These networks draw attention by having modularity
with very low values (0.141, 0.227 and 0.355). Musically, the audio excerpts
associated with these networks also have a common feature. In all of them there
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is a sudden change of dynamics, strongly influenced by the presence or absence
of timpani 4. It created a particular topology in the variance fluctuations of
these audio signals, with great ”valleys” followed by high ”peaks”, favoring
visibility graphs with big hubs, and cluster distributions with very low amount
of nodes in some communities. In consequence, they achieved lower modularity
values than the others symphonic networks. Figure 7 (a) shows the variance
fluctuations of the audio track Symphonic 16. We can note in Figure 7 (b) that
five communities have less than 5% of vertices, while only one community have
about 50% of them. The modularity maximization algorithm was not able to
merge these small communities into larger communities. This prevented the
Q value to stay a bit higher. Anyway the lower Q values found in these three
networks, helped to distinguish the particular audio musical behavior that these
networks are topologically representing.

Fig. 7: (a) Variance fluctuations of the track S16 - Symphony 39 in E flat Major, K
543, Mozart. During the first two seconds (j = 200 to 3000), the whole orchestra,
including timpani, play a part in fortissimo, and thereafter comes off the timpani, and
remain the strings and woods gently touching; (b) Relative frequency of vertices by
community of the S16 visibility network. Source: Author.

5 Conclusion and future work

In this article we mapped variance fluctuations of sixty musical audio files into
visibility graphs, and through the modularity and the number of communities of
each network, we measured the level of dynamics changes influenced by percussive
activity of each audio content. We concluded that modularity and number of com-
munities of complex networks has produced useful information for categorization

4 A set of two or three large drums (called kettledrums) that are played by one performer in an
orchestra http://www.merriam-webster.com/dictionary/timpani.
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into two groups, where audio samples with musical affinities were gathered within
the same group according to its high or low percussive activity. Although in this
study we have explored the feature extraction with only two categories, the algorithm
showed potential for categorizing by more than two labels. Other investigations are
in progress in which some network features are performing an audio music hierarchy
according to the taxonomy of some musical genres, with a large number of files. To
better understand the level of contribution that this algorithm can give to the music
information retrieval field, we will conduct an experiment comparing the parameters
extracted from the variance visibility networks with rhythm-based tools most used in
the literature. Another important issue which is worth be discussed in future work is
the evaluation of Pajek adjustment indices (Cramer’s V, Rajski and Adjusted Rand
Index) in front of the parameters adopted by Gephi, and its influence on the extraction
of features proposed by the visibility descriptor of variance fluctuations.
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Abstract Accurate location prediction is central for the current and future location
based services. We propose here an approach based on a new definition of community,
which is centered on individual interests, and open for a novel prediction approach
that exploits the properties of these communities. We show on real traces that the
proposed approach is very efficient and allows to achieve high performances.

1 Introduction
Predicting individual’s next movements using his/her past history and also the history
of people related to him/her is one of the most interesting research areas in computa-
tional social science. Wang et al [11] have studied and analyzed the trajectories and
communication records of 6 Million mobile phone users. The authors have proved,
by combining the measurements of network proximity and mobile homophily, that
the similarity between two individuals movements is strongly correlated with their
proximity in the social network. In [10], Pang et al have determined the check-in
geographic regions and identified communities of user’s friend on the tweeter net-
work, and have demonstrated that communities’ influences on users’ mobility are
stronger than their friends’ and each user is only influenced by a small number of
his/her communities. Garg and al [5] proposed a new prediction algorithm based on
users interest profile and the mobility history of the community. They have illustrated
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that a single user in his/her own visiting behaviour tends to be more conservative
than looking at himself whithin a croud of people and the overall community tends
to deviate from its regularity more easily than a single user.
In our previous work [3], we have identified Interest Based Mobile Communities,
called IMoComm, for mobile users. Interest that seems to be the main reason that
motivates individuals to move from one place to another. In fact, the extraction of a
user’s sequence of activities and the share of interests with some other users allows
to predict the likelihood that the user will behave in a particular way and to define
the probability of choosing a location close to his/her group of interest. In this paper,
we aim to improve such prediction by exploiting additional available information
included in the IMoComm. Intuitively, an individual tends to join a community of
his/her interests that is varying over time but his/her move is strongly connected to
his/her social preferences, career goals, and daily life habits. Thereby, the extraction
of community link patterns helps predicting his/her future movement by incorporat-
ing useful information conveyed by users communities ties while tracking his/her
mobility history. The link prediction problem has attracted immense interest in recent
years, and a variety of techniques that operate on the graph/hypergraph structure of
social networks are proposed. For a full review of the state of the art in link prediction
in social networks, see Peng et al[12]. In this paper, we deal with such link prediction
issue: we analyze the dynamics of Interest Based Mobile Communities and we build
our prediction model for users future movement by exploiting the abstraction level
of users correlation patterns and their IMoComm.

The following of the paper is structured as follows. Section 2 states the problem.
Section 3 presents the preprocessing of data set used in our work, and general
statistics. In section 4, we introduce the prediction model based on community
related features. In section 5 we discuss the results of experiments made on the
available individual trajectories. Finally, conclusions are given in Section 6.

2 Problem statement
In daily life, people participate in various communities (colleagues, family, friends,
ect). Their mobility is driven by their interest and need to practice different activities
with other people depending on the type of the community they share (colleagues,
friends, food, shopping, tourism, sport, ect). Hence, we study the human mobility
behaviors from the perspective of network science, in particular the goal of this
paper is to study how to use the knowledge gained from the IMoComm membership
of each person and how it can be used to predict the community evolution (future
links). Firstly, we perform an unsupervised task to extract the link pattern between
people that distinguishes meaningful Interest Based Mobile Community structures
and expresses the individual mobility behavior while sharing a common interest
regularly or from time to time. We study then the link prediction problem using the
resulting learning graphs, and we formulate our problem as follows: we start from a
weighted graph G(V,E) where V and E are sets of nodes and links resulting from the
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Fig. 1: An example to explain the link prediction problem in Interest Based Mobile
Communities

IMoComm, respectively. Let the subgraph G[t, t′] denotes a snapshot of the social
network between two times t and t′, such t < t′. We then predict the likelihood of a
future connections between nodes and links in the network G[t1, t′1]. In other words,
the link prediction aims to infer which new mobile community a user is likely to be
at in the near future. So, predicting prospective links or deleted links in IMoComm
graph for a future period is fundamental. Thus, we develop an approach to link
prediction based on the analysis of community related features in the human mobility
context.

A graphical representation is given in figure 1, in which solid links indicate that
a user was already member of an IMoComm during the period [t0, t′0], and dashed
lines are used to indicate links that might appear during the interval [t1, t′1] when
users will move toward different communities.

3 Data set preprocessing
In our work, we use a very large dataset collected in GeoLife project and released
by Microsoft Research Asia [13] [1]. The GeoLife dataset contains 2153 trajectories
taken with different GPS loggers and GPS phones in different sampling rates and
contains latitude, longitude and height of every sample. It contains 182 users and
span a time period of five years from April 2007 till July 2012.
Human trajectories systems make use of location extraction techniques from geospa-
tial data to identify locations that have meaning and importance to the users. Here, we
have implemented stay points extraction method [6] in order to extract meaningful
stay of individual who has spent a considerable time on a geographic region, for more
details see [3]. The algorithm results in 23060 stay points for all users whose position
is tracked in 2009. Figure 2 shows the total number of stay points per week in 2009
and illustrates the number of users having an accurately users’ tracked position during
2009, we remark the lack of some users traces, although we have generated missing
data using the algorithm proposed in [2]. Besides, we limit our analysis to GPS data
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Fig. 2: a) Number of stay points per week in 2009, b) Number of users per week in
2009

Fig. 3: Users movments during 52 weeks

collected in the region around Beijing. However, the rate at which users provide
a new location point is not constant and not all users are present on all days (see
Figure 3). It is therefore reasonable to select the active periods for our experiments.

4 Location Prediction based on mobile communities
The goal of our model is to predict the next IMoComm with which the user is going
to interact at a certain day of the week, exploiting the learned visiting behavior of
the user, his/her daily activities, and his/her relation between some users that share a
common interest.

4.1 User’s communities pattern extraction
In order to achieve our ultimate goal, we start by discovering a learning graph that will
be used to predict future potential links. Firstly, we apply DBScan algorithm [4] on
stay points, the clustering parameters have been defined empirically ( minPoints = 3,
ε = 0.02 dd), and we add semantics of location which imply the activities being
carried out in each cluster in order to understand the relationship between the geo-
graphic location and the users activities. Basically, the individuals activities history
consists of a sequence of couples of cluster-activity, thus

ExpU = (r1,a1)→ (r1,a2)→ ...(rl ,a2)→ ...→ (rl ,aq) (1)
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Fig. 4: Illustration of users similarities

where r j is the jth cluster covering a number of activities ai ∈ B,
B = {a1,a2,a3, ...,aK}, that a users does in his/her stay locations. We have shown
[3] that interesting locations for people can be grouped in several categories (regular
activities, food activities, exceptional activities, Shopping activities, and Tourism
activities). This suggests that people share common PoIs (points of interest where
a user has been at), but even more they share common interests. We thus mine the
frequent behaviour of users with similar interests [3] and compute the similarity
of two users in terms of similar activities at similar places using Ecludien distance
between UExpi and UExp j. From figure 4 a) we see that user of id = 0 and user
id = 30 had revolved around similar PoIs in physical places, during 06/04/2009 for a
timestamp from 08 : 00 : 00am to 12 : 00 : 00pm, which result in social ties weighted
with similarity value equal to 0.49 and these users have formed one IMoComm,
especially in the specific timeline (timeline of work, or timeline of different daily
activities). Figure 4 b) shows correlation between users who visits the same tourist
places in weekend. Furthermore, we find an appropriate set of time intervals for
the set of users since individuals are most likely to belong at group in a given time
step, and apply community detection algorithm [8] on each snapshot and matching
communities applying the algorithm described in [9], therefore we find a fundamental
community structure and extracted features about development of human mobility
and their IMoComm over time, we will discuss this finding in section 5.1.

In this phase, we have created the learning graphs Gi = (Vi,Ei), ∀i ∈ 1..n, de-
scribing the connection between mobile users, with Vi the set of nodes representing
users and Ei the set of edges, which distinguishes meaningful Interest Based Mobile
Community structure CM j(VMi ,EMi), ∀ j ∈ 1.. f .

4.2 Community related features
The community information provided by the detected IMoComm provide powerful
features for predicting individual’s daily behaviors which are largely dependent on
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his/her preferences, his/her activities and his/her social relations. As a matter of
fact, for link prediction in location based networks, we should consider community
features, which have interesting impact on the user’s mobility:

• two users are regularly linked (strongly related) within a community are more
likely to visit, in near future, the same IMoComm than two users who have no
contact and/or don’t share similar interest in similar place (weakly connected).

• Besides in communities that they attend regularly (such as communities of col-
leagues, friends, family, etc.), users exhibit a large similarities with the members
of other communities they belong to, such communities are clearly more likely
to affect more the behaviour than a community visited occasionally.

• Some groups have weakly connected links, thus their members are very varying
over time (different community members in each snapshot).

• The more the same individuals form a community several times in specific period,
the more regular and social the community is considered to be.

Our model accommodates these aspects as discussed in the following sections.

4.3 Prediction Model
Many methods for link prediction based on structural similarity between nodes have
been proposed since similar nodes are likely to have neighbors in common and
they are more likely to have the same relations in the near future[7]. Therefore, in
our work, we have used a topological measure for weighted graph to calculate the
likelihood score of any pair of nodes u and v

scoreWeighted
(u,v) =

∑w∈Γ (u)∩Γ (v)
√

Auw ∗Avw

∑w∈Γ (u) Auw +∑w∈Γ (v) Avw
(2)

Where Γ (u) is the set of direct neighbors of node u in G[t0, t′0], Γ (u)∩Γ (v) is
the set of common neighbors of two nodes u and v in G[t0, t′0].

The prediction function P that indicates likelihood of nodes (u,v) being in Enew
can be used for ranking all possible edges according to their probability.

P(u,v) =
∑

nbrday
i=1 scoreWeighted

(u,v)

nbrday
(3)

The number of days nbrday is set according to the selected training intervals.

Our prediction method is based on the assumption that human mobility is affected
not only by person’s travel experience but also by his/her movement towards Interest-
Based Mobile Communities. Initially, we divided the extracted pattern in two parts,
Gleraning and Gtest , respectively, and select a learning period. For a sequence of snap-
shot < G1[t0, t′0],G2[t1, t′1], ...,Gl [tl , t′l ]>, in a given learning period, we compute
the probability list for each missing links or links to occur in future. The algorithm
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computes the likelihood of nodes for each temporal graph and then generates the
whole graph applying an aggregation steps. The use of a graph aggregation produces
the overall structure of the underlying graph during the learning period and captures
semantic knowledge not only about individual nodes and their connections but also
about groups of related nodes. Thus, we can recognize the times a node has appeared
in a community over time in order to make a decision about its community type. For
example, given two nodes u and v that belong to the same regular community reg1,
their link (u,v) has a strong chance to appear in next time. If these two nodes belong
to different regular communities reg1,reg2 the link might be formed in future time.
Finally, whereas if these two nodes belong to the same or two different occasional
communities oc1 or oc1,oc2 respectively, they do not have a strong priority, and the
link between them is most likely won’t occur in next period. Using community at-
tributes helps in predicting the IMoComm that will may be visited during his/her next
move. Finally, the algorithm takes the global probability list and sort it in decreasing
order of the likelihood P(u,v) and of the community types features. So, the k links in
the top are most likely to exist.

Algorithm 12 Link-Prediction Algorithm

Data: < G1[t0, t′0],G2[t1, t′1],G3[t2, t′2], ...,Gl [tl , t′l ]>, iduser ∈U
Output: PredictList,L

1: Select the learning graphs: G1[t0, t′0],G2[t1, t′1], ..,Gl−1[tm, t′m]
2: for all Gi[ti, t′i] do
3: A← AGi

4: compute scoreWeighted
u,v

5: read (H) . History of user’s communities
6: end for
7: aggregate(G[t0, t′0],G[t1, t′1], ..,Gl−1[tm, t′m]
8: compute P(u,v)agg

9: CommunityTypes(u)← generate(assign(CommunityTypes, idu)
10: CommunityTypes(v)← generate(assign(CommunityTypes, idv)
11: compute Ewrong,Epositive in Gl−1[tl , tl ′]
12: PredictList← Insert(P(u,v), idu, idv,CommunityTypes(u),CommunityTypes(v))
13: Sort PredictList in descending order of the likelihood P(u,v) and of the commu-

nity types
14: L← Get top k links in PredictList
15: Validation using Gl [tl , t′l ] for test
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5 Experiments
5.1 Communities and mobility
In order to study and predict the dynamics of individuals and investigate their
communities evolution in human mobility domain, it is essential at first to identify
the evolution characteristics of this complex network in particular the occurrence of
new links and duration of interaction of their entities. For example, citation networks
have a small number of evolution steps that is a snapshot per year, while the biological
networks have more and specific details of evolution. To this end, we have made
several empirical tests to distinguish the dynamic features and the social aspects
related to the evolution of IMoComm:

1. The time step for each snapshot have to be taken for different timing that
are closely related to the nature of the individuals interactions and their daily
activities (according to the time-line of works, food, meeting friends, ect).

2. Relevant communities are created from the aggregation of all the links that
appear and reappear at least twice during successive week days,for different
timing, for all the studied period. This link type corresponds to regular human
interactions, such as interactions between colleagues in work. This aspect is
present in the blue and the red communities illustrated in Figure ‘5.

3. If two individuals perform the same activity in the same place only once, we
consider that they are weakly connected and their link is not presented in the
aggregation graph. However, we can take into account such links if they belong to
public group and if they will help to characterize social aspect of human mobility.
Moreover, this link type belongs sometimes to occasional IMoComm that exhibit
a dense local structure around public places (such as tourist and cultural places).
As evidence of such property, we have extracted a dense subgraphs during
some weekend days; we have Q = 0.393 during 12/04/2009, Q = 0.534 during
19/04/2009, and Q = 0.33 in 26/04/2009.

4. The detection of IMoComm from the aggregate graph increases modularity and
allows to identify a set of relevant communities.

5. The detected disjoint subgraphs in steps of daily time permit to discover over-
lapped communities on the aggregate graph. This is due to the fact that, in daily
life, individuals can belong to multiple IMoComm but their number remains
limited (daily communities). Figure 5 illustrates the disjoint groups for which
we have selected few users who have continuous data collected for at least three
consecutive days.

5.2 Prediction results
To predict a link, we select a training period and first extract the topological and
community features for the temporal graphs, and then build the prediction model.
Hence, given the selected temporal graphs G1[06/04,10/04], G2[13/04,18/04/],
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Fig. 5: Dynamic of IMoComm over four days (from 07/04/2009 to 10/04/2009) and
a day of a week, the time period is from 08:00:00 am to 12:00:00 pm

G3[20/04,25/04], we partition them in training and test sets. The choice of inter-
vals has been made in an empirical way. We denote the training interval to be 11
days:[06/04,10/04] and [13/04,18/04/]. We take G2[13/04,18/04/] for labeling and
we check that each pair (u,v) either represents a positive example (link exists) or a
negative example (link does not exist). Thus the test graph G3[20/04,25/04] is used
to validate if a link exist or not( see Table 1).
From our dataset, we combines three datasets with different characteristics: Dataset1
considers only working days, datset2 includes a weekend day (Saturday), while
dataset3 includes four weekend days.

Table 1: Training and test periods for link prediction for three datasets

Datasets Phase Period Edges Nodes Comm Temporal sequence
of graphs

Dataset1 Training phase From: 01/04/2009
to: 10/04/2009 346 182 03 G1[01/04,03/04],

G2[06/04,10/04],
G3[13/04,17/04]Testing phase From: 13/04/2009

to: 17/04/2009 212 182 03

Dataset2 Training phase From: 06/04/2009
to: 18/04/2009 420 182 04 G1[06/04,10/04],

G2[13/04,18/04],
G3[20/04,25/04]Testing phase From: 20/04/2009

to: 25/04/2009 246 182 04

Dataset3 Training phase From: 10/04/2009
to: 25/04/2009 598 182 04 G1[10/04,19/04],

G2[20/04,25/04],
G3[26/04,30/04]Testing phase From: 26/04/2009

to: 30/04/2009 112 182 03

At the community level, our approach allow us to recognize the expected user’s
communities at the next step and to understand how a user plans his/her next move
from his/her IMoComm’s perspective. As we can see from Figure 6, where we have
used dataset1, mobility history of user’s communities extracted with our approach
indicates that, despite the diversity of their travel history, humans follow, in most of
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Fig. 6: a) Distribution of mobility history of user’s communities extracted when
analyzing the dynamic of IMoComm b) Prediction of users’ future link and thier
excpecting IMoComm from 13/04/2009 to 17/04/2009)

case, simple reproducible pattern and have small number of communities. Thus the
prediction process, which recognizes the most frequent communities of individuals
travels, can predict movement of users and allows to characterize the common mobil-
ity behavior within his/her groups in the near future,( see Figure 6 b)). Figure 7 a)
shows the type of predicted links between users using the IMoComm based approach.
For instance, the probability that user iduser = 38 will join his/her regular community
(RegIMoComm2) is equal to 0.446, and he/she may also move to RegIMoComm3 at the
next step with probability 0.369, while probability to move to OcIMoComm5 is 0.163
and therefore it is not selected in the predicted list. This confirms that an individual
move usually to some of his/her regular IMoComm, while it is unlikely that he/she
will go to some occasional communities.

Thus, the proposed approach is very useful for predicting users mobile behavior
with regard to his/her next IMoComm. However, the algorithm needs more users
attributes to be able to recognize the formation of new groups in near future. We
mention also the problem of matching communities in dynamic complex networks
which is an NP-Hard problem that we don’t study it here.

Fig. 7: a) Community type for users ’future links b) Illustartion of next IMoComms
for user 38
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To evaluate the proposed approach we use precision, recall, and F-measure evalu-
ation metric as performance measure for link prediction which is defined as follows:

Precision =
Er

Epredict
(4)

Recall =
Er

Epredict−positive
(5)

F−measure =
2∗Precision∗Recall

Precision+Recall
(6)

Where Er, Epredict , and Epredict−positive represent the corrected predicted links, the
total predicted links, and the positive predicted links, respectively.
Our evaluation, for the three datasets shows that the average recall is 0.0.66, the
average precision is 0.53, and the average F-measure is 0.59 (see figure 8). In
dataset1 we have an accurate prediction expressed by the recall equal to 0.66; the
high precision (0.53) indicates significant prediction, thus we see that individuals
exhibit regularity of belonging to their regular communities, and this community
type is qualified as stable groups which appear and reappear in precise timing. The
experiment with datset2 reveals still notable prediction performance with a small
decrease compared to dataset1. This is due to the formation of irregular communities
during the weekend days, which generates improbable links in our model for the next
users movement. Due to the presence of large number of weekends, in dataset3 the
movements of each single user do not appear as continuous. Therefore, in this case, it
is more efficient to use other users attributes extracted from their complex networks
(social media, transportation networks, etc) in order to improve the prediction of the
next users movement and his/her IMoComm either regular or occasional one.

Fig. 8: Performance of the prediction method for three social graphs during one
month



346 Drif et al

6 Conclusion
In this work, we have consider the problem of designing a link prediction model for
location-based services. We have analyzed the dynamic of individuals at community
level over different timing and thus have defined communities prediction features.
We take advantage of these user’s patterns and we therefore have investigated user’s
Interest Based Mobile Communities to reduce prediction space and then predict user
mobility. In order to further improve the accuracy of the proposed prediction method,
we are planning as future work to improve our model based on more consistency
community related features and using several users attributes extracted from his/her
multiple complex networks.
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Part IV
Dynamics on Networks



Abstract Interest groups use coalition strategies to exert influence, yet, like other
political actors, they also withdraw from partnerships in the pursuit of other policy
goals. We explore how interest group coalition strategies have changed over time
and which factors determine whether interest groups relationships form and dissolve.
Utilizing dynamic networks of a panel of interest groups derived from cosigner status
to United States Supreme Court amicus curiae briefs, we illuminate the evolution of
the social networks of frequent signers from the 1970s to the present day. A separable
temporal exponential random graph model (STERGM) shows that the number of
partners is important for formation but not dissolution, while industrial homophily
helps both to make and maintain connections. In addition, statistical trends suggest
that while networks change, a few players have acted continuously as coordination
hubs for the bulk of the decades. However, a number of other key players in particular
decades would be missed without a dynamic perspective.

1 Interest Group Coalition Strategies
It is common knowledge that interest groups use coalition strategies. That is, interest
groups, like other political actors, create ties with each other and demonstrate their
working relationships in pursuit of mutually beneficial policy goals. Yet, many
questions remain about such coalitions, particularly with regards to their historical
development and over time dynamics. Most importantly, perhaps, little is known
about the maintenance of relationships among interest groups. Though there is a
modicum of work on the factors that draw interest groups together, few, if any, explore
the factors of dissolution. In this work we seek to provide a more comprehensive
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account of interest group coalition dynamics by investigating both their development
and demise.

Classic works in the interest group literature have sought to understand why
interest group coalitions form. The dominant perspective is that coalitions serve as
an economical and efficient means to form a more powerful bloc [e.g., 1, 2, 19, 20,
29, 32]. Coalitions signal broad support to policy makers on an issue [13, 21, 23, 25].
Thus, some factors thought to drive coalition formation are perceived strength of the
opposition, previous experience in a coalition, and whether the group is critical to
the success of the coalition [19].

Social network theory also suggests that alliances form out of the pursuit for
access to resources and information [14]. That is, coalitions function as pipelines
through which information and knowledge flow. The incentive for interest groups
to form networks appears to be similar to that of firms: to diffuse information more
quickly and benefit from the efficiency of cooperation [14, 15, 31, 32]. In addition,
groups can benefit from the kinds of control offered in coalitions, such as sanctions,
reputation, and trust. From this perspective, interest group network formation is
largely a purposive act [18] for shared survival [26, 27]. Via the pooling of their
resources and the creation of networks groups exhibit their shared policy preferences
and divide the costs. In sum, the literature suggests that the motivations for coalitions
among interest groups are plentiful, as are the rewards. The positive effects of
networks on group performance has been demonstrated in terms of growth [28],
speed of innovation [16], organizational learning [17], and reputation [30].

However, there is also good reason to expect interest groups to prefer to work
alone—or, at the very least, work only sparingly in coalitions. Interest groups must
maintain some autonomy from the other groups in their coalition, or risk losing their
identification and competitive advantage. Thus interest groups have to consider coali-
tions in light of the need for differentiation. Groups would like to be seen as different
enough to attract and maintain a constituency despite wanting to cooperate when
they believe it will be helpful to attain valued resources. Such is at the foundation of
economic theories of organizational behavior [33]. Interest groups require a niche to
maintain their existence.

Collective action is thus a delicate balance. Interest groups benefit from sharing re-
sources and signaling broad support to the targets of their pressure. However, interest
groups must also demonstrate unique features that make them particularly appealing
and allow them to claim credit for their accomplishments to their constituencies.
Ultimately, this dance between cooperation and differentiation suggests that inter-
est groups should not always pursue coalition strategies, but, instead, only do so
when they find it necessary to accomplish their goals. As such, we expect interest
group coalitions not to be permanent, with partnerships dissolving and perhaps even
reappearing over time. In what follows, we engage a dynamic perspective to explore
interest group networks and evaluate factors that may lead interest groups to dissolve
or maintain their coalitions.
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2 Hypotheses of Formation & Dissolution
The dynamic approach to interest group networks focuses on the potential for new ties
to form and old ones to fall apart. This should hold true in the case of those with prior
ties as well as those without them, so-called isolates, or “lone wolves” [5]. Just as
all partnerships are not permanent, solitary behavior in the past does not necessarily
lead to it in the future. We expect new ties to develop between organizations both
with a history of working in coalitions and with a history of going it alone.

While ties may come and go it is unlikely that prior coalition behavior will be
completely unrelated to future behavior. That is, we might expect those interest
groups that have used coalitions in particular ways to try to do so again. In particular,
organizations known to play the role of a hub or “team leader” [5] early on may be
more likely to do so again. Likewise, organizations that work in large/small coalitions
at time t are more likely to be those that do so again at time t + 1. As such, and
despite some expected changes in networks over time, there is good reason to expect
persistent roles for many of the organizations.

Interest groups may form coalitions based on a host of resource factors and
common interests, which implies that these coalitions are not totally inclusive. Interest
groups are selective about who they work with, and thus we posit that there will
be limits to the number of partners for any group. As opposed to a pure contagion
effect that we might see in other networks (e.g., campaign donors), we expect that
for each additional partner the probability of adding another partner will decrease.
We similarly test to see whether more partners leads to greater persistence of the
network.

Finally, we would like to understand whether organizational attributes have similar
effects on network formation and dissolution. In particular, some work distinguishes
types of interest groups, arguing that different types of interest groups are more or
less likely to join coalitions [9, 10]. This suggests that one should account for the
type of interest group, such as whether it is a trade association, citizen group, or
union. While this distinction is not statistically signifcant in all cases [23], there
is recent evidence that working in the same industry draws groups together [5, 6].
There is less reason to believe that industry area should maintain those relationships.
While working in the same industry might lead to introductions and first attempts at
coalition building, maintaining the relationship might depend on other factors, like a
previously good encounter. In sum, we expect the effects of industry area to be of
greater importance in formation than dissolution.

3 Comparing Static & Dynamic Networks
The underlying networks of interest groups are difficult to perceive. It is widely
acknowledged that they exist, but interest groups are unlikely to be perfectly forth-
coming about their coalition partners and contacts in organizations during interviews
or in surveys, as their livelihood may depend to some extent on restricted access to
their partners and confidentiality among them [3, 12, 24].
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In order to study interest group networks, we utilize the Amicus Curiae Network
database [4]. This data set includes all the interest groups that have signed onto an
amicus curiae brief from 1930 to the present, which amounts to more than 15,000
unique organizations over nearly 9 decades. We use cosigning on a brief, a “purposive
and coordinated” political action, to join organizations in a network [5]. In Supreme
Court cases, various parties with related interests submit briefs to the Court in favor
of the petitioner, respondent, or in some cases, neither. Frequently, these signers are
comprised of interest groups [11]. Groups frequently coordinate on the content of a
brief and cosign with one another.

The analyses in this paper makes use of a small subset of the amicus network
data. In order to look at changes in organizations’ partnerships over time we rely
on a panel of repeat signers. The 167 organizations in our analyses signed onto at
least one brief in every decade since the 1970s. Per usual, we use cosigning on these
briefs to create ties between interest group nodes, but here we do so for each decade,
thereby arriving at a five wave panel of interest group networks.

We begin by comparing the decade networks with a static network collapsed
over all five decades. Graph structure in one or more of the decades that does not
resemble that of the static network would suggest that it may be fruitful to explore
the factors of network formation and persistence with dynamic models. Figure 1
plots both the decade networks as well as the single collapsed network plot. In terms
of the latter, each node in the plot refers to a unique organization and an edge is
drawn between organizations that cosigned a brief together at any time in the last
five decades. Node size is proportional to the number of edges and color refers to the
industry, as classified by the major divisions of the Standard Industrial Classification
(SIC) code [5, 7]. Collapsing over the decades presents a dense network of primarily
service organizations with only 8 isolates.

In terms of the decade networks, for each decade we have included the same
167 organizations but only drawn ties between groups that signed together in that
decade.1 The node size refers to the degree in the first decade, the 1970s, while the
color again refers to the SIC code. While many of the large nodes are consistently
central in the graphs, the fact that we see a number of large nodes in the periphery of
the post-1970s graphs suggests that central groups in the 70s do not always remain so
in subsequent decades. That is, the highly connected groups in one decade may not
be the same as those in other ones. In short, comparing the collapsed network plot
with the decade networks suggests that there may be good reason to look at network
dynamics instead of a static network.

To give us a clearer idea of what is happening to the edges in the dynamic network,
the left graph in Figure 2 plots the panel slices against the timeline of edges, one
horizontal line for each edge. When the horizontal line corresponding to a tie between
two organizations in one period crosses the vertical line associated with the panel
period, the edge would be included in that network. Thus each panel period (e.g., 1 to
2) corresponds to a social network created in that period. Lines that carry over to the
next panel period (e.g., 2 to 3) means that that tie remained through the next period

1 We also provide a video of the organizations changing ties over each decade at http://dinopc.
tumblr.com/#121184498222.

http://dinopc.tumblr.com/#121184498222
http://dinopc.tumblr.com/#121184498222
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Fig. 1: Interest Group Networks by Decade and Collapsed

in time. In the Figure we see all of the ties in the starting period, 0 to 1. Looking
from 1 to 2 we see that only about half of those ties remain in the next with a host
of new ties appearing in that period as illustrated by the new solid block of ties a
step above the initial block of ties. The solid set of lighter colored lines at the top
show that several ties, only about a fifth of the organizations, remain from the first to
the last period. The increasing lightness of the graph as you move from left to right
illustrates that many new ties form across time and many dissolve as well, which
suggests that there is good reason to explore the amicus curiae network as dynamic.

Graphing the timing of edges is helpful in revealing the dynamic density of events.
However, it tells us little about the panel to panel changes in network structure and
connectivity. For that we rely on the graph on the right side of Figure 2. It illustrates
the overall shifts in the network by collapsing the momentary structure to a single
vertical dimension and plotting across time. Here, for each panel we calculate the
geodesic distance and plot the vertices’ distances with each vertex’s position in
each panel linked by a spline [8]. Thus this figure provides a horizontal trajectory
of a vertex as a line, with tightly connected vertices situated close to one another.
Curves moving up or down illustrate the group to group movement while flat lines
illustrate stability. The color again refers to the SIC code. The Figure shows that
while some partnerships remain, there is substantial changes in the network structure

1970s 1980s 1990s

2000s 2010s Collapsed
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in every period of the panel. Moreover, neither stability nor change are restricted to
organizations in the same industry.

Given the dynamics in the structure of these networks, we should expect that the
roles of some of the groups in these networks are ephemeral. That is, a group that
is particularly well connected or essential to the quick transmission of information
in one period may not be so in the next. Looking solely at the collapsed network
may hide various temporarily powerful players. We gain insight into the coalition
behavior of these interest groups by looking at the best connected, highest degree, as
well as those on the shortest path between groups, highest betweenness for both the
collapsed and decade networks.

As shown in Table 1, the most connected organizations in the collapsed network
are the American Civil Liberties Union (ACLU), Legal Momentum, American Jewish
Committee, National Council of Jewish Women and the National Women’s Law
Center. With the exception of the first organization, it is important to recognize that
the distribution of degree changes gradually. That is, in this network there is a wide
range of different numbers of edges across the nodes, with just about everything
between 0, for the eight isolates, to 68, for the second most connected group, Legal
Momentum. The ACLU also appears among those organizations on the shortest

Fig. 2: Timing of Edges & Proximity Timeline
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path to others, along with the National Association of Criminal Defense Lawyers
(NACDL) and the National Association of Manufacturers.

Table 1: Top 5 Highest Scores on Centrality Measures

Degree Betweenness
Collapsed

Am. Civil Liberties Union 82 Equal Employment Advisory Council 761
Am. Jewish Committee 67 Am. Civil Liberties Union 1895

Natl. Council of Jewish Women 66 Natl. Assoc. of Criminal Defense Lawyers 967
Natl. Womens Law Center 64 Natl. Assoc. of Manufacturers 1084

Legal Momentum 68 Natl. School Boards Assoc. 645
1970s

Mex. Am. Legal Defense & Educ. Fund 40 Am. Civil Liberties Union 496
Natl. Council of Jewish Women 40 Mex. Am. Legal Defense & Educ. Fund 247

Natl. Council of the Churches of Christ US 40 Natl. Council of the Churches of Christ US 162
Natl. Organization for Women Foundation 41 Natl. Education Assoc. 192

Legal Momentum 41 Legal Momentum 185
1980s

Am. Civil Liberties Union 54 Am. Civil Liberties Union 2636
Mex. Am. Legal Defense & Educ. Fund 32 Natl. Assoc. of Criminal Defense Lawyers 617

Am. Jewish Committee 35 Natl. Wildlife Federation 699
Natl. Education Assoc. 34 Anti-Defamation League 719

Legal Momentum 32 Planned Parenthood Federation 896
1990s

Am. Assoc. of University Women 45 Internat. Assoc. of Chiefs of Police 584
Am. Civil Liberties Union 50 Am. Civil Liberties Union 2921

Am. Jewish Committee 45 Natl. Assoc. of Broadcasters 1317
Natl. Council of Jewish Women 48 Natl. Assoc. of Manufacturers 952

Natl. Womens Law Center 45 Anti-Defamation League 590
2000s

Am. Civil Liberties Union 48 Am. Civil Liberties Union 2495
Mex. Am. Legal Defense & Educ. Fund 35 Natl. Assoc. of Criminal Defense Lawyers 1077

Natl. Assoc. of Social Workers 39 Natl. Trust for Historic Preservation 756
Natl. Council of Jewish Women 38 Legal Momentum 898

Natl. Education Assoc. 35 Pacific Legal Foundation 849
2010s

Am. Assoc. of Retired Persons 21 Chamber of Commerce of USA 1356
Natl. Organization for Women Foundation 19 Am. Medical Assoc. 1189

Legal Momentum 22 Am. Assoc. for Justice 2540
Union for Reform Judaism 20 Am. Assoc. of Retired Persons 1416

Am. Assoc. for Justice 24 Natl. Assoc. of Criminal Defense Lawyers 1085
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Looking at the centrality measures in the decade-by-decade networks in Table 1
we arrive at a somewhat familiar list of organizations. The ACLU, the National Coun-
cil of Jewish Women, Legal Momentum, and National Education Association (NEA)
make frequent appearances as highly connected in the decade networks. The ACLU
has a similarly high presence as an informational bridge between other organizations,
appearing in the top betweenness in a few of the decades, as does the NACDL. How-
ever, the static network also undervalues a number of important players in specific
periods. For instance, the decade networks show that the National Organization for
Women (NOW) were particularly connected in the 1970s, and the NEA in the 1980s
and 2000s and the American Association of Retired Persons (AARP) in the 2010s.
Likewise, the Mexican American Legal Defense and Educational Fund had high
information control in the 1970s, the National Wildlife Federation (NWF) in the
1980s, the National Association of Broadcasters in the 1990s, as well as the Chamber
of Commerce and AARP in the 2010s.

Figure 3 shows the distibution of the degree and betweenness measures from
both the decades and collapsed networks. The collapsed network is presented in
the last column of the Figure. Degree centrality shows primarily bimodal shaped
distributions with a larger amount of organizations huddled in the lower portion
of the graph. That is, there is an abundance of organizations with few connections
and a small portion with many in most decades and in the collapsed network. The
bimodal plots in the 1970s, 2000s and 2010s appear most similar to that of the
collapsed network. The less pronounced right tail in the 1980s conveys a smaller than
usual number of highly connected organizations. The distributions on betweenness
shows less variance with the bulk of organizations having low information control,
since most exist within cliques and few are uniquely positioned on shortest path
connections to other organizations. The plots show the 1970s as having an unusually
low number of high betweenness organizations.

The centrality results above show that the static and dynamic networks share
a number of characteristics, but not all. The network, edge timing and proximity
timeline graphs show that new ties develop over time and old ties are not permanent.
Both sets of results suggest the value of a dynamic approach. However, we still
have little understanding how these relationships come about and what leads to their
demise or perserverance. To those ends, we turn below to a stochastic model to
explore the effects of both structural and node level factors on network formation
and dissolution.

4 Stochastic Model Results
Separable temporal exponential random graph models (STERGM) extend the familiar
ERGM for dynamic networks in discrete time [22]. The methodological innovation
allows us to model the formation of new ties between interest groups as well as
their perserverance. Recall that the ERGM provides a single model of static network
formation. STERGMs, however, combine two ERGMs to model both the relational
formation and dissolution. The formation and dissolution ERGMs work similarly to
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Fig. 3: Histograms of Network Centrality by Decade and Collapsed

the standard ERGM, except here there exists a time index to the tie values as well
as a conditional statement that differs for the formation and dissolution equations.
The formation equation is conditional on a tie not existing between interest groups
in the previous period. The dissolution equation is conditional on the tie existing.
The STERGM then combines the respective equations. Estimation is performed via
conditional maximum likelihood (CML).

Table 2 presents the results of the STERGM. Given our hypotheses,we similarly
specify the formation and dissolution parameters in the STERGM. Pertaining to our
hypotheses on the number of shared partners we specify both edges and degree terms.
The edges term adds a single statistic for the number of edges in the network. Degree
adds a statistic for each of the nodes with the relevant number of degrees. Thus degree
0 takes into account the isolates. In order to test the hypotheses of organizational
attribute homophily, we also add a statistic to the model for each set of joined nodes
that share an industrial area. Again, we do so for both the formation and dissolution
stages to test whether organization attributes previously shown to influence network
development also affect network persistence.

We consider the formation and dissolution models together for each parameter to
emphasize the similarities and differences in the factors of formation and dissolution.
The negative edges parameter can be interpreted similarly to an intercept in a logit
model. It suggests that the conditional log-odds of two organizations forming a tie
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Table 2: STERGM of Interest Group Networks

Formation Dissolution
Edges −3.16∗∗∗ −0.38∗∗∗

(0.04) (0.06)
Degree 0 7.89∗∗∗ 0.51∗

(0.30) (0.21)
Degree 1 4.93∗∗∗ 0.28

(0.28) (0.20)
Degree 2 4.40∗∗∗ 0.21

(0.20) (0.19)
SIC Homophily 0.44∗∗∗ 0.25∗∗∗

(0.05) (0.07)
Num. vertices 668 668
AIC 12040.19 4121.18
BIC 12084.53 4151.27
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

would be −3.16, provided the tie does not add any statistics for homophily or the
specified degrees. The negative probability of tie formation, holding constant at zero
the other parameters, is noticably smaller for dissolution.

The decreasing in magnitude yet consistently positive coefficients on the degree
terms means that there is an underlying tendency for relational formation to occur,
which continues to at least two partners, though the effect is reduced with each
pre-existing tie that the two organizations are involved in. That is, there is a strong
incentive to be in a relationship with one and two other organizations. However,
dissolution appears to be largely independent. Existing relationships have a similar
underlying dissolution probability at every point in time.

Perhaps most interestingly from a social science perspective, the attribute ho-
mophily shows consistently positive effects in the formation and dissolution models.
Though the effect is much greater for the former, meaning that working in the same
industry area brings interest groups together, working in the same industry area also
makes a tie more likely to persist.

5 Conclusion
This work has the potential to provide a number of contributions to the literature
on interest group behavior. Foremost, the interest group coalitions of the most
frequent players in the modern era are not perfectly stable. While many of the most
central players are fairly consistent throughout time, some key players are limited
to particular decades. Moreover, the shape, size and overall structure of networks
ranges substantially. New relationships develop and old ones dissolve.
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We also provide evidence that the development and dissolution of interest group
coalitions are driven by different factors. Interest groups feel the need to share re-
sources and demonstrate large support via coalitional work, which brings interest
groups to work with more than one partner. However, the number of partners matters
little for maintaining the network in subsequent periods. We also find that industry
homophily plays a stronger role in the formation of networks than it does in main-
taining them. Still, the evidence here suggests that shared interests both bring groups
together and keep them that way.
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Abstract We offer a proof system and a NetLogo simulation for trust and distrust in
networks where contradictory information is shared by ranked lazy and sceptic agents.
Trust and its negative are defined as properties of edges: the former is required when
a message is passed bottom-up in the hierarchy or received by a sceptic agent; the
latter is attributed to channels that require contradiction resolution, or whose terminal
is a lazy agent. These procedures are associated with epistemic costs, respectively
for confirmation and refutation. We describe the logic, illustrate the algorithms
implemented in the model and then focus on experimental results concerning the
analysis of epistemic costs, the role of the agents’ epistemic attitude on distrust
distribution and the influence of (dis)trust in reaching consensus.

1 Introduction
Trust of information transmissions facilitates reliability and enforces security in
networks. This applies in particular to hierarchical structures, e.g. in access control
models [2, 3, 14], and where reputation is at work, e.g. in social networks [4, 9, 18].
Trust and distrust on communication channels are also affected by the agents’ epis-
temic attitude, their ability and willingness to check information and their readiness
to reject it. Negative trust has recently become a topic of interest in computational
contexts [11, 13]. In particular, understanding conditions of (dis)trust propagation
and the costs related to topological and epistemic factors is crucial for dynamic
(social) network analysis and access control models [1, 6, 8, 21], with applications in
mathematics, computer science, economics and biology. Negative accounts of trust
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are essential especially for networks that allow contradictory information diffusion
but require coherent agents.

In this paper we offer a logic and a NetLogo simulation for networks with contra-
dictory information and where agents identify their channels as trustful or distrustful.
Our agents are qualified as sceptic or lazy and are given an initial ranking depending
on the topological features of the network. The network is seeded initially with two
items of contradictory information (p,¬p). Each node is labelled by either piece
of data, with a resolution procedure when both are received by the same node. At
each step, the node assigns a trust or a distrust property to the relevant edge. In our
experimental analysis we consider in particular:

1. the epistemic costs of trust and distrust according to different network topologies;
2. the distrust distribution in view of the epistemic attitude of the seeding agents;
3. the role of distrust in reaching consensus.

The paper is organized as follows. In Section 2 we overview related work. In
Section 3 we introduce the calculus (Un)SecureNDsim which includes rules for
trust and distrust. In Section 4 we provide the principles underlying the graph
construction and algorithm design at the basis of the simulation. In Section 5 we
describe our experimental results. Finally, Section 6 presents general observations on
our analysis and shortly illustrates future work.

2 Related Work
In reporting on previous work, we focus in particular on three different aspects:
controversial users vs. controversial trust values; binary and continuous trust values;
local vs. global trust methods.

In [12] controversial users are those generating a disagreement on their trustwor-
thiness, either as the minimum between trust and distrust evaluations by other users,
or as the difference in the number of trust and distrust judgements. [20] considers
instead controversial trust values between two nodes, determined either as the trust
weight of their edge, or as a fixed negative value when no path exists, or as a con-
tinuous value t ∈ [0,1] when there is no direct edge. Similarly, in our logic trust is a
function on formulas obtained by verification, mimicked in the network model by a
property of edges when a node is labelled.

Differently from the above, our model uses discrete values but it combines the
comparative ranking of agents with both their epistemic attitudes and a majority
selection in the case of conflicting information. [12] also uses a binary classification
for users, so do several models for belief diffusion in social networks, with binary
opinions for agents, considering neighbours’ influence [5, 9] or majority ([18]).
Continuous models, on the other hand, might depend on the weight of other agents’
opinion [10] or admit influence only below a certain distance [7].

Trust defined by global methods is a value attached to a user and appropriate for
a reputation evaluation at network level; in local methods, trust is inferred instead
as a value between source and sink nodes, i.e. it is an edge feature. As it appears
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clearly from the above, our approach uses a local trust method in the case of non-
conflicting information, resorting to a computation of trust path lengths to determine
which elements need to be distrusted in the case of conflicting information. This
combination of features recalls the two controversial cases discussed in [20]: the
ToTrustOrNotToTrust case resembles our binary choice, but moderated by continuous
trust values, while we rely on ranking and epistemic attitudes; the Asymmetric
Controversy case resorts to path lengths with preference for shortest paths, while we
base our result on the number of distrustful edges present in each path.

To the best of our knowledge, no other work in the current literature combines
a rule-based semantics with ranked agents with epistemic attitude, using local trust
values with path length analysis for the resolution of contradictory information.

3 (Un)SecureNDsim

The natural deduction calculus SecureND [16] is a logic designed for secure opera-
tions on resources issued by subjects with different privileges; it guarantees trusted
content checked for consistency at every transmission. (Un)SecureND [15] is an
extension with negation to model two forms of negative trust. In [17], the calculus
SecureNDsim is adapted to model contradictory information propagation under trust
in a network of ranked agents and is simulated in NetLogo [19]. In this contribution
we present (Un)SecureNDsim, extending the previous system to deal with a dis-
trust function. We refer to a set of agents as V and an individual agent as vi. Agents
behave differently in the context of information transmission:

• sceptic agents and agents reading from below in the hierarchy require verification
when receiving a message, and as a result they trust the related channel;
• lazy agents and all agents in the presence of contradictions have a rejection

attitude, with the result of distrusting the related channel.

Verification and rejection are computationally costly processes for the agents and
these costs are tracked in our model.

Definition 3.1. The syntax of (Un)SecureNDsim is defined by the following alphabet:

V := {lazy(vi),sceptic(vi)}
BFV := pvi | ¬pvi

mode := Read(BFV ) |Veri f y(BFV ) |Write(BFV ) | Trust(BFV ) | DisTrust(BFV )

RESV := BFV | mode | ¬RESV

Γ V := {φ vi
1 , . . . ,φ vi

n };

V is the set containing lazy and sceptic agents; BFV are literals, i.e. atoms and their
negations; in the following, when needing a metavariable for either, we will use φV ;
mode is for access functions over atoms; RESV includes both contents and access
modes, with negation. In line with standard notation for natural deduction, we use Γ V

to express a context of expressions (typed by one agent in V , and feasible to extension
to another agent’s context) in which a given formula is derivable: such a context
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Γ vi ` w f
Atom

Γ vi ;Γ v j ` φ v j

Γ vi ` mode(¬φ v j)
¬-distribution

Γ vi ` ¬mode(φ v j)

Γ v j ` w f Γ vi ` φ vi

read down
Γ vi ;Γ v j ` Read(φ vi)

Γ vi ;Γ v j ` Read(φ vi) Γ v j ;φ vi ` w f
read elim

Γ v j ` φ v j

Γ vi ` Read(φ v j)
verify high

Γ vi `Veri f y(φ v j)
Γ vi ` φ vi v j ∈ sceptic node

verify sceptic
Γ v j `Veri f y(φ vi)

Γ vi `Veri f y(φ v j) Γ vi ;φ v j ` w f
trust

Γ vi ` Trust(φ v j)

Γ vi ` Read(φ v j) Γ vi ` Trust(φ v j)
write trust

Γ vi `Write(φ v j)

Γ vi ` φ vi Γ vi ` Read(¬φ j)
unverified contra

Γ vi ` ¬Veri f y(¬φ v j)

Γ vi ` Read(φ v j) vi ∈ lazy node
unverified lazy

Γ vi ` ¬Veri f y(φ v j)

Γ vi ` ¬Veri f y(φ v j)
distrust

Γ vi ` DisTrust(φ v j)

Γ vi ` DisTrust(φ v j)
distrust elim

Γ vi `Write(¬φ v j)

Fig. 1: The system (Un)SecureNDsim

matches the graph G of agents introduced in the next section; the derived formula
matches a new labelled vertex added to the graph. Formulas of this language are of
the general form Γ vi ` RES(φ v j), saying that an agent vi accesses under her profile
a message φ originated by agent v j. Access is here neutral for all the operations
included in mode. An order relation ≤ over V ×V models the dominance relation
between agents: vi ≤ v j means that agent vi has equal or higher priority (e.g. in terms
of security privileges) than agent v j.

The rules system (Un)SecureNDsim is introduced in Figure 1 and it assumes
that vi ≤ v j holds. This logic allows the following operations. Any content is ac-
cessible within a well-formed (w f ) user profile (Atom). Accessing a negation of a
content implies that the contrary cannot be accessed (¬-distribution): this is a strong
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negation rule, justifying the resolution procedure for contradictions. Any content can
be read from agents downwards in the order relation (read down) and it is accepted
if it preserves the profile consistency (read elim). Reading by an agent upwards in
the dominance relation or by a sceptic agent is possible by invoking a verification
procedure (verify high and verify sceptic respectively). Such verification checks con-
sistency and then applies a trust function on the object of the message (trust). Reading
and trusting guarantee rights to write formulae (write trust). The remaining rules de-
fine the behaviour of distrust relations. Reading contradictory information or reading
by a lazy agent induce a rejection procedure (unverified contra and unverified lazy
respectively). This in turn means that a distrust operation is executed (distrust), and
the opposite message to the one read can be written (distrust elim).

4 Model Design and Implementation
The network is an undirected graph G = (V,E), with a set V = {vi, . . . ,vn} of vertices
(agents) and a set E = {e(i, j), . . . ,e(n,m)} of edges (information transmission channels).
A labelled node v(p) denotes an agent knowing p; v(¬p) denotes an agent knowing
¬p; v() is used for a vertex with no label and denotes an agent who does not hold
any knowledge yet. An edge between two nodes is fully denoted by e(vi(),v j())
with the appropriate labels: e(vi(p),v j()) expresses a channel from i to j such
that the former can transmit p over. A non-standard notation with three nodes
e(vi(p),v j(),vk(¬p)) is used to abbreviate the fact that the following edges exist:
e(vi(p),v j()) and e(v j(),vk(¬p)) and it requires a resolution procedure. When need
for reference to multiple vertexes arises, we shall use the notation vi,...n. The order
relation among nodes is total or partial in view of the network topology. In a total
network, each vertex has an edge connecting it to any other vertex and all have equal
ranking; the underlying dominance relation is then a total order. In the linear network,
each vertex has an edge to the next vertex higher in the ranking; by transitivity,
also this order is total. In the random network, by introducing a new node at least
one edge with another vertex is established; the ranking is here assigned by the
seeding node and never overwritten, the order is partial. The scale-free network
model uses the Barabasi-Albert method: it is initialised by m = 3 nodes and each
node v j without neighbours is connected to up to n < m existing vertices with a

probability pv j =
kv j

∑vi kvi
, where kv j is the number of neighbours of agent v j and the

sum is made over all pre-existing nodes vi. Newly added nodes tend to prefer nodes
that already have a high number of links. The ranking in this case is given as 1

|edges| .
The maximum number of vertices in our graphs is set at 300.

The randomly seeded contradictory information (p,¬p) flows in the network,
according to the algorithm Transmission in Figure 2. If the receiving agent is
sceptic or a non-contradictory message comes from below in the dominance
relation, a successful transmission is preceded by a sub-routine Verify, described in
Figure 3. The latter implies an epistemic cost, the new node is successfully labelled
and the edge is qualified as trusted. If the receiving agent is lazy, a new subroutine
Distrust is executed, by which the edge is qualified as distrusted and the related
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Fig. 4: Algorithm for Distrust Costs Increase

epistemic costs are increased, Figure 4. A node receiving contradictory data (p,¬p)
starts a resolution process SolveConflict, see Figure 5: it analyses the number
of distrusted links appended to each neighbour with each contradictory piece of
information and it selects the new label from the least distrusted one, proceeding
by random choice (∗) when an equal number of distrusted links is detected. It then
executes the subroutine Distrust on the selected link.

5 Experimental results
The code for the simulation and all data from the experiments are available at
https://bitbucket.org/gprimiero/cn16. The experiments have been
executed on a machine with 7.7 GB of memory, 64bit Ubuntu 16.04 system, NetLogo

1 PROCEDURE Transmission(G) , w i th φ ∈ BFV

2
3 G := (V,E)
4
5 FOR e(vi(φ),v j()) ∈ G
6 IF v j() ∈ sceptic OR ranking(v j())< ranking(vi(φ))
7 THEN Verify(e(vi(φ),v j())) AND G′ := G∪ (v j(φ))
8 ELSEIF v j() ∈ lazy
9 THEN Distrust(e(vi(φ),v j())) AND G′ := G∪ (v j(¬φ))

10 ENDIFELSE
11 ENDFOR
12
13 FOR e(vi(φ),v j(),vk(¬φ)) ∈ G
14 SolveConflict(e(vi(φ),v j(),vk(¬φ)))
15
16 RETURN Trusted(G)
17 ENDPROCEDURE

Fig. 2: Algorithm for Simple Information Transmission

Fig. 3: Algorithm for Trust Costs Increase

1 PROCEDURE Distrust(e(vi(φ),v j()))
2
3 s e t COSTDISTRUST+1
4 s e t DISTRUSTLINK e(vi(φ),v j(¬φ))
5 RETURN Trusted(G)
6 ENDPROCEDURE

1 PROCEDURE Verify(e(vi(φ),v j()))
2
3 s e t COSTTRUST+1
4 s e t TRUSTLINK e(vi(φ),v j(φ))
5 RETURN Trusted(G)
6 ENDPROCEDURE

https://bitbucket.org/gprimiero/cn16
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Fig. 5: Algorithm for Conflict Resolution

5.3. We have collected data from several synthetic networks of fixed dimensions
between 10 and 300 nodes, with seeding of labels (p,¬p) randomly associated to
two sceptic/lazy nodes. We consider first different network topologies and then focus
on scale-free networks only, which better represent the topology of complex graphs
as they occur for example in social networks. On the other hand, linear networks
are more common in hierarchical structures that can be encountered in conditions
of access control. In both cases, the role of trust and distrust operation is crucial to
information propagation.

5.1 Costs of Trust/Distrust by Network Topology
In the first run of experiments we compare different network topologies of fixed
size (300 nodes), each equipped with a fixed proportion of sceptic nodes (50%). We
consider in particular the size of trusted and distrusted edges and the related costs for
each topology.

As shown in Figure 6 and the associated Table, the average rate of links and
costs is inversely proportional: the former increases from random, through linear,
scale-free and total networks, while the latter decreases. Given the fixed number of
sceptic agents across the various topologies, the decrease in costs should be mainly
associated with the ranking of agents and their order, while the increase in trusted
links is purely due to the number of links in the network. From these data it appears
that random networks perform the worst, as the required costs are high but the
obtained links are less than in scale-free or linear networks.

The different topologies show a similar pattern with respect to distrust values.
As shown in Figure 7 and the associated Table of average values, random networks

1 PROCEDURE SolveConflict(e(vi(φ),v j(),vk(¬φ)))
2
3 l e t d1 #DISTRUSTLINK e(vi,...n(φ),v j())
4 l e t d2 #DISTRUSTLINK e(vk,...m(¬φ),v j())
5
6 IF ( l e n g t h d1 > l e n g t h d2 )
7 THEN G′ := G∪ (v j(¬φ)) AND Distrust(e(vi(φ),v j(¬φ)))
8 ENDIF
9

10 IF ( l e n g t h d1 < l e n g t h d2 )
11 THEN G′ := G∪ (v j(φ)) AND Distrust(e(vk(¬φ),v j(φ)))
12 ENDIF
13
14 IF ( l e n g t h d1 = l e n g t h d2 )
15 IF ∗
16 THEN G′ := G∪ (v j(¬φ)) AND Distrust(e(vi(φ),v j(¬φ)))
17 ELSE G′ := G∪ (v j(φ)) AND Distrust(e(vk(¬φ),v j(φ)))
18 ENDIFELSE
19 ENDIF
20 ENDPROCEDURE
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Fig. 6: Trust distribution and average costs

are the most expensive with respect to distrust, and have the lowest number of
distrusted links; linear networks remain constrained in number of distrusted links,
with costs decreasing; scale-free networks do not show a sensibly better behaviour,
with comparable number of distrusted links and costs; finally, total networks perform
the best, with the highest levels of links and relatively lower costs. As shown in the
graph, it is remarkable the diverging behaviours of total and random networks: the
former ones have almost stable distrust cost with increasing distrusted links, while
the latter have stable links with increasing costs.

Fig. 7: Distrust distribution and average costs

The comparison between tables shows that the average number of trusted and
distrusted links grows in parallel, while the related costs decrease in a similar vein
across the different topologies. Trust propagates a lot more than distrust in these
balanced networks, suggesting that the former is a more frequent and more relevant
property in information transmission than the latter.
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5.2 Distrust and epistemic attitude
In this and the following experiments, we focus on scale-free networks only and their
distrust behaviour.1 First, we consider distrust as a parameter of the proportion of
lazy agents in a network of 300 nodes, with a random assignment of seeds to agents.
As shown in Figure 8, there is a strict correlation between the proportion of sceptic
and the distrust behaviour: the more lazy agents are present in the network, the higher
its overall distrust value. While this is obvious in view of the algorithm design, it is
interesting to remark that in the case of a fully sceptic network (where no lazy agents
are allowed), the value of distrust is to be associated entirely with the presence of
contradictory information, and hence it can be used as a parameter of contradiction
diffusion. The associated Table offers average values over 100 runs. It illustrates
that conflict resolution is responsible on average for roughly 10% of the network’s
distrusted edges, with costs averaging at around 1

7 of those of a highly lazy network
(i.e. with 10% of sceptic agents).

Fig. 8: Distrust behaviour and epistemic attitude.

We now extract the values for a balanced network (i.e. with 50% of sceptic agents)
and compare them to the initial distribution of seeds qualified as lazy-sceptic agents.
As Figure 9 shows, there is a strict correlation of the final distribution of distrust
values with the initial condition of the network: the range of minimal values for both
distrust costs and number of distrusted links is relatively stable, while their maximum
values decreases when moving from a configuration that has two sceptic agents as
initial nodes to one that has two lazy ones. The result on distrust across the network
is less influenced by the role of agents distributing the information than by the role
of agents receiving it.

5.3 Trust, Distrust and consensus
Our last experiment concerns the role of trust and distrust in reaching consensus. As
shown in Figure 10, networks with trust and distrust present an inverse correlation

1 For a more detailed analysis of further aspects of trust behaviour, see [17].
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Fig. 10: Consensus in Scale-free Networks with distrust

between size and the number of transmissions that reach consensus: the smaller the
network, more often full labelling with a unique formula is obtained (i.e. it is easier to
reach consensus). Despite some differences in the reached peaks by lazy and balanced
networks, the behaviour is overall similar in all configurations: balanced networks
have the highest absolute number of such runs, while networks with higher proportion
of sceptic agents have the lowest number of consensus reaching transmissions.
Networks with distrust significantly differ from those with trust only for the total
amount of consensus-reaching transmissions. We show this for balanced networks
in the second graph of Figure 10, the same holding for lazy and sceptic networks:
the presence of a distrust routine has a strong impact on the ability of the network
to reach consensus in the presence of contradictory information, with no more than
9% of runs reaching a full labelling by either p or ¬p (network of 40 nodes), while
in the case of networks with trust only, this value reaches 63% (for networks of the
same size).

6 Conclusions
We have presented a logic for the analysis of distrust propagation in a multi-agent
system. We have offered related algorithms and an agent-based simulation of the
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dynamics of such networks when transmitting contradictory information. Our initial
experimental results, currently limited to synthetic networks and to be extended
with real-world larger data sets, show that: distrust has a lower impact on infor-
mation transmission in terms of costs than trust; it represents a strong obstacle to
reaching consensus; and it qualifies up to a tenth of the size of the network in the
presence of contradictory information. Further research will offer extensive compari-
son with other models, updates of epistemic attitudes and applications to swarm-like
phenomena.
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Abstract A recent article criticized social media platforms for failing to mobilize
society into action long enough to address any major global issue. This is attributed
to the simplistic design of current social media platforms, which encourage ideas to
spread virally but do not support consensus formation which might lead to lasting so-
cial change. One reason for this could be the well known echo chamber phenomenon,
whereby people tend to discuss issues only with other like-minded people. Social
media has been blamed for encouraging the echo chamber effect and increasing polar-
ization in society. For example, in Twitter, it is very common for users to be followed
by others with similar views. Is this a reflection of real life or does Twitter actually
increase polarization of views? This paper investigates this by comparing the Twitter
follows network at two points in time and detecting communities in the network of
reciprocated follows relationships. We find that new edges are (at least 3-4 times)
more likely to be created inside existing communities than between communities,
and existing edges are more likely to be removed if they are between communities.
This leads to the conclusion that Twitter communities are indeed becoming more
polarized as time passes.

1 Introduction
A recent article [3] highlighted the paradox that, although the use of social media
has becoming increasingly widespread, it has not been able to mobilize society into
action long enough to address any major global issue. The authors blame this on
the simplistic design of current social media platforms, pointing out the absence of
mechanisms for reflection, argumentation, and consensus formation. This is related
to the well known echo chamber phenomenon, whereby people tend to discuss issues
only with others with similar views. Social media has been blamed for encouraging
the echo chamber effect and increasing polarization in society [6, 7].
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It is common knowledge that social networks, in real life as well as online, feature
assortative mixing: people (or users) tend to communicate with those who are similar
to themselves in some respect. When represented as networks, groups of vertices
representing similar people tend to be more densely connected by edges than one
would expect by chance [9]. This is the basis of community structure in networks,
which has been studied intensively during the last 15 years [8].

In the context of online social media platforms, such as Facebook and Twitter, it
is well known that user networks feature community structure. Users usually follow
or friend other similar users, forming groups that are densely connected but loosely
connected to other groups. When similarity is based on interests or opinions, users
tend to be more strongly connected to others with similar interests and isolated from
those with different interests or opposing viewpoints. One early study [1] analysed
the network structure of (US domestic) political blogs and found that conservative
and liberal blogs formed separate communities with little overlap. Following the
launch of Twitter, another seminal work [5] obtained tweets related to a US election
and constructed a retweet network, in which each edge represents a retweet from one
user to another. This network was also found to split into two separate, ideologically
opposed, communities.

The above works showed that social media platforms facilitate the echo chamber
effect, by allowing users to form communities. However, this does not necessarily
mean that these platforms encourage the formation of separate communities; they
might have existed already.

The aim of this paper is to investigate whether social media platforms increase
polarization of users, using Twitter as an example. We do this by checking whether
community structure in the Twitter follows network becomes stronger, in some sense,
as time passes. We consider only the network topology, ignoring the attributes of
users and the content of their communication (tweets). We do not attempt to detect
the topic or viewpoint that characterizes each community, or even verify whether a
coherent topic exists. This is for simplicity and to avoid making our results dependent
on a specific method of topic detection.

A naive approach might be to perform community detection [8] on the network
and compute the modularity [10] of the partition, and repeat the process at different
times. However, this would be impractical because

1. The Twitter follows network is too large to obtain and analyse, especially because
access to it is rate-limited.

2. The network vertices change over time as users come and go.
3. Different partitions could be found each time, as an artefact of the (nondetermin-

istic) community detection algorithm.
4. Modularity (or some other common metric) depends on many factors and would

not reveal small changes in the strength of community structure.

Our approach avoids these problems, as follows:

1. We collect small samples instead of the whole (reciprocated) follows network.
2. We sample the same set of users each time the experiment is repeated.
3. We detect communities only on the first run of the experiment.
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4. We measure the strengthening of the community structure by counting how many
new reciprocated follows edges are created inside communities and how many
edges are removed between communities, and comparing these with a null model
in which edges are added and deleted randomly.

In the next section, we explain how data is collected from the Twitter network.
Section 3 presents the experimental results for new and deleted edges, comparing
these with a randomly changed network. Section 4 presents our conclusions.

2 Data collection
The data collection was done in two phases: in June and August 2016. In each phase,
three network samples were collected. This section describes the network samples
and how they were collected.

2.1 First phase: snowball sampling
The basic strategy for the first phase of data collection is snowball sampling. This
starts from a seed user (vertex) s and crawls to all of its followers (users who follow s)
and followings (or followees: users who are followed by s). This process is repeated
recursively for each of the users found until enough vertices are obtained. We crawl to
a maximum distance d from the seed, collecting all vertices at distance 0,1, . . . ,d−1,
but not necessarily all vertices at distance d, because of the huge number of them.

In order to reduce the time costs, we choose a seed which has a reasonably small
number of followers and followings. For our experiments we collected network
samples from three seeds: a beauty blogger, a comic writer and a computer graphic
scholar. We refer to these networks as Beauty, Comic, and Graphics, respectively.

2.2 Omitting users ord edges
Because of the rate limit of Twitters API, which allows 15 requests every 15 minutes,
it is time-consuming to collect users who have a large number of followings or
followers. For example, if a user has 4 million followers, which is quite common for
a famous person, it would take 13 hours to collect all of the users followers. Because
of the time cost and the limited time available, it was necessary to restrict the data
collection.

One way to achieve this would be to omit users who have a large number of
followers, and the other is to partially collect the followers and followings of a user.
Both of these methods will introduce bias to the data collected. For the first method,
we might miss a user who is famous and has an important role within a community
(as well as all edges of this user). Although the first method is not perfect, the bias
of the second method is much more severe. If we were to omit some edges between
users, we are likely to miss some users who would form triangles with other users
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and create communities. For example, x, y, and z all follow each other, forming a
triangle as shown in Fig. 1(a). If we partially collected followers of x and omitted z,
which is a follower of x, the triangle {x,y,z} might not be noticed, as in Fig. 1(b). As
a result, the community detection might not place them into the same community,
resulting in a distorted structure. Moreover, in this case, a deeper search might be
needed to find z: in order to find z, one has to find y first. Obviously, the peripheral
vertices will never be complete because the data collection has to stop somewhere,
but we make sure that the network sample contains all edges for vertices that do
appear in the sample. I.e., if the network sample is G = (V,E) and u ∈V and v ∈V
and {u,v} exists in the complete network, then {u,v} ∈ E. Therefore, we decided to
omit all users who have more than 50,000 followers.

Fig. 1: (a) x, y, and z follow each other, forming a triangle. When collecting all
followings and all followers of a user, this triangle can easily be found. (b) However,
when collecting followings and followers partially, this triangle might be ignored.

2.3 Directionality
Considering the edge direction should be expected to contribute to a more accurate
result [2]. However, in Twitter, any user u can follow any other user v, creating a
directed edge (u,v). Such a unidirectional edge is less valuable than a reciprocated
pair of edges, u follows v and v follows u, which indicate a mutual relationship. We
therefore focus on undirected networks, in which an edge {x,y} means that x follows
y and y follows x. When collecting followers of a specific user u, we omit those users
that u does not follow; when collecting us followings, we omit users that do not
follow u. To implement this, directed networks were collected and then converted to
undirected networks with reciprocated edges after sampling.

2.4 Three datasets
In order to make our results more robust, we collected three different networks
starting with three different seed vertices. Fig. 2 shows a visualization of the Graphics
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network, while Table 1 shows some statistics about all three networks collected in
the first phase, in June 2016. This describes the three directed networks and the
three undirected networks which contain reciprocated edges only. Table 1 also shows
the communities found by the Infomap algorithm [11] for each network. We use
Infomap for all experiments in this paper because it is one of the best and most
popular community detection algorithms.

Fig. 2: Visualization of the Graphics network.

Table 1: Statistics of the three networks collected in June. The Directed columns indi-
cate the vertices and edges before removing directionality. The Undirected columns
describe the network of reciprocated edges.

Network
Directed Undirected

vertices edges vertices edges density communities largest
commu-

nity

Beauty 6756319 10394337 249259 437852 1.4x10−5 44 58275

Comic 2277503 3860175 101022 171990 3.4x10−5 22 43681

Graphics 938960 1444554 47179 77909 7x10−5 10 26563
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2.5 Data collection for the second phase
There are two possible methods for the data collection of second phase (in August
2016). One is to crawl again from the same seed to collect a network by snowball
sampling. The other is to directly collect all of the users that appeared in the first
phase. Crawling from the beginning means doing a breadth-first search to a specific
depth; this cannot ensure that all the users of first phase will be collected in the second
phase. For instance, suppose that x, y, and z follow each other and form a triangle.
When crawling from x with a depth of 1, this triangle will be found. However, if one
of these edges is deleted before the second phase, a depth of 2 will be needed to find
the triangle. As a result, crawling from the beginning with the same depth will omit
some users that exist in the first phase, resulting in an incomplete network. Therefore,
we chose to collect exactly the same users as in the first data collection phase, except
those that no longer exist. Table 2 shows statistics about the same three network
samples collected in August. (Note that, although we collect the same users as in
the first phase, the number of vertices shown here is different because it includes all
followers and followings.)

Table 2: Statistics of the three networks collected in August.

Network
Directed Undirected

vertices edges vertices edges

Beauty 6957428 10717644 248363 463797

Comic 2546530 4214677 103353 180604

Graphics 994529 1522011 47491 84028

3 Experiments
3.1 Edges of real network
Community detection was performed on the network samples from the second phase,
but did not show any noticeable changes because two months is not enough time for
communities to evolve. However, there are still a significant number of new edges
and deleted edges. The next step is to investigate how often new edges appear inside
communities, indicating that users start to follow others in the same community, and
whether edges tend to be removed (by unfollowing) inside or between communities.
We make two hypotheses:

1. New edges are more likely to appear inside communities than between commu-
nities.

2. Edges between communities are more likely to be removed than those inside
them.
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In the remainder of the paper, we refer to edges inside communities as intracom-
munity edges and edges between communities as intercommunity edges.

Fig. 3 shows the numbers of added and deleted edges of the three networks
collected, counting only the edges between vertices that are present in both versions
of the network. That is, we ignore vertices that existed only in the first snapshot, and
their edges. For example, in the Beauty network, after two months, 5076 new edges
appear: 3212 intracommunity edges and 1864 intercommunity edges. Similarly, in
the other two networks, most of the new edges are intracommunity edges, which
seems to support the first hypothesis stated above. For the deleted edges, for all
three networks, the number of intracommunity deleted edges exceeds the number
of intercommunity deleted edges, which seems to disprove our second hypothesis.
However, intracommunity edges are far more numerous than intercommunity edges,
so whenever an edge is removed, it is more likely to be an intracommunity edge, by
chance.

Fig. 3: . Distribution of new and deleted edges of the three networks collected in both
phases. (a) Beauty; (b) Comic; (c) Graphics.

3.2 New edges of random case
To evaluate the numbers of new and deleted edges correctly, the actual numbers
must be compared with a null model which adds or deletes edges randomly. If
G1 = (V1,E1) and G2 = (V2,E2) are the networks of the first and second phase
respectively, we randomly generate a new edge {u,v} where u ∈V1∩V2,v ∈V1∩V2
and {u,v} /∈ E1. This means that we connect a randomly chosen pair of vertices that
existed in both June and August but were not linked by an edge in June.

Based on this strategy, for every network, the total number of edges added is
equal to the number in the corresponding real network. Table 3 shows the average
number, largest number, and smallest number of new intracommunity edges in all
three networks after generating the randomly grown network 100 times. Taking the
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Graphics network as an example, there should be 795 new edges, of which 727 are
intracommunity (calculated from Fig. 3). From this table, the average number of
intracommunity new edges in the random case is 297 which is much less than the
real result, which is 727 edges. Even the largest value found, 329, is still much less
than 727. For the other two networks, the results are consistent with the Graphics
network. This answers our question: new edges occur inside communities more often
than expected by chance.

Table 3: Intracommunity new edges of the random case in the three networks.

Network Maximum Minimum Average Real

Beauty 704 584 637 3212

Comic 652 548 597 1616

Graphics 329 254 297 727

Fig. 4 shows the distribution of the number of intracommunity edges added
in each of the random networks. The star in each chart represents the number of
intracommunity edges in the corresponding real network, which is always much
greater than the numbers achieved in the random case. This allows us to reject the
null hypothesis that the result is by chance. In principle, we could plot these curves
analytically and calculate the extremely small probability that the real result could
happen by chance, but we have not done so here.

3.3 Deleted edges of random case
Fig. 3 shows that most of the deleted edges are intracommunity edges, but this is
to be expected because there are relatively few intercommunity edges to delete. We
need to investigate whether deleted edges are more likely to be intercommunity than
expected. We do this by simulating another shrunk network based on the original
network. The strategy is to remove edges from this network randomly.

If networks G1 = (V1,E1) and G2 = (V2,E2) are the networks of the first phase and
second phase respectively, we randomly choose a edge {u,v} where u ∈V1∩V2,v ∈
V1∩V2 and {u,v} ∈ E1. This means that we randomly choose a pair of vertices that
existed in both June and August and were linked by an edge in June, and delete that
edge.

Fig. 3 shows the number of deleted edges in the three networks. For these three
networks, 17853, 2004, and 747 edges were removed, respectively.

In order to test the hypothesis that intercommunity edges are more likely to be
deleted, we compare the number of deleted edges of the random case with the real
network, in Fig. 5. Taking the Comic network (Fig. 5(b)) as an example, the average
number of intercommunity deleted edges is around 75 and even the maximum, 97, is
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Fig. 4: Number of new intracommunity edges added in each network. (a) Graphics
network (run 112 times); (b) Comic network (run 110 times); (c) Beauty network
(run 50 times).

far less than the real result, 222. These results are less pronounced than for added
edges (Section 3.2) but still show that intercommunity edge deletion is more common
than expected by chance.

3.4 Biased network
Section 3.2 showed that new intracommunity edges are added far more often than
could happen by chance, but a more interesting question is how much more often.

In order to measure this, we imagine a biased random agent that repeatedly
adds new edges: each edge has a probability p to be an intracommunity edge;
otherwise it is an intercommunity edge. We adjust the probability p until the number
of intracommunity edges added is close to the real value. After testing several
times, the probability values found for the three networks are 0.7 (Beauty), 0.75
(Comic), and 0.82 (Graphics). From Table 3 and Fig. 3, we can compute equivalent
probabilities for an unbiased random agent: 0.12, 0.26, and 0.37, respectively. This
means that, in the Beauty network for example, intracommunity edges are nearly six
times more likely to be added than expected by chance.

(a) (b)

(c)
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Fig. 5: Number of deleted intercommunity edges in each network. (a) Graphics
network (run 100 times); (b) Comic network (run 100 times); (b) Beauty network
(run 31 times).

4 Conclusions

We have shown that, at least for three network samples, the community structure of
the Twitter follows network seems to become stronger as time passes, increasing the
separation between communities.

It is important to emphasize that we have analysed only the network topology and
not the details of the users or their tweets, which are outside the scope of this work.
Therefore, we have no evidence of whether a community (in our sense) represents
a single topic or viewpoint, or whether different communities represent opposing
viewpoints. Indeed, because we only detect disjoint communities, it is unlikely that
each community detected discusses only a single topic. Nevertheless, in cases where
communities do correspond to viewpoints, this separation can be interpreted as
polarization.

Our specific findings are:

1. New edges are intracommunity edges much more often than expected.
2. Deleted edges are intercommunity edges much more than expected.
3. When adding edges, users are about 3-4 times more likely to add an intracom-

munity edge than an intercommunity edge.

(a) (b)

(c)
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These observations probably underestimate the true effect. Because we collect
small samples of the network, community detection is certain to be imperfect because
some communities are split between the sample and the rest of the network and cannot
be found. In the extreme case, if random communities were found, our results would
be no different from the random null model with which we compare. If we had time
to collect larger samples, we would therefore expect an even more pronounced effect.
This is a good topic for future work.

It is interesting to speculate on the reason for the effect we observe. One possible
explanation is the recommender system of Twitter: users receive suggestions about
users that they might want to follow, and these are often users who are already in
the same network community. Further work would be needed to find out whether
the generation of new edges is consistent with Twitters recommendations (which are
not revealed except to the users themselves). In any case, the recommender system
cannot be the only explanation because of (2) above: Twitter never recommends users
to unfollow. It seems more likely that users start following others after discovering
them through the network structure itself; e.g., by retweets. New users (those that
exist in the later snapshot but not the first) might even play a role in introducing
existing users to each other and causing an edge to appear, even though we exclude
these new users from our network samples.

Finally, it may be argued that, even if Twitter communities become more polarized
over time, this might not be caused by the platform itself. The Twitter network may
be converging over time to an underlying real-world network which is already highly
polarized. Even so, Twitter provides the mechanisms to reflect and enhance this
polarization, unlike traditional media and communication methods, which might tend
to reduce it.

Future work

Further work is needed to estimate the probability with which a biased random
agent chooses an intercommunity edge to delete. We have used a simple null model
for our unbiased random agent, whereby vertices to connect are chosen uniformly
randomly from all vertices in the sample. Numerous other null models are possible;
for example, the agent might preferentially connect to popular (high-degree) users or
to users with a similar name or description. In future, it would be useful to test other
null models to rule out other possible explanations for the results found.

Another area of future work is to repeat the analysis with different community
detection algorithms instead of Infomap. This is simple to do because we have
kept the sampling and analysis phases separate, which would not be the case if
we had used (e.g.) a local modularity [4] method to collect the network samples.
A more challenging task would be to detect overlapping communities, instead of
disjoint communities, in the networks. Overlapping communities are more realistic
because many Twitter users have more than one interest and hence belong to multiple
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communities. However, overlapping community detection is more difficult and the
results would be harder to analyse.
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Abstract In this paper we assess the semantic stability of Wikipedia by investigating
the dynamics of Wikipedia articles’ revisions over time. In a semantically stable
system, articles are infrequently edited, whereas in unstable systems, article content
changes more frequently. In other words, in a stable system, the Wikipedia com-
munity has reached consensus on the majority of articles. In our work, we measure
semantic stability using the Rank Biased Overlap method. To that end, we prepro-
cess Wikipedia dumps to obtain a sequence of plain-text article revisions, whereas
each revision is represented as a TF-IDF vector. To measure the similarity between
consequent article revisions, we calculate Rank Biased Overlap on subsequent term
vectors. We evaluate our approach on 10 Wikipedia language editions including
the five largest language editions as well as five randomly selected small language
editions. Our experimental results reveal that even in policy driven collaboration
networks such as Wikipedia, semantic stability can be achieved. However, there are
differences on the velocity of the semantic stability process between small and large
Wikipedia editions. Small editions exhibit faster and higher semantic stability than
large ones. In particular, in large Wikipedia editions, a higher number of successive
revisions is needed in order to reach a certain semantic stability level, whereas, in
small Wikipedia editions, the number of needed successive revisions is much lower
for the same level of semantic stability.
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1 Introduction
Wikipedia is one of the largest, freely accessible web-based encyclopedias and its
content is open for editing by users. Wikipedia articles are mainly a contribution of
volunteer editors who collaboratively create and manage the largest repository of
human knowledge. This way, different editors can contribute with their expertise,
ideas and opinions. Wikipedia contributors, however, may have different motivations
and opinions, for example, it may take some time for them to agree if sufficient and
correct information is provided within an article. If editors have different point of
views on a particular topic, especially on controversial topics, they might end up
overwriting each others content such that articles cannot become semantically stable.
These are also known as edit wars [3, 5, 13, 17]. On the contrary, if Wikipedia editors
achieve consensus on the content, implicitly, articles become semantically stable.

Problem & objectives. The goal of this paper is to investigate the semantic stability
process in collaboration networks, such as Wikipedia, that are driven based on
policies, guidelines and community standards. Based on these policies, both editors’
behavior and the process of article production is managed [7].

Approach & methodology. In order to assess the semantic stability of Wikipedia, we
turn to semantic similarity of consecutive revisions of Wikipedia articles. Semantic
similarity of two textual documents expresses the extent to which two documents deal
with semantically similar topics or content. This concept is key to understanding the
comparison of documents written in natural language. Typically, semantic similarity
is calculated by means of document statistics. An advantage of statistical approach is
that it does not require predefined models, which describe the meaning of particular
words (terms). The method applied in this work, i.e., Rank Biased Overlap, is also
a statistical method and it is first introduced in [16]. The basic procedure carried
out during the calculation of the semantic similarity is the modeling of the semantic
space in accordance with the term distribution in a corpus of documents. In such a
space, each document is represented by a vector and semantic similarity is calculated
by performing vector operations on those vectors. This approach is based on the
distributional hypothesis, according to which the terms with similar meanings show
tendency to appear in similar contexts [8].

The concept of semantic stability applied in our paper is based on the work
presented in [15], which studies the semantic stability of social tagging systems. In
our work, we are interested in the semantic stability of Wikipedia. Thus, we take a
Wikipedia corpus of documents that contains the complete edit history for each article
and which includes all existing article revisions. The following Wikipedia language
editions are used: English, German, French, Spanish, Italian, Czech, Finnish (Suomi),
Danish, Greek and Swedish. The intention behind the choice of these particular
languages is to have five Wikipedia editions with a large number of articles and five
smaller editions. This enables us to study the relation between semantic stability and
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corpus size. Our long term goal is to investigate the consensus building process in
Wikipedia based on the semantic stability. Authors of [15] state that semantic stability
implies implicit consensus on the description of a resource in a social tagging system.

Findings & contributions. One of the contributions of our work is the software solu-
tion that we provide as an open source project1, which is highly modular, configurable
and flexible and can be applied by anyone looking for an efficient way to analyze the
semantics of natural language documents contained, for example, in the Wikipedia
XML dump files. From the empirical point of view, we conduct experiments in 10
different Wikipedia language editions and discuss the experimental results and their
implications. Our experimental results reveal that the mean semantic stability of large
Wikipedia editions is significantly lower compared to the mean semantic stability of
small Wikipedia editions. In particular, in large Wikipedia editions, a higher number
of successive revisions is needed in order to reach a certain semantic stability level,
whereas, in small Wikipedia editions for the same level of semantic stability, the
number of successive revisions needed, is much lower.

2 Technical Approach
2.1 Preliminaries
Particularly important for this paper is the theory describing: (i) evaluation of im-
portance of terms in a single document or in a corpus of documents and their
representation in a form of matrix - TF-IDF (Term Frequency - Inverse Document
Frequency), (ii) calculation of semantic similarity measure and (iii) calculation of
semantic stability over time.

We represent each revision of the parsed Wikipedia articles as a TF-IDF vector.
Term Frequency - Inverse Document Frequency is one of the methods in the theory
of Information Search and Retrieval used to represent the relevance of terms in a
document belonging to a collection of documents - corpus [2, 9, 14, 18].

The comparison of the TF-IDF vectors is performed using a modified version of
RBO (Rank Biased Overlap) method as in [15]. However, our approach is flexible and
can be extended to include additional similarity measures. The RBO method is used
to calculate the similarity measure of two given vectors, each of them representing
the rankings of terms contained in a single Wikipedia article. Its main characteristic is
that it takes the cumulative overlap of the given rankings as a measure for similarity.
It is represented with the following mathematical equation:

RBO(σ1,σ2, p) = (1− p)
∞

∑
d=1

2∗σ1l:d ∩σ2l:d

|σ1l:d +σ2l:d |
p(d−1) (1)

where σ1 and σ2 are not necessarily conjoint lists of ranking and σ1l:d and σ2l:d are
ranked lists at depth d. RBO evaluates to a value in the range [0,1], where 0 means
disjoint and 1 means identical. The parameter p defines the steepness of the weights

1 https://doi.org/10.5281/zenodo.153891

https://doi.org/10.5281/zenodo.153891
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and takes a value in interval (0≤ p < 1). When p = 0, RBO considers only the top
ranked item of the lists and its value is either 0 or 1. When p is arbitrarily close to 1
the weights are almost the same for all depths and the analysis is arbitrarily deep.

The similarity measure described in Equation 1 is used as basis for determining
the semantic stability over time. Based on [15], for a given value of RBO threshold
k, an article is semantically stable if its RBO value at the point of time t is equal or
higher than the threshold k. A rather simple mathematical formulation of this method
for inspection of stabilization process in a given data set is as following:

f (t,k) =
1
n

n

∑
t=1





1, if RBO(σt−1,σt , p)≥ k

0, otherwise
(2)

Based on the Equation 2, for each article in a Wikipedia corpus, the rank-biased
overlap similarity measure is calculated. Inputs are the revisions before and after
the time point t as well as the parameter p. If the calculated similarity is equal or
greater than the threshold k, 1 is added to the sum, otherwise 0 is added. With no
more articles in corpus to iterate, the sum is divided by the total number of iterated
articles from the Wikipedia corpus. Thus, the result will be the percentage of the
stable articles at time-point t for a predefined threshold value k.

For our experiments, the rank-biased overlap similarity measure algorithm is
parametrized with the p = 0.9 which means that the first ten ranks of the ranking list
have 86% of the weight of the evaluation as stated in [15]. Empirically, we also find
that p = 0.9 is appropriate because of the value of parameter d (depth of evaluation)
chosen for rank-biased overlap. This means that the TF-IDF vectors will be checked
for similarity only up to the depth of 20. Of course, one can take a much higher depth,
but that will increase the computation time as well as the storage space. Namely, the
TF-IDF vector representing a single revision of an arbitrary article can have several
thousands of values, but not all of those values are stored. Only the values up to the
depth needed for rank-biased overlap calculation are stored. So, if 20 elements are
used for rank-biased overlap measure, the first 10 elements of the ranking weight
86% of the evaluation and the other 10 elements weight only 14%. It is exactly
because of this fact that there is no need to do the similarity calculation for much
higher depths as those are not regarded as very important. In every case, the top 20
(most-weighted) elements of the TF-IDF vector are more than enough to precisely
describe the semantics of the article revision they represent.

2.2 Experimental Setup
We study two different aspects of the stabilization process: (i) semantic stabilization
of the Wikipedia corpus over a predefined period of time and (ii) semantic stabiliza-
tion of the Wikipedia corpus after a number of successive revisions. The idea behind
the examination of the Wikipedia corpus stabilization over the time is to choose a
point in time t and count the number of articles existing at that point in time and
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the number of articles existing at that point in time that are also semantically stable.
This is possible because of the fact that every article revision is uniquely identified
in the database by the compound key consisting of the article ID and the revision
timestamp.

Another way to inspect the stabilization process of the document corpus is to find
out how many successive revisions are required before a percentage of the available
articles becomes stable (in reference to the stability threshold). The idea is very
similar to the previously discussed one, but now it is assumed that all articles have
the first revisions starting at the same date and time. The timestamp information is
now completely neglected and only the number of revisions per article is important.
So, at the beginning, the first value of the similarity vectors of all articles is examined.
The stability threshold takes the maximal value at the beginning of the calculation,
1. If the desired percentage of the articles is stable, the next value of the similarity
vector is inspected. If not, the threshold is decreased and the calculation is repeated
until the value of the stability threshold, for which the desired percentage of articles
is stable, is found. Analysing the semantic stability from two different point of views,
provides more useful insights about the examined corpus.

Dataset Preprocessing. The Wikimedia2 provides XML dumps of all active Wikipedia
projects. The basic building block of all Wikipedia editions is a page. Every page
represents an article and every article has at least one, but usually more than one,
revision. There are articles in bigger Wikipedia editions which have tens of thousands
of revisions.

We analyze 10 Wikipedia language editions, five of which are (randomly selected)
small language editions and the remaining five are the largest language editions.
Our goal is not to analyze the full Wikipedia corpus of the large editions, thus, the
sampled data of 10 thousand randomly selected articles with their complete revision
history is used for 8 out of 10 Wikipedia editions. Only Czech and Finnish Wikipedia
corpus is fully analyzed.

3 Results and Discussion
Figure 1 compares the stabilization process between small and large Wikipedia lan-
guage editions over a period of time. A portion of the stable articles (in percentages)
is shown for a chosen point in time t, in order to spot periods of increased stability
or instability of an article corpus. The plots in Figure 1 correspond to the RBO
threshold k = 0.8. We run experiments with two other values: k = 0.4 and k = 0.6,
to investigate the role of the threshold parameter k in the stability calculation method
proposed in [15]. Once the similarities of all revisions of a single Wikipedia article
are calculated, the value representing the similarity in a given moment of time t is
taken and compared to the value of the parameter k. Our intuitive assumption is that,
for a low value of RBO threshold k, there are a lot of articles in the examined corpus,
whose stability value in a given instant of time is higher than the chosen threshold.

2 https://dumps.wikimedia.org/

https://dumps.wikimedia.org/
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Fig. 1: Semantic stabilization of the Wikipedia corpus over a period of time.
Percentages of stable articles (y-axis) are shown in relation to a predefined period
of time (x-axis) for (a) small and (b) large Wikipedia editions. Semantic stability
curves shown, correspond to the RBO threshold k = 0.8 and steepness parameter
p = 0.9. For illustration, consider the plot in (a), for a chosen point in time, (e.g.,)
year 2008, in (e.g.,) Czech edition, is indicated that 70% of articles have reached a
semantic stability equal or higher than 0.8. The steepness of the stabilization curves
remains the same over different parameters k, however, the percentage of stable
articles decreases with increasing k. Comparing plots in (a) and (b), one can see
that the mean semantic stability of small Wikipedia editions is significantly higher
in contrast to large ones. This is in line with the fact that small Wikipedia editions
contain large portions of articles simply translated from the English Wikipedia, for
example. Such articles are usually rarely changed substantially and they increase the
overall stability of small editions. In contrary, the editorial process in large editions
is much more dynamic.

Our results are consistent with our initial assumptions. Thus, as the value of the RBO
threshold increases, the number of stable articles decreases. The document corpus
stability is inversely proportional to the value of parameter k. However, the steepness
of the stabilization curves remains the same over different parameters k, thus, we
include plots for only k = 0.8 to show the least stability.

From the plot in Figure 1a, it is noticeable that all small Wikipedia editions exhibit
semantic stability variations in almost the same range (with a deviation ±2% from
the average). The only exception to this is the case of Swedish Wikipedia that has the
semantic stability well below the average semantic stability of the other four small
Wikipedia editions.

Figure 1b shows that in large Wikipedia editions, semantic stabilization curves
oscillate more at the beginning of the editorial process compared to small editions.
Thus, they are, on average, more unstable than the small Wikipedia editions. Our
explanation for this is that the small Wikipedia editions consist mainly of articles
which are the translated versions of the articles from the main Wikipedia editions
(for example from the English Wikipedia). Once translated and created, such articles

(a) Small Wikipedia editions (b) Five largest Wikipedia editions
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are rarely edited a lot. Whereas, in large editions such as in the English one, a higher
number of new articles that are authored from scratch is present. Of course, the
editorial process of such articles is more dynamic.

We observe a very interesting phenomenon in both plots in Figure1, namely, in
both small and large Wikipedia editions, a sudden increase of the semantic stability
is noted, with a peak around year 2013. Right after this point of time, the stability
decreases for all Wikipedia editions and than continues to increase again. We wanted
to find an explanation for this observation by contacting the Wikipedia community
by writing several posts in the Wikimedia.org3mailing list, but we did not receive any
plausible answer. Some of the assumptions are that: some of the Wikipedia servers
were down for a short maintenance, or some of the Wikipedia maintenance bots
were active and editing Wikipedia contents was shortly blocked or malfunctioning
of Wikipedia servers was induced by malicious software or hacker attacks. But, the
temporary peak in semantic stability in year 2013 could also be seen as a consequence
of a change in Wikipedia policies of how to handle edit wars (e.g, the introduction
of a new rule such as the three-revert rule). Still, no hard evidence was brought into
light.

Figure 2 visualizes the number of consecutive revisions per article needed to
achieve the stability of 95% in both small and large Wikipedia editions. This means
that 95% of articles in a corpus become semantically stable, evaluated based on
different RBO (for p = 0.9) thresholds k (y-axis in Figure 2), after r consecutive
revisions (x-axis).

In Figure 2a, 95% of stable articles is reached after, for example, 70 revisions for
the Greek Wikipedia and 30 or less revisions for all other small Wikipedia editions. It
can be seen that for the Greek Wikipedia, 95% of the articles has the stability of 0.5
or higher after almost 35 revisions, where k = 0.5 is considered as a medium stability
[15]. From this fact one can conclude that the Greek Wikipedia edition is the most
frequently edited one amongst the analyzed small editions. The Czech and Swedish
editions are showing much more semantic stability. 95% of the article corpus of this
two editions has the semantic stability of 0.5 or higher after only about 5 revisions.

Figure 2b shows the stabilization process of large Wikipedia editions where the
achieved stability is 95%. This time, as expected, the English Wikipedia is the most
unstable one. Almost the complete corpus of analyzed articles becomes stable after
almost 95 revisions of each article. The medium semantic stability of the corpus that
is defined by the value of parameter k = 0.5 is, in the case of English Wikipedia,
reached after about 45 revisions, and in the case of the French one (the most stable
one) after about 30 revisions.

These results are in line with the fact that larger communities contribute to the
largest Wikipedia editions (e.g., English, German or French), in comparison to
the communities editing the small Wikipedia editions, written in languages, which
are only used by a very small percent of the world population. Large authoring
community indicates a heterogeneous community based on authors’ expertise, ideas
and opinions, which in turn implies that the contributed content is more colorful. If

3 https://lists.wikimedia.org/mailman/listinfo/wiki-research-l

https://lists.wikimedia.org/mailman/listinfo/wiki-research-l
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Fig. 2: Semantic stabilization of the Wikipedia corpus after a number of succes-
sive revisions. 95% of articles in a corpus become semantically stable, evaluated
based on different RBO thresholds k (y-axis), after r consecutive revisions (x-axis).
The plot in (a) illustrates that almost all small editions exhibit, at the beginning,
a fast increase of the stabilization curves, which remain relatively stable after few
successive revisions. An exception presents the Greek edition, which is the most
frequently edited among the small ones. The plot in (b) depicts that the stabilization
process in large editions is delayed. This indicates that in large editions a higher
number of successive revisions is needed in order to reach the same semantic stability
level as in small Wikipedia editions. These results are consistent with the fact that the
size of the community contributing to the large editions, such as English, can not be
compared to the small ones. Large communities are characterized with heterogeneous
contributors’ expertise, motivation and opinions, which implicates that it takes time
until contributors agree if sufficient and correct information is provided within an
article.

content contributors have different point of views on a particular topic, especially
on controversial topics, they might end up overwriting each others content such
that articles cannot become semantically stable. Thus, in large Wikipedia editions a
higher number of revisions is needed until contributors agree if sufficient and correct
information is provided within an article.

Key findings. Our findings can be summarized as follows: even in policy driven col-
laboration networks such as Wikipedia, semantic stability can be achieved. However,
there are differences on the velocity of the semantic stability process between small
and large Wikipedia editions. In large Wikipedia editions, semantic stability curves
oscillate more at the beginning of the editorial process compared to small editions.
Thus, the mean semantic stability of large Wikipedia editions is significantly lower
in contrast to small Wikipedia editions. In other words, small Wikipedia editions
stabilize faster and achieve higher levels of semantic stability.

(a) Small Wikipedia editions (b) Five largest Wikipedia editions
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4 Related work
The process of consensus reaching among Wikipedia editors has been on the focus
of many recent studies [1, 3, 5, 6, 7, 13, 17]. Authors in [5] study the problem of edit
wars in Wikipedia and model this phenomenon using agent-based systems, based on
theories of group stability and reinforcement learning. Authors show that consensus
is reached faster if the number of credible or trustworthy agents and agents with a
neutral point of view is increased. In the contrary, consensus is hindered when agents
with opposing views are in equal proportion. Similarly, authors in [13] apply also
an agent-based model to emulate conflict scenarios in edit wars and validate their
model by empirical Wikipedia data. Recently published work [3] uses hidden Markov
models to approximate and characterize the computational structure of conflicts in
Wikipedia.

The work presented in [7] investigates the role of conflict in the editorial process
in Wikipedia by studying talk pages. Experimental results reveal that conflict is
central to the editorial processes of Wikipedia; it is a generative friction that is used
by Wikipedia editors as part of a coordinated effort within the community to improve
the quality of articles.

There are several research approaches published in the field of semantic similarity
measurements [4, 10, 11, 12]. Hajian et. al. [4] propose a multi-tree similarity
algorithm as a non-linear technique for measuring similarity based on hierarchical
relations which exist between attributes of entities in an ontology. This method
compensates for the lack of semantic relatedness among features using taxonomic
relations that exist among the features of two entities. In [10] authors implement a
probabilistic method of measuring semantic similarity for real-world noisy short texts
like microblog posts. Their method adds related Wikipedia entities to a short text as
its semantic representation and uses the vector of entities for computing semantic
similarity. The work presented in [11] shows that the combination of knowledge
and corpus-based word-to-word similarity measures can produce higher agreement
with human judgment than any of the individual measures. Authors in [12] present
an approach for measuring semantic similarity between words using the snippets
returned by Wikipedia and the five different similarity measures of association. Their
results demonstrate that the snippets in Wikipedia have a significant influence on the
accuracy of semantic similarity measure between words.

The Rank Biased Overlap or shortly RBO method is introduced in [16]. Our study
is based on the scientific work [15], in which a modified version of RBO is applied
to investigate the semantic stability of social tagging systems. However, in our work
we assess the semantic stability of Wikipedia articles.

5 Conclusion and Future Work
In this work, we study the semantic stabilization of Wikipedia with a focus on the
dynamics of Wikipedia articles’ revisions over time. Our experimental results reveal
that: (i) the analyzed Wikipedia language editions show medium semantic stability
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and (ii) large Wikipedia editions exhibit a significantly lower mean semantic stability
value compared to the small Wikipedia editions.

Our first findings are in line with the research results of the work presented in
[15], in which authors state that natural languages are semantically stable in their
nature. In our case, all the analyzed datasets have at least medium semantic stability.

Our second experimental results indicate that the large Wikipedia editions, which
were utilized for the purpose of this paper are semantically less stable than the small
ones. This observation can be logically explained by the fact that large Wikipedia
editions have much more contributors than the small ones. The sheer size of the
community supporting and developing the English Wikipedia edition cannot be com-
pared to e.g., the size of community working on the Czech Wikipedia edition. Having
many more users contributing to the content means that higher semantic instability
is brought to the system. The users of English Wikipedia are changing the content
of the articles much more than the users of small Wikipedia editions. Additionally,
many articles available in small Wikipedia editions are simply translations of the
articles found in the English Wikipedia. Once translated, such articles are rarely
changed significantly, which contributes to a higher semantic stability of the small
Wikipedia editions.

One of the limitations of our work is that we evaluated only sampled data for the
large Wikipedia editions. However, our software solution is flexible and could be
easily extended to analyze the full Wikipedia corpus of the large editions.

For future work, we plan to investigate the consensus building among editors in
different Wikipedia categories, in order to find out if there are categories that are
unstable. We also want to specifically study the semantic stability of articles marked
as controversial. One of our future plans is to combine the content based approach
introduced in this work with a network based approach. Vandalism detection is also
a topic that could benefit from our work.
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Abstract In the heterogeneous Hegselmann–Krause (HK) opinion dynamics network,
the existence of edges among the agents depend on different connectivity thresholds.
A new version of this model is here presented, by using the notions of coopetition
and cooperosity. Such concepts are defined by combining the representation of the
cooperation, competition and generosity behaviours. The proposed HK model is
recast as a piecewise linear system with the state space partitioned into convex
polyhedra defined by the agents influence functions. A sufficient condition for the
local asymptotic stability, i.e., the consensus, is formulated as a set of linear matrix
inequalities whose solution provides a continuous piecewise quadratic Lyapunov
function. Numerical results show the effectiveness of the proposed approach.

1 Introduction
In the last decades there has been a considerable growth of interest in the analysis of
social networks from the scientific perspective of systems theory [15]. In the so-called
Hegselmann–Krause (HK) model the dynamics of each agent is described by a scalar
differential equation whose discontinuous right hand side depends on the differences
between the agent state with the others [6, 12, 13]. In particular, the state value of
the i-th agent, say ξi, is a measure of the intensity of its opinion or attitude toward
a particular purpose or action [3]. The state interpretation as an agent’s attitude is
more appropriate for the analysis proposed in this paper, however the more common
term opinion will be also used. The opinions difference between each pair of agents
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is weighted by the so-called influence function which is zero if the absolute value of
such difference is larger than a given connectivity threshold [14, 24].

The use of different connectivity thresholds with influence functions depending on
the sign of the attitudes difference, allows one to introduce the concepts of coopetition
(cooperation and competition) and cooperosity (cooperation and generosity). The
former concept has been widely analyzed in the literature. The term coopetition
is a neologism introduced to represent an interaction between agents that compete
and cooperate at the same time [23]. Coopetitive networks have been modelled as
signed graphs where the positive and negative edges represent the cooperative and
competitive interactions, respectively [7, 21]. A variation of the coopetitive model
with sign invariant agents opinions has been proposed in [2]. In this paper we say
that two agents i and j cooperate if both edges from i to j and vice-versa are active.
Under cooperation, we call coopetition the behavior of i versus j when the agent i has
a lower attitude (ξi < ξ j) and the cooperation with j contributes to an increase of ξi.
Analogously, the term cooperosity [22] is a neologism introduced by the authors to
represent the generosity of the agent i who cooperates with the agent j when he has a
better skill (ξi > ξ j) and the agents cooperation results in a decrease of ξi. Following
this interpretation, in the HK model it always happens that the coopetition of i versus
j corresponds to the cooperosity of j versus i, and viceversa.

The analysis of the convergence to a consensus, i.e., all agents reach the same
opinion, has been widely considered in the literature [1, 24]. If the connectivity
thresholds of the agents are different, i.e., the network is heterogeneous, clusters or
consensus are more sensitive to the agents initial opinions, also for the case of few
agents [11, 18, 19, 20]. In this paper we reformulate the HK model in a piecewise
linear (PWL) form and we propose a sufficient condition for the asymptotic stability
to the origin, which is the equilibrium point corresponding to the consensus, by using
a Lyapunov approach. The existence of a piecewise quadratic (PWQ) Lyapunov
function is formulated in terms of linear matrix inequalities obtained by extending
the approach adopted for conewise linear systems [10].

The rest of the paper is organized as follows. In Section 2 we present our opinion
dynamics model with a more general influence function suitable for the analysis of
the coopetition and cooperosity behaviours. In Section 3 the model is represented
in PWL form and in Section 4 the stability problem of the consensus is tackled by
using a PWQ Lyapunov function. The numerical simulations analyzed in Section 5
confirm the effectiveness of our approach. Section 6 concludes the paper.

2 Coopetition and cooperosity

v In this section the coopetition and cooperosity concepts are used to determine a
new formulation of the HK model. The classical HK model consists of a set of N
autonomous agents, whose attitudes are state variables ξi ∈ [0,1] whose dynamics
are described by
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ξ̇i =
N

∑
j=1

φi j(ξi,ξ j)(ξ j−ξi) (1)

for i = 1, . . . ,N, where for simplicity we omit the time dependence of the variables ξi.
The influence function φi j(ξi,ξ j) : [0,1]2→{0,1} is equal to 1 when ξ j influences
the opinion evolution of the agent i, and 0 otherwise. For all agents, we propose an
influence function that depends on the difference ξ j−ξi as follows

φi j(ξi,ξ j) =





1, if −dG
i j ≤ ξ j−ξi ≤ dC

i j

0, otherwise
(2)

where the constant dG
i j ∈ [0,1] is the connectivity threshold bounding the generosity

of the agent i versus the agent j and the constant dC
i j ∈ [0,1] is the connectivity

threshold bounding the competition of the agent i versus the agent j. Without loss of
generality we set φii = 0.

In order to explain the cooperosity and coopetition behaviours, let us consider
Fig. 1. If φi j = 0 the agent i is not connected to the agent j and the dynamics of ξi is
not directly influenced by the state ξ j, while the opposite is allowed, i.e., φ ji can be
equal to 1 although this scenario is not represented in Fig. 1.

Fig. 1 Possible influence
functions φi j and φ ji, both as
a function of ξ j−ξi, showing
the five different behaviours
of i vs. j which can occur
depending on the relative
opinions. In particular, when
−1 ≤ ξ j − ξi < −dG

i j and
dC

i j < ξ j − ξi ≤ +1 the two
agents do not influence each
other. The areas identified
by the letters G, Cr, Ct and
C indicate the generosity,
cooperosity, coopetitive and
competitive behaviours of i vs.
j, respectively.

+1−1 −dC
ji dG

ji

1

ξ j−ξi

φ ji

0

−1−dG
i j dC

i j
+1

1

ξ j−ξi

φi j

0

G Cr Ct C

If φi j = 1 it means that the dynamics of the agent i is influenced by the opinion
of the agent j, while φ ji can be either 0 or 1. Through the concepts of coopetition
and cooperosity we can better specify the actions of i versus j when φi j = 1. Let us
consider the case ξ j < ξi with the influence functions in Fig. 1. From (1) it follows
that the term ξ j−ξi contributes negatively to the derivative of ξi, i.e., it decreases
the attitude of i. This identifies either generosity of i versus j if j is not influenced by
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i (see the region G in Fig. 1), or cooperosity if the agent j is influenced by i (see the
region Cr in Fig. 1).

The coopetitive and competitive behaviours occur when ξ j > ξi. Since ξ j− ξi
is positive, from (1) it follows that the term ξ j − ξi contributes positively to the
derivative of ξi. In other words, being the attitude of the agent j larger then the
attitude of the agent i, the agent i competes with the agent j in the sense that i
improves its attitude. This identifies either coopetition of i versus j if the agent j
is influenced by i (see the region Ct in Fig. 1), or competition if the agent j is not
influenced by i (see the region C in Fig. 1).

The different interactions over the network allow to define for each agent the
corresponding benefits βi and costs σi, i = 1, . . . ,N. Then a fitness can be defined
similarly to the one considered in [16] which extends the one adopted for the repeated
Prisoner’s Dilemma. In particular, we define the fitness of the agent i as the average
of the benefits minus the costs, evaluated over the number of agents connected to i:

fi =
1

∑
N
j=1 φi j

(βi−σi) (3)

with

βi =
N

∑
j=1

φi j

[
φ jiβ

Ct
i +

(
1−φ ji

)
β

C
i

]
step(ξ j−ξi) (4)

σi =
N

∑
j=1

φi j

[
φ jiσ

Cr
i +

(
1−φ ji

)
σ

G
i

](
1− step(ξ j−ξi)

)
(5)

where β
Ct
i and βC

i represent the benefits of the agent i for each coopetition and
competition interaction, respectively, and σ

Cr
i and σG

i represent the costs of the agent
i for each cooperosity and generosity interaction, respectively.

An interesting interpretation of (3) can be obtained by assuming β
Ct
i = βC

i = β̄i

and σ
Cr
i = σG

i = σ̄i. In this case, if the agent i is a pure selfish, i.e., dG
i j = 0 for all j,

then from (4)–(5) and (3) it follows that fi = β̄i and does not depend on the number
of connected agents. Analogously, for a pure altruist agent one can set dC

i j = 0 for
all j, then from (4)–(5) and (3) it follows that fi =−σ̄i, i.e., the agent has only costs
and no benefits.

3 PWL form of the opinion dynamics model
The model (1) can be written in a PWL form [8]. Indeed, for each combination of the
influence functions values, (1) is a linear time invariant model which can be rewritten
in the matrix form

ξ̇ = Fsξ (6)

with
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Fs =




−∑
N
j=1 φ1 j φ12 . . . φ1N

φ21 −∑
N
j=1 φ2 j . . . φ2N

...
... . . .

...
φN1 φN2 . . . −∑

N
j=1 φN j




(7)

for s = 1, . . . ,S, and S is the total number of state space polyhedral regions corre-
sponding to all the feasible combinations of the influence functions values. The
number of functions φi j is Nφ = N(N−1).

In the case of a static graph the influence functions φi j are fixed to 1 if the
corresponding agents are connected and to 0 otherwise. As a consequence the matrix
Fs is constant and it is the opposite of the classical Laplacian matrix.

Each index s corresponds to a polyhedral region of the state space and it can be
represented by means of inequalities which depend on φi j. To this aim let us define
the canonical vector ei which has all entries equal to 0 except for the i-th element
which is equal to 1. Then the expression (2) can be rewritten as

φi j(ξ ) =





1, if


 e>j − e>i

e>i − e>j


ξ ≤


 dC

i j

dG
i j




0, if (e>i − e>j )ξ ≤−dC
i j

0, if (e>j − e>i )ξ ≤−dG
i j

(8)

for i= 1, . . . ,N, j = 1, . . . ,N. The formulation (8) induces a partition of the state space
[0,1]N into polyhedral regions, each one corresponding to a feasible combination of
the influence functions φi j. In particular the polyhedra are defined by

Dsξ ≤ δs (9)

s = 1, . . . ,S, where Ds ∈ R(Ns+2N)×N and δs ∈ R(Ns+2N) are constant matrices which
can be obtained by collecting the Ns≤ 2Nφ independent inequalities deriving from (8)
and the 2N inequalities corresponding to the state boundaries 0≤ ξi ≤ 1, i = 1, . . . ,N.
The expression (9) is an H-representation of the s-th polyedron. A classical hetero-
geneous HK model assumes that the connectivity thresholds are not dependent on
the direction of the connection [6], i.e.,

dC
i j = dG

ji , dG
i j = dC

ji, (10)

which in our vision can be interpreted as i being competitive (generous) versus j so
as j is generous (competitive) versus i. Under the assumptions (10), the condition
φi j = φ ji holds and the matrix Fs is symmetric.

Therefore, from (1) it follows that the sum of the states time derivatives is identi-
cally zero and the agents attitudes preserve their average for any time instant. We
consider the general case where (10) do not hold. Since we are still interested in the
convergence analysis to a consensus, it is useful to introduce a state transformation
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which has the origin as an equilibrium point. Let us introduce the opinions differences

xi = ξi−ξN , (11)

for i = 1, . . . ,N − 1. Any difference of two opinions can be written as a linear
combination of the variables (11). Indeed:

ξ j−ξi = (ξ j−ξN)− (ξi−ξN) = x j− xi (12a)
ξ j−ξN = x j (12b)
ξN −ξi =−xi, (12c)

for any i = 1, . . . ,N − 1, j = 1, . . . ,N − 1. By combining (11) and (12) together
with (1), one obtains

ẋi = ξ̇i− ξ̇N =
N−1

∑
j=1

φi j(ξ j−ξi)+φiN(ξN −ξi)−
N−1

∑
j=1

φN j(ξ j−ξN)

=−




N

∑
j=1

φi j +φNi


xi +

N−1

∑
j=1, j 6=i

(φi j−φN j)x j, (13)

for i = 1, . . . ,N−1.
The expression (8) can be rewritten in terms of the opinions differences (11). In

particular by using (12a) the influence functions can be expressed as

φi j(x) =





1, if


 e>j − e>i

e>i − e>j


x≤


 dC

i j

dG
i j




0, if (e>i − e>j )x≤−dC
i j

0, if (e>j − e>i )x≤−dG
i j

(14)

for any i = 1, . . . ,N−1, j = 1, . . . ,N−1 where x ∈ [−1,1]N−1 is the state vector of
the opinions differences (11) and the canonical vectors ei have dimension N−1. By
looking at (13) we need to define also the influence functions φN j and φiN in terms
of the opinions differences. By using (12b) in (8) one obtains

φN j(x) =





1, if


 e>j
−e>j


x≤


dC

N j

dG
N j




0, if −e>j x≤−dC
N j

0, if e>j x≤−dG
N j

, (15)

for any j = 1, . . . ,N−1 and by using (12c) in (8) one obtains
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φiN(x) =





1, if


−e>i

e>i


x≤


dC

iN

dG
iN




0, if e>i x≤−dC
iN

0, if −e>i x≤−dG
iN

, (16)

for any i = 1, . . . ,N−1.
The formulation (14)–(16) induces a partition of the state space [−1,1]N−1 into

polyhedral regions, each one corresponding to a feasible combination of the influence
functions φi j. In particular the polyhedra are defined by

Csx≤ γs (17)

s = 1, . . . ,S, where Cs ∈ R(Ns+2N−2)×(N−1) and γs ∈ R(Ns+2N−2) can be obtained by
collecting the Ns independent inequalities (14)–(16), and the 2(N−1) inequalities
corresponding to the state boundaries −1 ≤ xi ≤ 1, i = 1, . . . ,N− 1. The expres-
sion (17) is an H-representation of the s-th polyedron.

By collecting all (13) together with (14)–(16), we obtain the HK model on relative
opinions in the following PWL from

ẋ = Asx, x ∈ Xs, s = 1, . . . ,S (18)

where
Xs = {x ∈ RN−1 |Csx≤ γs} (19)

As =




−∑
N
j=1 φ1 j−φN1 φ12−φN2 . . . φ1N −φN,N−1

φ21−φN1 −∑
N
j=1 φ2 j−φN2 . . . φ2N −φN,N−1

...
... . . .

...
φN−1,1−φN1 φN−1,2−φN2 . . . −∑

N
j=1 φN−1, j−φN,N−1



. (20)

By comparing (20) with (7) it follows that the matrix As can be obtained by taking
the first N−1 rows and N−1 columns of Fs and by subtracting to each column of
this matrix the corresponding element of the last row of Fs:

As = Fs(1 : N−1,1 : N−1)−Fs(N,1 : N−1)⊗1N−1, (21)

where 1N−1 is the N−1 column vector with all ones. The origin of (18) corresponds
to the consensus.

4 A sufficient condition for the consensus
In this section we propose a sufficient condition for the asymptotic stability of the
origin of the PWL model (18)–(19). To this aim let us recall some definitions.
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Given λ points {v`}λ
`=1, v` ∈ Rn, λ ∈ N, a conical hull, say cone{v`}λ

`=1, is
the set of points v ∈ Rn such that v = ∑

λ
`=1 θ`v`, with θ` ∈ R+; a convex hull, say

conv{v`}λ
`=1, is the conical hull with ∑

λ
`=1 θ` = 1. Each polyhedron Xs ⊂ [−1,1]N−1

in (19) can be equivalently represented by means of its V-representation

Xs = conv{vs,`}λs
`=1 (22)

with s= 1, . . . ,S. The vertices {vs,`}λs
`=1 of the polyhedron Xs can be obtained from the

H-representation (19) by using numerical tools, e.g., the tool cddmex in Matlab [4].
The conical hull of a polyhedron Xs represented as in (22) is the cone CXs ⊂ RN−1

defined as
CXs = cone{vs,`}λs

`=1. (23)

Another cone of interest for our analysis, corresponding to the polyhedron Xs, is the
cone generated by the homogenization procedure [9]:

ĈXs = cone





(
vs,`

1

)


λs

`=1

. (24)

Let us define the ray matrix Rs ∈ R(N−1)×λs of the cone CXs ⊂ RN−1 corresponding
to Xs as follows

Rs =
(

vs,1 · · · vs,λs

)
, (25)

and the matrix R̂s ∈ RN×λs given by

R̂s =

(
vs,1 · · · vs,λs

1 · · · 1

)
. (26)

With reference to the partition {Xs}S
s=1, say Σ0 the subset of indices s such that 0∈ Xs

and Σ1 its complement, i.e., Σ0∪Σ1 = {1, . . . ,S}.
The asymptotic stability to the consensus is studied by using a Lyapunov approach.

Let
V (x) = x>Psx+2q>s x+ rs, x ∈ Xs, s = 1, . . . ,S (27)

be the candidate PWQ function, where {Ps}S
s=1 are symmetric matrices with Ps ∈

R(N−1)×(N−1), {qs}S
s=1 are vectors with qs ∈ RN−1, {rs}S

s=1 are real scalars.
An important aspect for our stability analysis is the continuity of (27). Consider

the matrices {P̂s}S
s=1 with P̂s ∈ RN×N given by

P̂s =

(
Ps qs

q>s rs

)
. (28)

Say Xh and Xk two elements of {Xs}S
s=1 such that Xh ∩Xk 6= /0 and Γhk ∈ RN×mhk ,

mhk < N the matrix of the common rays of the corresponding cones ĈXh and ĈXk
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obtained by applying the homogenization procedure. If the following conditions hold

Γ
>

hk (P̂h− P̂k)Γhk = 0 (29)

for all h,k ∈ {1, . . . ,S}, such that Xh∩Xk 6= /0, then (27) is continuous on the common
boundary between Xh and Xk, see [8].

We consider the stability problem for the origin of the model (18). It is as-
sumed that, for any initial condition, (18) has at least one solution in the sense of
Caratheodory, i.e., there exists an absolutely continuous function x(t) : [0,∞)→RN−1

which satisfies (18) almost everywhere. We assume that the system does not present
sliding modes and Zeno behaviours.

By using the results in [8] it is easy to get a sufficient condition for the local
asymptotic stability of the origin of (18). The condition is formulated as the feasibility
of a set of constrained linear matrix inequalities. Any solution of this set directly
provides the matrices of a PWQ Lyapunov function.

Theorem 4.1. Consider the PWL system (18) with the polyhedra {Xs}S
s=1 expressed

as (22) and the PWQ function (27) as a candidate Lyapunov function. Consider the
matrices {Rs}s∈Σ0 with Rs ∈R(N−1)×λs given by (25) and the matrices {R̂s}s∈Σ1 with
R̂s ∈ RN×λs given by (26). Define the matrices

Âs =

(
As 0N−1

0>N−1 0

)
(30)

with s ∈ Σ1. Consider the set of LMIs

R>s PsRs−Ns < 0 (31a)

−R>s (A
>
s Ps +PsAs)Rs−Ms < 0 (31b)

for all s ∈ Σ0, and

R̂>s P̂sR̂s−Ns < 0 (32a)

−R̂>s (Â
>
s P̂s + P̂sÂs)R̂s−Ms < 0 (32b)

for all s ∈ Σ1, and the set of inequalities

2q>s Rseh ≥ 0, 2q>s AsRseh ≥ 0 (33)

for h = 1, . . . ,λs, s∈ Σ0. If there exist symmetric matrices {Ps}S
s=1, {qs}S

s=1, {rs}s∈Σ1 ,
symmetric (entrywise) positive matrices {Ns}S

s=1 and {Ms}S
s=1, such that the set of

linear matrix inequalities (31), (32) subject to the equality constraints (29) and to the
inequality constraints (33) has a solution, then the origin is locally asymptotically
stable for any initial condition in the partition ∪S

s=1Xs, provided it is an invariant set.
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5 Numerical results
In this section some numerical simulations are illustrated and the proposed PWQ
Lyapunon function approach is applied for the stability analysis of (18)–(19).

In Fig. 2 two different time evolutions of (1) with N = 100 are shown. A homo-
geneous scenario, with the same connectivity thresholds for all agents, that lead to
clustering is shown in Fig. 2(a). By introducing a random amount of generosity, the
agents reach the consensus so as shown in Fig. 2(b).
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(a) Clustering without generosity
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(b) Consensus with generosity

Fig. 2: Two different time evolutions of (1) with N = 100 and the same initial
conditions (uniformly distributed in the interval [0,1]): dC,G

i j = dC,G
ji = 0.24 (a);

dC
i j = dC

ji = 0.24, dG
i j = dG

ji randomly chosen with uniform distribution in the interval
[0.23,0.25] (b).

Fig. 3 shows how generosity affects the average of the agents’ opinions and the
agents’ fitness: by increasing the generosity, the corresponding averages increase,
i.e., a larger benefit for all agents is obtained. This result confirms that more gen-
erosity leads to a larger benefit for the entire network [17], let us say an improved
social capital. Viceversa, it can be shown that by increasing connectivity thresholds
corresponding to the competition, the averages of the attitudes decrease.

Theorem 4.1 has been applied for the stability analysis of (18)–(19) with N = 3
and all thresholds equal to 0.5. By solving (29)–(33) with Matlab and CVX [5], a
PWQ Lyapunov function has been obtained for the star-shape region contained in
the feasibility domain shown in Fig. 4(a). By virtue of Proposition 2.1 in [14] and
Proposition 3.3 in [24], the star-shape region in Fig. 4(a) is an invariant set, which
allows to conclude the local asymptotic stability of the consensus. Fig. 4(b) shows a
state trajectory and some level curves of the obtained PWQ Lyapunov function.

6 Conclusion
Starting from the heterogeneous HK model, a new opinion dynamics model has
been proposed. The model is based on the concepts of generosity and competition,
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Fig. 3: Time evolutions for (1) with N = 100, initial conditions uniformly distributed
in the interval [0,1], dC

i j = dC
ji = 0.20 and dG

i j = dG
ji randomly chosen with uniform

distribution in the intervals [0.20,0.20+ h/10] for h = 0, . . . ,8 identifying the 9
different simulations: opinions average (a); fitness average with β

Ct
i = 1, βC

i = 0.8,
σ

Cr
i = 0.6, σG

i = 0.5, ∀i (b).

Fig. 4: State space for the model (18)–(19) with N = 3 and dC
i j = dG

i j = 0.5, i = 1,2,3,
j = 1,2,3: polyhedral partition (19) (a); a state trajectory (black line) and some level
curves of the PWQ Lyapunov function (dotted red lines) (b).

togheter with their combination with the cooperation between agents which leads
to the coopetition and cooperosity behaviours. The model has been represented in
a PWL form by using the state space polyhedra partition induced by the influence
functions values. A PWQ Lyapunov function approach has been applied in order to
determine a region of attraction of the consensus. Future work will investigate the
validation of the proposed model through empirical data representing how attitudes
dynamically evolve in human networks.
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Abstract This paper investigates the effect of direct reciprocity on voluntary partic-
ipation in social networking services (SNS) by modeling them as a type of public
goods (PG) game. Because the fundamental structure of SNS is similar to the PG
games, some studies have focused on why voluntary activities in SNS emerge by
modifying the PG game. However, their models do not include direct reciprocity
between users, even though it is known that reciprocity is a key mechanism to main-
tain and evolve cooperation in human society — one that is actually observed on
SNS. To analyze the effect of reciprocity on SNS, we first developed an abstract
model of SNS called reciprocal rewards and meta-rewards games that are extensions
of the PG game. Then, we conducted experiments to understand how reciprocity
facilitates cooperation by examining the proposed games using complete-graphs, WS
networks, and a Facebook network. Finally, we analyze the findings derived from
our experiments using the reciprocal rewards games and propose the concept of half
free-riders to explain what maintains cooperation-dominant situations.

1 Introduction
Many people use one or a few social networking services (SNS) such as Twitter,
Facebook, and Google+, not only to share and exchange local information among
limited specialized and close-friend groups but also to publish/obtain public infor-
mation for the purposes of opinion exchange, advertising, marketing, and political
participation/campaigns [13]. SNS are usually run by companies and organizations
but cannot persist without a huge amount of updated content posted continuously
by individual users. However, the mechanism that leads to such continual posting
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activities is not well known, since such user activities incur various costs and effort
in terms of creating and submitting the content. In addition, some free riders (or
lurkers) exist, that is, users that just read the content and never post articles. To
provide incentives to individual users to keep submitting content, many SNS have
introduced a number of specific mechanisms, such as providing comments on articles,
comments on comments, the number of followers, signs showing articles have been
read, and “Like” buttons. These mechanisms can provide quantitative rewards (e.g.,
showing the numbers of readers and followers) as well as psychological rewards
that provide feelings of connection to people and a sense of belonging [9]. However,
these incentives also rely on users’ voluntary behavior and incur some cost and time
on them.

As the variety of social media on the Internet continues to spread all over the
world, it is an important issue to identify the conditions, mechanisms, and/or design
methodology inherent to an active and thriving SNS. One approach to this end is based
on an evolutionary game theoretic approach. For example, Toriumi et al. [15] and
Hirahara et al. [6] discussed mechanisms to keep SNS active by using an evolutionary
game on a variety of network structures. They proposed a rewards game (RG) and
meta-rewards game (MRG), which were dual parts of Axelrod’s meta-norms game,
and their own extension, called an SNS-norms game [6], to identify evolved behaviors
of agents that are the model of SNS users. They then analyzed the conditions for a
cooperation dominant situation, which corresponds to when SNS are active. They
found that meta-rewards such as comments on article comments [15] and a simple
(so, low-cost) response mechanism for rewards such as “Like” buttons for articles [7]
play an important role in SNS. However, these studies did not consider social and
personal relationships between peers. Furthermore, some SNSs have no mechanism
to provide meta-rewards, and we believe that another mechanism also affects SNS
activities.

Nowak [11] pointed out that one of five mechanisms — kin selection, direct
and indirect reciprocity, network reciprocity, and group selection — is necessary
for evolving cooperation in human society, and Rand and Nowak [12] showed the
empirical evidence for human cooperation by these mechanisms. Such mechanisms
also exist and play crucial roles in online networks [5, 8, 14]. For example, Faraj
and Johnson [5] found that network exchange patterns in an online community are
characterized by reciprocity patterns and are different from those characterized by
preferential attachment [4]. Takano et al. [14] analyzed player action logs and found
that cooperation based on reciprocity could be observed in a network game. We
conclude that reciprocity, especially direct reciprocity, is essential in SNS because
connections between users are usually established by direct interaction such as
“comments on articles” and “comments on comments.”

Thus, we extended an existing abstract model of SNS [15] to examine the effect
of direct reciprocity between users on continual and active use of SNS. The extended
model is called a reciprocity (meta-)rewards game whose structure is similar to the
(M)RG, but agents tag the peer agents and decide their behaviors on the basis of recent
reciprocal behaviors of these peers. We then investigate why the rates of cooperation
increase and when the established cooperation collapses. Our experimental results



Effect of Direct Reciprocity on Continuing Prosperity of Social Networking Services 413

Fig. 1: Meta-rewards and rewards games. Fig. 2: Reciprocity (meta-)rewards game.

using complete and WS networks [16] suggest that users are cooperative not with all
agents but with a few mutually close friends established on the basis of past reciprocal
behavior. To explain this phenomenon, we propose the concept of half free-riders
and discuss the interaction structure to maintain a cooperation-dominant situation
that corresponds to a situation in which SNS continue to prosper. We also found that
network structure affects the continuation of a cooperation-dominant situation.

2 Proposed Model for Social Networking Services
2.1 Reciprocity Reward and Meta-Rewards Games
SNS are sustainable only when many articles and comments on them are posted by
and shared among anonymous participants. Although some cost in terms of personal
time and effort is incurred, users can obtain some information by reading it and can
receive responses that provide feelings of connectivity, empathy, and contentment.
On the other hand, there are many free riders who only read content. Therefore, SNS
have the properties of public goods that are produced and maintained by cooperation
in the SNS community, and its game structure is essentially an n-person prisoner’s
dilemma (PD) game. Toriumi et al. [15] proposed RG and MRG as dual games of
norms and meta-norms games [3] (Fig. 1) and attempted to explain the mechanism
of voluntary participation in SNS. Although they showed that meta-reward, which
corresponds to “comments on a comment,” for example, is important in terms of
providing incentives to continue voluntary participation, they ignored reciprocity,
which is a crucial characteristic to understand the activities in SNS. Hence, we
introduce the reciprocity rewards game (RRG) and reciprocity meta-rewards game
(RMRG) by incorporating the reciprocal relationships among agents into the RG and
MRG (see Fig. 2).

Let A = {1, . . . ,n} be the set of agents. Agents are connected with graph G =
(A,E), where E is the set of links between agents. The set of neighbor agents of
i ∈ A is denoted by Ai (⊂ A). Agents in an R(M)RG game select the strategy of
either cooperation or defect. Cooperation indicates posting articles and comments,
and defect indicates just reading them. A user who almost always selects defect is
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called a free rider. Agent i ∈ A has three learning parameters: the probability of
cooperation (i.e., posting a new article) Bi, the probability of giving rewards (e.g.,
posting a comment on the article) to reciprocal agents LCi , and the probability of
giving rewards to other (normal) agents LNi . We call Bi, LCi , and LNi the posting
article rate, the reciprocal comment rate, and the normal comment rate, respectively.
We also call both LCi and LNi the comment rates hereafter. To apply the genetic
algorithm, we express each of these parameters as three bits, so it has a discrete
value 0/7, 1/7, . . . , or 7/7. This expression is identical to that used in the meta-norms
game [3]. Agent i has the memory for reciprocal agents Wi, which is the set of
neighbor agents that posted comments on i’s articles or i’s comments in the recent
TW rounds. The positive integer Tw is called the memory length.

An RRG or RMRG proceeds as follows. For ∀i ∈ A, parameter St
i (0≤ St

i ≤ 1) is
defined randomly or with a certain method in the t-th round (t is a positive integer)
when i is going to post an article. If St

i ≥ 1−Bi, i posts a new article with cost F and
with probability St

i , and agent ∀ j ∈ Ai reads the article posted by i and gains reward
M by reading it. Then, j proceeds to the next phase with probability St

i . Agent j
comments on the article with probability L ji, where L ji = LC j if i ∈Wj; otherwise
L ji = LN j . Then, j pays cost C, and i gains reward R through j’s comment. The game
chain so far is referred to as the RRG.

Subsequent to the RRG, k ∈ Ai reads j’s comment and proceeds to the next
phase with probability St

i . If this happens, k posts a response to the comment with
probability Lk j, where Lk j = LCk if j ∈Wk and Lk j = LNk if j 6∈Wk. When k posts it, k
pays cost C′′ and j gains reward R′′. Then, the RMRG ends here. All agents perform
this game once in a round. Note that because rewards and meta-rewards games do
not take into account reciprocity, agents have only LNi (which is denoted by Li in
RG) and Wk = /0.

2.2 Evolution by Genetic Algorithm
RRG and RMRG are evolutionary games, as are (meta-)norms and (meta-)rewards
games. We define one generation of the game as the term in which all agents have
four chances to post articles. At the end of one generation, each agent selects two
agents as parents from its neighbors on the basis of fitness values, which are defined
as the cumulative rewards received minus the cumulative costs incurred during the
current generation. This process is continued up to a certain generation.

Each of three learning parameters, Bi, LCi , and LNi , is represented in three bits gene.
The initial values of the nine bits genes are set randomly (agents in RG have six bits
genes). The evolution consists of three phases: (1) selection of parents, (2) crossover,
and (3) mutation. A child agent of i for the next generation is then generated as
follows. First, in the parent selection phase, i selects two parent agents from i and i’s
neighbor agents on the basis of the probability distribution {Π j| j ∈ Ai∪{i}} defined
as

Π j = (v j− vmin)
2/∑

k∈A
(vk− vmin)

2, (1)
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Table 1: Parameter values used in experiments.

Parameter Value
Cost of posting article F −3.0

Reward for reading article M 1.0

Parameter Value
Cost of comment C −2.0

Reward for receiving comment R 9.0

where Ai is the set of the neighbor agents of i, vk is the fitness value of agent k ∈ A,
and vmin = mini∈A vi. Then, two new genes are generated using uniform crossover
from the genes in the selected parent agents and one of them is randomly selected in
the crossover phase. In the mutation phase, each bit of the gene of the child agent is
inverted with the probability of 0.005. This means that if there are 20 agents in the
network, 0.9 bits will mutate on average. After that, the derived gene is used for the
child agent of i.

3 Experiments and Discussion
3.1 Experimental Setting
Our experiments focus on the RRG, since rewards by comment on a comment
seem small and thereby insignificant in SNS. Furthermore, some simple response
mechanisms (rewarding mechanisms), such as “Like” buttons and “read” icons,
have no mechanism to give meta-rewards for posting articles. We rather think that
reciprocity is more significant in SNS. We compare the results of RRG with those of
RG [15] to investigate the features of the reciprocity rewards game. We investigate
how reciprocity affects user behavior on SNS in our experiments. For this purpose,
we compare the transitions of the average rates of cooperation, that is, posting articles
or comments, in RRG with those in RG on complete graphs that have 20 nodes (so its
average degree is 20), WS networks [16] that have 1000 nodes (average degree is 20),
and an instance of a Facebook network [1] that has 4039 nodes. Note that in RRG,
agents separately manage comment rates for reciprocal and normal agents in their
genes. The parameter values we set in these experiments are listed in Table 1. These
parameter values are determined on the basis of the experiments of Axelrod [3] and
Toriumi et al. [15] and to compare our results with theirs. Note that the experimental
data below are the average values of 20 independent experimental runs based on the
different random seeds.

3.2 Effect of Reciprocity on Cooperation
Figures 3 and 4 indicate how the probabilities of posting an article and a comment
varied over generation in the complete graph. Note that the average posting article rate
B is defined as ∑i∈A Bi/|A|, the average reciprocal comment rate LC = ∑i∈A LCi/|A|,
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and the average normal comment rate LN = ∑i∈A LNi/|A|. We show B and the average
comment rate L = ∑i∈A Li/|A| in RG.

In RG (Fig. 3), B and L transition at approximately 0.17 and 0.05, respectively. On
the other hand, B and LC transition at approximately 0.34 and 0.42, and LN transitions
at approximately 0.12 in RRG (Fig. 4). These results indicate that the values of B, LC,
and LN in RRG were larger than those in RG. Thus, by taking into account reciprocity
to decide the behavior, the activity in SNS improves in the complete graph, although
that improvement is limited.

In the WS networks, we observes quite different phenomena. As shown in Figs. 5,
the ratios of B, LC, and LN kept relatively higher values when 0≤ p≤ 0.1, where p
is the re-wiring probability in the WS model. However, when p = 0.3 and 0.5, the
values of B became lower and fluctuated more. In particular, when p = 0.5 (Fig. 5(f)),
B was close to that of the complete graph (Fig. 4). We also plotted in Fig. 6 how the
average rates of B, LC, and PN changed in accordance with p to examine the effect
of re-wiring probability on the agent’s activity. Note that the WS model generates a
regular graph when p = 0, whereas it generates random networks when p = 1 [10].
Their cluster coefficients are low when p > 0.1, so the small-world property with a
high cluster coefficient only appears when p≤ 0.1. From these experimental data, we
can say that in WS networks with small-world property and high-cluster coefficients,
cooperation was dominant, but with the increase of re-wiring probability (p > 0.1),
dominance of cooperation became weaker, and finally, B was around 0.3, which was
slightly smaller than that of complete graphs.

Finally, we conducted the same experiments using an actual Facebook network [1].
This result, plotted in Fig. 7, indicates that posting article rate B was around 0.88,
which is close to that of WS networks with p between 0.1 and 0.2.

3.3 Analysis of Phenomena
To understand more clearly why B, LC, and LN increased in RRG more than in RG
(although the increases were sometimes limited), we investigated the results of one
experimental trial of RG and RRG. Figures 8 and 9 show the results of the RG

Fig. 3: Posting article and comment rates
in RG (complete graph).

Fig. 4: Posting article and comment rates
in RRG (complete graph).
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and RRG in the complete network. Figure 8 indicates that the posting article and
comment rates, B and L, rose temporarily and then immediately dropped in RG.
Such temporary cooperation was caused by mutation. However, RG cannot maintain
cooperation because it has no meta-reward mechanism and so has no incentive to
comment on articles. This also caused agents to lose the incentive to post new articles,
and cooperation therefore disappeared immediately. We also found that B, LC, and
LN temporarily increased and then dropped in RRG. In both games, cooperation
could not last for long, so their average values became small.

However, if we compare these figures more carefully, we can observe the differ-
ence between RG and RRG. Figure 8 indicates that B in RG occasionally increased
to approximately 0.85 – 0.9 but did not reach 1.0. The value of L also increased but
was much lower than that of B. We can explain this situation as follows. Some agents
might have the genes to post articles comments by mutation, so their fitness values
might slightly increase, and their genes spread to some degree. However, the RG has

Fig. 5: Posting article and comment rates in RRG (WS networks).
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no incentive for giving comments (meta-rewards); agents with relatively large L also
had low fitness values, so the value of L did not increase that much. After that, B > L
was held, and thereby the agents that post articles could not earn sufficient rewards,
their fitness values decreased, and cooperation easily collapsed.

On the other hand, in RRG, B, LC, and LN rose intermittently for the same reason
as the RG, but B and LC reached 1.0 and lasted for a short period, as shown in Fig. 9;
this means that almost all agents cooperate (posting articles) and give comments on
cooperators’ articles during this term. Furthermore, the value of LC rarely dropped to
zero. The difference between the RG and RRG is that, in the RRG, agents distinguish
reciprocal agents from other agents and so can behave differently. Thus, agent i
with high LC comments selectively only on articles posted by reciprocal agents who
commented on past articles posted by agent i. Such selective comments can prevent
the collapse of cooperation by reducing the cumulative cost for comments. However,
such prevention of collapse works only when LC > LN and LN is low; otherwise,
many agents begin to comment on arbitrary articles without rewards and to have
many reciprocal agents. This led to the game structure similar to RG, resulting in the
high cost (no incentive to comment) and the collapse of cooperation.
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Fig. 6: Posting article rates in WS net-
work with an approximate polynomial
curve.

Fig. 7: Posting article rates (a Facebook net-
work).

Fig. 8: Posting article and comment
rates in RG (one trial).

Fig. 9: Posting article and comment rates
in RRG (one trial).
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In WS networks with small-world property and high-cluster coefficients, LN
maintained lower (around 0.25) and LC maintained around 0.6, as shown in Fig. 10(a),
which plots B, LC, and LN in WS networks with p= 0.05. This situation could balance
between the costs and rewards, i.e., keep the balance in the numbers of posting articles
and comments that incur some costs to contributors and rewards to receivers in the
network. Such a condition could keep the posting article rate B higher. However, in
WS networks with p > 0.1, B was considerably fluctuated, so the average became
smaller, as shown in Fig. 10(b,) which shows the WS networks with P = 0.5 as an
example. Furthermore, LN was near 0, and LC was also smaller than that in Fig. 10(a).
The distribution of B seemed to be correlated with that of LC and LN , and we think
that LN affected agent’s activity more strongly.

To analyze this situation, we investigated the average number of reciprocal agents
that each agent has in WS networks with p = 0.05 and 0.5, which is plotted in
Fig. 11. Figure 12 also plots the average number of reciprocal agents in WS networks
(0 ≤ p ≤ 1). Figure 11 indicates that when p = 0.05, agents had three to four
reciprocal agents, and thus the reciprocity affected the agent’s strategies in RRG.
However, when p = 0.5, agents had a small number of reciprocal agents, so their
strategies are affected more by the normal agents. This structure of mutual effect is
also identical to that of RG. Therefore, when p = 0.5, even if B temporary decreased,

Fig. 10: Posting article and comment rates in RRG (one trial, WS networks).

Fig. 11: Average number of reciprocal
agents over generations (WS and Face-
book networks).
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a small number of reciprocal agents continue to comment on articles (LC ≈ 0.3)
and B decreased (but did not reach zero). When LN became large by mutation, B
increased again. However, because posting articles required some cost and agents
could not receive sufficient comments, agents stopped posting them. Thus, we can say
the reciprocity can maintain the dominance of cooperation in RRG if agents have an
appropriate number (in our case, between 3 and 4) of reciprocal neighbors. However,
unlike complete graphs, LN was always less than half of LC in WS networks (Fig. 6);
the reason behind this phenomenon requires further analysis.

In a Facebook network (Fig. 13), the curves had the properties observed in
Fig. 10(a) and (b), but are more complicated because its network consists of a
number of communities that individually have their own sub-structures, as shown in
Fig. 14, which is the visualized Facebook network used in this experiments. Though
B, LC, and LN are fluctuated, the positing article rate B and the number of reciprocal
agents maintained higher values (Figs. 11 and 13). Thus, we can say that separation
of reciprocal and normal agents contributed to the thriving of RRG in this network.

3.4 Discussion
We explain what the phenomena described above in the RRG correspond to in actual
SNS. When SNS users did not consider direct reciprocity when using SNS (that is,
RG), users who often comment must stop commenting because RG has no incentive
for comments. In RRG, when LN is large, users take a similar strategy, i.e., users
comments on many articles but have to pay high cumulative costs, and other agents
stop posting articles. On the other hand, if individual users consider direct reciprocity
to comment, they would comment on the articles of reciprocal users preferentially by
looking at the content of memory, Wi. Furthermore, the number of reciprocal agents
was not so large, only a few agents. Thus, when LN is small, such selective comment
behavior for receiving comments in future facilitates and maintains the norm for

Fig. 13: Posting article and comment
rates in RRG (one trial, a Facebook net-
work).

Fig. 14: Facebook network structure.
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cooperation. We also believe that condition LN � 1 is a reasonable assumption in
actual SNS.

If we look at our results from the macro-viewpoint, we have a number of sug-
gestions related to the activity structure of SNS. First, agents seem to behave like
half free-riders in cooperation-dominant situations. Agents gain rewards by reading
articles of normal agents and do not pay for commenting on these articles. This part
corresponds to free-rider’s behavior. However, because only this behavior makes
SNS inactive, agents heartily comment only on the articles posted by reciprocal
agents. Agents have to pay some cost for these comments, but because the number
of reciprocal agents is limited, we can keep the total cost lower. Of course, if agents
post more comments on the articles posted by normal agents, the total cost increases
and cooperation collapses.

Because we can assume that reciprocal agents are like close friends in human
societies, the situation mentioned above is often exposed in actual SNS. A user, u,
may have many peers, so u reads many articles posted by them. However, to gain
the incentive to post articles, u has to receive not many but rather secure comments
from u’s close peers. The articles posted by u are also read by many other users who
can gain some rewards by behaving as free-riders for u. This relationship suggests
the hierarchical (ego) structure observed in SNS [2], although the structure in our
experiments is simpler. We will have to analyze the topological structure of close-
friend relationships in RRG and compare it with the ego network observed in SNS.

Another interesting and remarkable phenomenon is that network structure affects
the strategy for having close friends (so, securely interactive) or not in the RRG. In a
certain type of network, like complete graphs and WS networks with high p values,
posting article rate B was fluctuated and its average value became low. In this type of
network, the number of reciprocal agents was low and their activity is mainly affected
by only LN . In contrast, in WS networks with low p (0≤ p≤ 0.1), a high posting
article rate was the dominant strategy and the cooperation was supported by high
LC. The Facebook network used in this experiment seems to be a collection of sub-
networks that belong to the latter type of networks, where agents have appropriate
numbers of close friends and posting articles/comments to each other is the dominant
strategy. However, what characteristic of the network decides the agent strategy is
still unknown, and this remains our future work.

4 Conclusion
We investigated the effect of reciprocity between users on the prosperity of SNS. For
this purpose, we first proposed the reciprocal rewards game, which is an abstract
model of SNS and an extension of the rewards game [15]. The structure of reciprocity
between users is not included in the original rewards and meta-rewards games, al-
though we believe that reciprocity affects the user’s SNS activity. We conducted
our experiments using complete graphs, WS networks, and a Facebook network to
understand and analyze the effect of reciprocity on SNS activities on the evolution of
cooperation. Our experimental results suggested that when the user behaved as a half



422 Kengo Osaka, Fujio Toriumi and Toshiharu Sugawara

free-rider, meaning that the user behaved as a cooperator to a small number of recip-
rocal peers (close friends) but behaved as a free-rider to other peers (acquaintances),
cooperation can evolve and be maintained.

We plan to investigate the characteristics of networks where it is more advanta-
geous to have reciprocal agents to maintain secure interaction. In addition, we believe
that interaction takes place not only between two users but also in a group of users,
so we will include indirect reciprocity in our model in future.
Acknowledgement: This work is partly supported by JSPS KAKENHI (25280087).
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Abstract We examine the dynamics of co-evolution of two coupled social networks.
The first is a cognitive network defined by nominations based on perceived promi-
nence collected from repeated surveys of students during their first four semesters
of college while the second is built from the behavioral network representing ac-
tual interactions between these individuals based on records of their mobile calls
and text messages. We address three interrelated questions. First, we ask whether
the formation or dissolution of a link in one of the networks precedes or succeeds
formation or dissolution of the corresponding link in the other network (temporal
dependencies). Second, we explore the causes of observed temporal dependencies
between the two networks. For those temporal dependencies that are confirmed, we
measure the predictive capacity of such dependencies. Finally, we examine whether
there are systematic differences in the dissolution rates of symmetric (undirected)
versus asymmetric (directed) edges in both networks. We find strong patterns of
reciprocal temporal dependencies between the two networks. In particular, the cre-
ation of an edge in the behavioral network generally precedes the formation of a
corresponding edge in the cognitive network. Conversely, the decay of a link in the
cognitive network generally precedes a decline in the intensity of communication
in the behavioral network. Finally, asymmetric edges in the cognitive network have
lower overall communication volume and more asymmetric communication flows in
the behavioral network.
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1 Introduction
In this paper we investigate how two different social networks, one a cognitive
network composed of subjective nominations and another a behavioral network
composed of objectively recorded communications, relate to one another. We aim
to understand in detail the relationship between these two networks, as the link
between cognition and behavior is a long-standing, but understudied, problem in
social network analysis [6, 7]. A key question in this literature is whether behavior
precedes cognition, such that contacts with which we frequently interact become
more cognitively salient, or whether cognition precedes behavior, such that we
increase the amount of interaction with those contacts that we consider subjectively
salient [2].

To make headway on these questions, we use a data source that contains dynamic
information on both the cognitive salience of contacts and actual behavioral traces
of communication behavior between individuals. We examine whether two social
networks built from these different kinds of connections are temporally coupled. Our
main hypothesis is that there exist reciprocal linkages between cognitive salience
and behavioral communication with increasing communication leading to greater
cognitive salience and with declining cognitive salience leading to the dissolution of
behavioral edges [3].

To evaluate this hypothesis, we investigate whether increases in communication
lead to increases in cognitive salience and whether cognitive salience is associated
with increased communication behavior. We also examine whether declining cogni-
tive salience leads to a gradual decrease in actual communication. Finally, we ask
whether non-reciprocity in cognitive salience is associated with non-reciprocity in
actual communicative interaction [6], and whether persons who are exposed to sus-
tained asymmetries in communication are motivated to cycle through more persons
in their cognitive salience network in search of reciprocal interactions [8].

2 NetSense Data and the Networks
In this section, we introduce the NetSense data [10] and the networks derived from it.
The data was collected at the University of Notre-Dame. At the start the Fall semester
in 2011, 200 of the incoming freshmen were enrolled in the NetSense study. Over
150 participated until their graduation in the Spring of 2015. Students participating
in the study received free smartphones with unlimited voice and text plans as an
incentive for participation. We obtained time-stamped logs of communication records
for all study participants. These data contain information on the the date, time and
duration (for calls) and character length (for text messages). Data for the first four
semesters (lasting from the Fall of 2011 to the Spring of 2013) of the project was
available for this study.
Students participating in the NetSense study list up to twenty contacts at the beginning
of each semester. Students were asked to list the names of those people with whom
they thought they the most time communicating or interacting with. Below, we refer
to these contacts as friends. These friends could be inside or outside the NetSense
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study. Because students were asked to also provide the primary phone number of
each friend we can link each friend mentioned in the survey to the time-stamped
smartphone data. Accordingly, We propose a model for analyzing co-evolution of
multiple networks representing different kinds of social relations between nodes.
The behavioral network consists of the behavioral edges based on communication
records of both telephone calls and text messages between individuals. Weights on
the edges in the behavioral network change everyday, depending on the volume
of communication. The cognitive network includes cognitive edges that are based
on (possibly asymmetric) nominations collected through the surveys. Edges in the
cognitive network appear and disappear once per semester.

3 Related Work
A model to generate two social networks synthetically, with both the networks co-
evolving, capturing the properties of both networks is introduced in [12]. A rapidly
evolving network based on games is studied in [9]. Nodes in this network have
varying incentives to build links. We observe similar behavior in the NetSense data,
where certain edges have incentive to develop into an edge in one of the networks,
while others do not. The co-evolution of edges in relation to individual behavior in
school dormitories is investigated in [5]. The co-evolution of employee networks in
organizations in relation to individual attitudes is studied in [7]. In contrast to these
studies, we explore how two social networks co-evolve in time.

4 Analysis of Co-Evolution of NetSense Networks
We conduct several experiments on the NetSense data to study how the two networks
co-evolve. We divide these experiments into two broad categories: analyzing prece-
dence of dissolution and formation of edges in both the networks and analysis of
asymmetric edges in each of the networks.

First, we deal with the question of whether the formation and dissolution of edges
each of the networks studied (cognitive and behavioral) are systematically related
to each other. To do so, we examine whether forming or increasing the strength of
an edge in one network (e.g. behavioral) precedes a corresponding edge creation
in the other (e.g. cognitive) network. We also study whether edge dissolution in
one network is informative of a corresponding dissolution event in the other. For
example, we can ask how often the emergence or strengthening of behavioral edges
leads to the formation of cognitive edges in a subsequent semester. We look at factors
that may cause edges to form or dissolve and then infer if there are any causal
relationship between the two networks. For example, we observe that high levels of
communication between edges in behavioral network is often associated with the
formation of future cognitive edges. So we can infer that high communication volume
in the behavioral network often leads to the appearance of subjectively meaningful
ties in the cognitive network.
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4.1 Does higher communication in behavioral network predict the
appearance of edges in the cognitive network?

We start by investigating whether we can observe increases in communication be-
tween two people before an edge between them appears in the cognitive network. To
this end, we measure the communication between students in the semester before one
of them nominates the other as a friend in the survey, and ascertain whether there is a
difference in previous communication volume between nodes that are subsequently
connected in the cognitive network and those which are not. Table 1 lists these results.
Figures 1a and 1b illustrate how number of calls and messages are distributed
among to-be-formed and not-to-be-formed edges in the cognitive network.

Table 1: Difference in communication volume between nodes to-be-nominated and
not-to-be-nominated as friends, and future friendship nominations based on volume
of communication between the corresponding nodes.

Semester No. to-be-nominated not-to-be-nominated Calls Messages
No. Calls No. Messages No. Calls No. Messages Precision Recall Precision Recall

Semester 1 40 407 5 58 70 82 78 88
Semester 2 52 782 6.5 105 72 74 72 70
Semester 3 18 248 4 41 73 75 78 80

We find that, indeed, edge weight in the behavioral network is a good predictor
of whether an edge subsequently appears in the cognitive network. In the first
semester, edges in which one of the participants subsequently nominates the other
as a significant contact differ by a factor of 8 (in terms of calls) and by a factor of
about 7 (in terms of text messages) from those in which no edge emerges. Similar
differences can be observed for semesters 2 and 3.

We further examine whether edge weight in the behavioral network can be used
to predict the appearance of future links in the cognitive network. Table 1 lists the
results of these analyses. We find that we are able to predict a significant proportion
of edges in the cognitive network using information from the behavioral network,
about 70-80 %, with a reasonable recall [1]. The threshold that gives us the best
balance between precision and recall can be found plotting ROC curves [2]. We
infer that nomination as a friend is often preceded by high levels of communication
between the corresponding nodes. Hence, there is strong reason to conclude that the
dependence of the cognitive network on the behavioral network is causal.

4.2 Do edges in the cognitive network have stronger links in the
behavioral network?

Next, we investigate whether we can observe significant differences in communica-
tion volume between two people once an edge appears in the cognitive network. To do
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so, we compare the communication volume (the weight of the edge in the behavioral
network) between nodes connected by the edges that appear in the cognitive network
and those which do not.

Table 2: Difference between connected and disconnected edges in the cognitive net-
work in terms of weight in the behavioral network and prediction of future friendship
nominations based in the cognitive network on the volume of communication in the
behavioral network.

Semester No. Friends Non-friends Calls Messages
No. Calls No. Messages No. Calls No. Messages Precision Recall Precision Recall

Semester 1 70 667 7 72 71 76 61 84
Semester 2 41 915 12 190 70 70 61 78
Semester 3 74 1063 5 51 66 74 64 90
Semester 4 34 729 4 37 68 72 62 86

Table 2 shows the results. We observe a large difference in communication vol-
umes between these two edge classes, with edges in which one person nominates
the other as a friend displaying high levels of behavioral interaction. For instance,
in the first semester, nodes connected by edges that were connected in the cognitive
network differed from those that were not by a factor of 7(for calls) and a factor of
about 9 (for texts), with differences of similar magnitude holding for subsequent
semesters.

We verify whether the volume of communication in the behavioral network can
allow us to predict forming of an edge in the cognitive network. Table 2 shows that
we can indeed predict a significant number of friendship nominations purely from
communication volume in the behavioral network, about 70-90 %, with reasonable
precision.

4.3 Do newly formed edges in the cognitive network differ from
older edges in terms of communication levels between their
nodes?

Next, we study how nodes connected by the newly formed and older links in the
cognitive network differ in terms of their edge weight in the behavioral network.
To this end, we measure the amount of communication between nodes joined by
older (more than one semester) and newly formed (one semester) cognitive edges.
We observe that cognitive edges joining nodes with higher communication levels
nodes connected by than newer links in the friendship network. Table 3 lists these
differences. Figures 2a and 2b illustrate how number of calls and messages are
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Fig. 1: Call and message volumes between to-be-friends in one semester (blue
circles), to-be-friends in two semesters (green circles) and not-to-be-friends (red
circles). Generally, to-be-friends have higher call and message volume than not-to-
be-friends. The continuous lines show the average value for the circles of each color.
The separation is large between red and green lines, red and blue lines, but small
between blue and green lines. Most of the to-be-friends edges appear in the first and
second semester, since very few new friendships are formed in the fourth semester.

distributed among pairs of nodes connected by to-be-formed and not-to-be-formed
edges in the cognitive network.

Table 3: Difference behavioral communication volume between old and new edges
in the cognitive network.

Semester No. Newly observed nominations Nominations older than one semester
No. Calls No. Messages No. Calls No. Messages

Semester 2 6 57 61 1340
Semester 3 63 1026 172 2447
Semester 4 7 256 53 1067

We also observe that as these newly formed cognitive edges age, the nodes
connected by them come to have communication volumes similar to, or perhaps
slightly higher, than cognitive edges that have existed for a longer time. To shed
further light on this issue, we examine communication volumes of cognitive edges
in the 3rd and the 4th semesters, and we divide them into edges which were created
in the 2nd and the 3rd semesters respectively, and edges which existed since the 1st
semester. We call the former moderately old edges and the latter very old edges. We
observe that moderately old edges carry on an average of 49 calls and 903 calls, while
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Fig. 2: Communication volumes nodes connected by old edges in the cognitive
network (green circles), newly created edges in the same network (blue circles), and
disconnected nodes (red circles). The continuous lines show the average value for
the circles of the corresponding color in each semester. The separation is significant
between all three lines. Generally, nodes connected by cognitive edges in which
one person nominates the other as a friend have a higher communication volume. A
significant number of persons that do not nominate each other, however, have high
message volumes as well, but less so with the call volume.

very old edges exchange 29 calls and 795 messages. We infer that communication
between nodes that are also connected in the cognitive network increases gradually,
but then finally stabilizes over a period of time.

4.4 How likely does communication dissolve after the
corresponding edge disappears in the cognitive network?

The next question we study is how likely are the communication links to dissolve
after their corresponding cognitive edges dissolve. To assess that, we measure the rate
at which dyads that dissolve their cognitive edges also dissolve the corresponding
edges in the behavioral network, and compare that with the rate at which behavioral
network links dissolve at random. We find that behavioral network dyads that first
experience a dissolution event in the cognitive network are more likely to dissolve
their behavioral edge than a random dyad does.

Let BDCN denote the average link dissolution rate in the behavioral network
for persons who are not connected in the cognitive network, and BDCY denote the
average link dissolution rate in the behavioral network for dyads that are connected
in the cognitive network. In the third and fourth semesters, BDCN is significantly
greater than BDCY, while the reverse in observed in the second. We observe values
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of 64%, 55% and 50% for BDCN for the three semesters, and 42%, 74% and 62% for
for BDCY. We also measure the rate at which the nodes connected by the cognitive
edges that persist into the following semester dissolve their behavioral edges, and
denote it as BDCP. We find that BDCP is always 0, meaning that if there is link
persistence in the cognitive network then there is always link persistence in the
behavioral network.

4.5 Patterns of communication decay following link dissolution in
the cognitive network

Finally, we examine whether edge weights in the behavioral network decrease after
links in the cognitive network dissolve. We measure this effect using the “recency”
score [4], where recent communication has higher weight than older communication.
If there is a decrease in communication, the recency weighted score will be lower
than communication score without weights.

• Recency Score (RS): Each semester lasts 5 months; odd numbered lasts from
August to December, while even numbered lasts from January to May. We assign
weights to communication during each month in the following manner: -0.3 for
the 1st month, -0.1 for the 2nd month, 0.1 for the 3rd month, 0.3 for the 4th month
and 0.5 for the 5th month.

• Non-Recency Score (NRS): We assign equal weights of 0.1 to communication
in any of the months. We compare how much nodes connected by dissolving and
persistent edges differ on both of these scores.

In Table 4, we list RS and NRS scores (computed from the behavioral network) for
nodes connected by dissolving and persistent edges in the cognitive network. We then
take the average numbers of calls and messages for these categories and compute the
ratio of numbers of calls/messages between nodes connected by persistent cognitive
edges to numbers of calls/messages between nodes joined by dissolving cognitive
edges. We observe that the ratio increases when RS is used. This means, there is a big-
ger difference when RS is used, which indicates that nodes connected by dissolving
edges in the cognitive network have more communication in the behavioral network
during earlier months than in the later months. However, we do not observe this trend
in the first semester, since the friendships are still developing, and communication is
most likely to be increasing for all friendships.

We could draw the inference that students who dissolve cognitive links are much
more likely not to communicate with each other at all, leading to a complete dissolu-
tion of the communication edge.
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Table 4: Difference between to-be-friends and non-to-be-friends.

Semester 1
NRS Dissolved Persistent Ratio RS Dissolved Persistent Ratio

No. Calls 5 13 2.6 No. Calls 6 10 1.8
No. Texts 51 137 2.7 No. Texts 90 121 1.4

Semester 2
NRS Dissolved Persistent Ratio RS Dissolved Persistent Ratio

No. Calls 1 10 10.0 No. Calls 0.4 8.3 20.8
No. Texts 18 109 6.1 No. Texts 3.1 195 62.9

Semester 3
NRS Dissolved Persistent Ratio RS Dissolved Persistent Ratio

No. Calls 7 8 1.1 No. Calls 2.2 5.3 2.4
No. Texts 56 151 2.7 No.Texts 47 185 3.9

4.6 Analysis of asymmetric friendship cognitive edges
The NetSense data consists of periodic surveys where students nominate up to twenty
friends at the beginning of every semester. We examine cognitive edges that are
asymmetric, where only one of the respondents marked the other as a friend. We
observe whether the nodes connected by these asymmetric edges in the cognitive
network exhibit different patterns of communication and survival probabilities of
the edges in the behavioral network. We find that asymmetric cognitive edges differ
significantly from symmetric edges in both of these respects. The following sections
illustrate the differences between asymmetric and symmetric cognitive edges.

4.6.1 Do nodes joined by asymmetric behavioral edges become dissolve their
behavioral edges faster?

First, we examine if nodes connected by asymmetric edges in the cognitive network
are more likely to dissolve their edges in the behavioral network than nodes connected
by symmetric (mutual) cognitive edges. We measure the survival probabilities of
behavioral edges between nodes connected by asymmetric and symmetric edges
across all semesters. We observed that nodes connected by asymmetric cognitive
edges are significantly more likely to dissolve their communication edges then
symmetric cognitive edges.

The dissolution probabilities of of communication edges between nodes connected
by the asymmetric cognitive edges are higher than communication edges between
nodes with mutual cognitive edges in all three semesters. We observe that nodes
joined by asymmetric edges have a dissolution probability of their communication
edges of 90%, 87.5% and 50% in each of the three semesters, while such probabilities
for symmetric edges have a dissolution probability of are 72%, 66% and 16% in
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each of the three semesters. We also observe an overall downward trend in the
dissolution probability. Initially, these are very high for the first semester, but they
decline steadily over time. However, even in the third semester nodes connected by
asymmetric edges in the cognitive network are more than three times more likely to
dissolve their communication edges in the behavioral network than nodes joined by
symmetric cognitive edges.

4.6.2 Differences in Communication volumes between asymmetric and
symmetric edges

Next, we examine if nodes connected by asymmetric and symmetric cognitive edges
differ in communication volume in the behavioral network. As shown in Table 5, we
observe that, apart from the first semester, there is a significant difference between
asymmetric and symmetric edges, with symmetric edges communicating more. In
the first semester, the same difference exist, but it is much smaller and visible only if
the sum of calls and messages is taken into account.

4.6.3 Asymmetric cognitive edges and asymmetric communication edges
Next, we examine whether nodes connected by asymmetric edges in the cognitive net-
work are also more likely to have asymmetric communication patterns in behavioral
network as well. We define “asymmetric” edge in the the behavioral network when-
ever we observe one node initiating communications with the other node more often
than the reverse. We compare communication imbalance between nodes connected
by asymmetric cognitive edges and nodes joined by symmetric edges of this type. We
find that symmetric edges always have less asymmetrical communication patterns
in the behavioral network than asymmetric cognitive edges. To measure asymmetry
in communication, we first compute the ratio of the volume of communication in
which the source node is the initiator to the volume of communication in which the
destination node is the initiator: we call this quantity OSC. We multiply the number
of calls by 10, since messages are about 10 times more frequent than calls and add
the product to the number of messages. We define a given edge as “asymmetric” in
the behavioral network when the source node is an initiator of communication at least
20% more often than the destination node. Finally, we measure the percentage of
asymmetric communication for nodes connected by both asymmetric and symmetric
cognitive edges.

Table 5 shows the results of this analysis. We observe that nodes connected by
symmetric cognitive edges have close to equal bi-directional communication in the
behavioral network. In the first semester only 3% of the symmetric cognitive edges
have corresponding behavioral edges asymmetric according to criterion define above.
In comparison, asymmetric cognitive edges are much more likely to be asymmetric:
In the first semester, asymmetric cognitive edges were about ten times more likely
(31%) to feature imbalanced communication than the nodes connected by symmetric
cognitive edges. .
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Table 5: Difference in communication volume between nodes connected by asym-
metric and symmetric cognitive edges.

Semester No. Asymmetric edges Symmetric edges
No. Calls No. Messages % of OSC No. Calls No. Messages % of OSC

Semester 1 69 472 31 58 842 3
Semester 2 25 638 30 39 636 1
Semester 3 40 351 39 112 2038 10
Semester 4 10 256 31 70 1406 6

4.6.4 Communication behavior profile: the “asymmetric sender” profile
We classify nodes that are more likely to be involved in asymmetric communication
as asymmetric senders. We then examine the communication behavior profile of
these nodes to see if the asymmetric sender profile differs from symmetric sender
profile. The goal is to verify if nodes with different communication profiles have
different characteristics of their cognitive edges. We call students who initiate many
asymmetric communications asymmetric senders as we expect them to be more
likely to change their friends, given the well known psychological aversion to lack of
reciprocity that has been demonstrated in the literature [11]. We find support for the
hypothesis in the observation that asymmetric senders retain 7%, 16% and 38% of
their friends, while balanced senders retain 25%, 50% and 88% of their friends in
the succeeding semesters.

5 Conclusion
In this paper, we study the co-evolution in time of two networks defined by the
NetSense data and observe that both networks influence each other temporally. We
observe that formation of an edge in the behavioral network is associated with
successive formation of a corresponding edge in the cognitive network. We also
observe that dissolution of a cognitive edge is often associated with dissolution
of its corresponding behavioral edge in the successive semester. So we conclude
that both networks affect each other. We also investigate asymmetric cognitive
edges, and conclude that the nodes they connect lower communication volume
exchange, and lower survival probability than symmetric friendship edges. Moreover,
asymmetric cognitive edges are more likely to have corresponding behavioral edges
also asymmetric.

Acknowledgements We would like to thank Stephan Dipple for discussions. This work was sup-
ported in part by the Army Research Laboratory under Cooperative Agreement Number W911NF-
09-2-0053 (the Network Science CTA), by the Office of Naval Research (ONR) grant no. N00014-
15-1-2640, by the European Commission under the 7th Framework Programme, Agreement Number
316097, and by the Polish National Science Centre, the decision no. DEC-2013/09/B/ST6/02317.
The views and conclusions contained in this document are those of the authors.



434 Ashwin Bahulkar and Boleslaw K. Szymanski and Kevin Chan and Omar Lizardo

References

[1] Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1999)

[2] Carley, K.M.: Group stability: A socio-cognitive approach. Advances in Group Processes 7,
1–44 (1990)

[3] Carley, K.M., Krackhardt, D.: Cognitive inconsistencies and non-symmetric friendship.
Social Networks 18(1), 1 – 27 (1996). DOI http://dx.doi.org/10.1016/0378-8733(95)
00252-9. URL http://www.sciencedirect.com/science/article/pii/
0378873395002529

[4] Chen, M., Bahulkar, A., Kuzmin, K., Szymanski, B.K.: Improving network community
structure with link prediction ranking. In: Proceedings of the 7th Workshop on Complex
Networks, CompleNet (2016, to appear)

[5] Dong, W., Lepri, B., Pentland, A.S.: Modeling the co-evolution of behaviors and social
relationships using mobile phone data. In: Proceedings of the 10th International Conference
on Mobile and Ubiquitous Multimedia, MUM ’11, pp. 134–143. ACM, New York, NY,
USA (2011). DOI 10.1145/2107596.2107613. URL http://doi.acm.org/10.1145/
2107596.2107613

[6] Hammer, M.: Implications of behavioral and cognitive reciprocity in social network data.
Social Networks 7(2), 189 – 201 (1985). DOI http://dx.doi.org/10.1016/0378-8733(85)
90005-X. URL http://www.sciencedirect.com/science/article/pii/
037887338590005X

[7] Lazer, D.: The co-evolution of individual and network. Journal of Mathematical Sociology
25(1), 69–108 (2001)

[8] Miritello, G., Moro, E., Lara, R., Martı́nez-López, R., Belchamber, J., Roberts, S.G., Dunbar,
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Processes



Abstract A threshold network is a type of complex network that is useful to model
the way in which ideas travel through a human population. Each node has a threshold
and only activates if it receives a number of inputs equal to or above the threshold.
We build upon work that uses simple distributions of degrees and thresholds by
introducing a weighting factor that assigns edges to nodes based on distance apart and
similarity of thresholds. This models the way in which people tend to associate more
with people of similar beliefs and those who live closer geographically. The model
we develop agrees with simulations when the standard deviation of the threshold
distribution is low.

1 Introduction
Threshold models of networks have been used to study the spread of rumours through
a population [5, 10, 12, 18]. Past research has not fully considered that people with
similar ideas and who live close together are more likely to influence each other. In
this paper we present a threshold method for predicting the spread of ideas through a
human population with these considerations in mind. We then test our model against
simulations which show that the model we construct matches simulation results if
the standard deviation of the threshold distribution is low.

Disease transmission has been widely studied and the spread of an idea could be
seen as similar to the spread of a disease. Consequently the models used to study the
spread of diseases can have some efficacy in studying the spread of ideas. Cellular
automata models such as in [3, 8] divide a population into a set of cells. These cells
are classified as either healthy (susceptible), infected or recovered. After each time
step, there is a probability that an infected cell passes on its infection to adjacent
cells. In Markov chain models such as in Gomez et al [6] the state of the system at
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any time only depends on the state of the system in the previous time step. Markov
models use a probability that a node will infect an adjacent node and whilst the
calculation of these probabilities can become quite complex for large networks, the
premise is that an infection spreads by direct contact between two infected nodes
with a certain probability. Models based on differential equations such as [14] treat
infection in the same way as the above approaches, that is, infection happens from
direct contact between individuals and the chance of infection is determined as a
probability. Differential equation models give results as to the percentage of the
population that is infected.

A model proposed in [15] does use longer connections, connecting nodes which
are not physically close. This better represents transmission of ideas, which may
be transmitted via phone or internet rather than the disease models which insist on
nodes being physically close. A more recent model using differential equations has
been proposed in [19] using nodes with a position determined by geographic data to
model the spread of rumours in Beijing. The major difficulty in using these models
to simulate the spread of ideas is that they use a probability of an infection spreading
to an adjacent node each time step. These models do not incorporate the fact that
some people are more susceptible to an idea than others.

Ultimately, models of networks which use a threshold are most likely to be of use
in the study of the spread of ideas. Watts [18], Gleeson et al [5] and Miller [12] use
the idea that a node in a network will only become active once it receives a certain
number of inputs, an idea first proposed by Schelling [16] and Granovetter [7] and
usually referred to as the Watts threshold model. Hence a node which receives at
least as many inputs as its threshold becomes active.

The question as to whether there will emerge a global spreading process, a cascade,
is one of the central problems in threshold models. Watts [18] and Miller [12] as well
as many other authors [1, 4, 5] are focused on them. This paper is a preliminary study
of the effect of making more realistic assignments of thresholds than in [12, 18] and
later it is intended to investigate the effects of these on the global emergence of the
spreading process. Neither [5], [12] or [18] perform as extensive simulation testing
of their model over a wide range of threshold distributions as we do here.

The Watts threshold model can be modified by adding weightings between nodes
that depend on how similar their thresholds are and how physically close they are.
This represents the idea that similar people who live close to each other are more
likely to be friends and communicate with each other, and have a similar susceptibility
to a new idea. There has been some work on this problem and we use the work in
[9, 17] as motivation to extend this idea. The contribution we make in this paper is
an extension of the model in [12] and [5] in order to make it more realistic by adding
this weighting and we present the results of simulations to support this.

We start by introducing the model in [12] which uses simple distributions of
degree and thresholds. In Section 2.2 we expand this model by adding a weighting
factor that assigns edges based on how physically close nodes are and how similar
their thresholds are. This represents ideas being more likely to be spread between
people who live close together and who have similar viewpoints. The model is tested
against simulations in Section 3 and our results are presented.
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2 An expanded model
The model in [12] and [5] is a recent model of a threshold network. It predicts the
spread of an idea through a network from a simple distribution of thresholds. We
describe the model [12] in Section 2.1 and our weighted model in Section 2.2.

2.1 Initial model
We begin by listing some of the equations and assumptions that Miller [12] uses. The
discrete time equations that describe the spread of the idea are

Q(t) = ∑
k

∑
r>0

r−1

∑
m=0

Pu(k,r)

(
k
m

)
θ(t)k−m(1−θ(t))m, (1)

θ(t) = φQ(t−1), (2)

〈K〉= ∑
k

∑
r

kPu(k,r), (3)

and

Pv(k,r) = kPu(k,r)/〈K〉. (4)

The variables are Pu(k,r) which is the probability that a random test node u has
degree k and threshold r, Pv(k,r) is the probability that a random neighbour v of the
test node has degree k and threshold r, Q(t) is the probability a test node u is still
inactive at time t, φQ(t) is the probability that a random neighbour of a test node u
is still inactive at time t given that the test node u is inactive, θ(t) is the probability
that a random neighbour has not transmitted to the test node at time t and 〈K〉 is the
average degree of nodes in the population.

It is assumed that we can pick any node as the test node. Equation 1 is the sum of
the probabilities that the test node receives fewer signals from its neighbours than its
threshold. Equation 2 states that the probability of a test node being inactive is the
probability of a random neighbour being inactive in the previous timestep. Since we
can pick any node as the test node and calculate the probability that a neighbour has
transmitted, θ(t) is the proportion of inactive nodes in the network at time t. Another
assumption is that a neighbour of a test node has k/〈K〉more neighbours than the test
node. This assumption is based on a neighbouring node being likely to have more
edges than any randomly chosen test node.

2.2 Improved model
Here we introduce our improvements to the model in [12].
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2.2.1 Threshold distribution
The threshold r of a node is the number of neighbours that must be active in order for
a node to change from inactive to active. In the examples in [12], Miller gives most
nodes a threshold of 2 apart from a small population of initially active, threshold
0 nodes. This distribution of thresholds is unlikely to match those in a real human
population. Here we make the assumption that a normal distribution will model
susceptibility of humans to new ideas reasonably well and better than a constant
distribution. There is already some work that addresses heterogenous threshold
distributions [11] and we build upon this.

In all of the cases we examine, the thresholds are integer values between 0 and 9.
We choose this range of thresholds as a starting point because results in [2] based
on human psychology suggest that this is a reasonable range of values. If we take
the probabilities P(r′) for r ∈ {0,1,2....9} from a normal distribution N(µ,σ) then

9
∑

r=0
P′(r) 6= 1. We normalise to obtain the probability P(r) of a node having threshold

r:

P(r) = P′(r)/
9

∑
r=0

P′(r) (5)

An example for N(5,1.5) appears in Figure 1.

Fig. 1: The normalised distribution of thresholds for N(5,1.5). Each dot represents
the probability of a certain threshold being assigned to a node.

2.2.2 Geographical proximity
In [12], Miller uses nodes with degrees equally distributed between 2,4 and 6. This is
unlikely to be realistic as geographical proximity of nodes is likely to be important.
People are likely to have meaningful conversations with people who they live near
and can speak with face to face. It is true that current technology allows long distance
communication and we also include the possibility of some longer distance links
forming.

Here we use a simple square grid of nodes to minimise the complexity of calcu-
lations, but other spatial distributions are obviously possible and other topologies
could match real world situations more closely. The nodes are the intersection points
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of an N×N grid. Each of the N2 nodes is assigned a threshold by sampling from the
discrete distribution of Section 2.2.1.

The distance between nodes is measured using the Chebyshev metric

D∞(d,d′) = lim
j→∞

(
2

∑
i=1
|di−d′i | j

)1/ j

= max{|d1−d′1|, |d2−d′2|}.

(6)

2.2.3 Weighting factor and calculation of degrees
In contrast to Miller’s model, in which thresholds and degrees are assigned to each
node, we use a weighting factor based on similarity of threshold and distance to
neighbour nodes in order to assign degrees. We assume that a node is more likely to
connect to a node in close proximity. Threshold is also important since we assume
people of similar opinions are more likely to be associated with each other than
people of differing opinions.
The weighting factor we use for the weight of a link between the test node and
another node is

w(r,r′,d,d′) =
|N/2−D∞(d,d′)|

N/2

(
1− |r− r′|

rmax

)
1
a
, (7)

where r =threshold of the test node, r′ =threshold of a different node, d =position
of the test node, d′ =position of the different node and a is a parameter we can vary
to control the average degree. Thus w ∈ [0,1/a]. This weighting factor allows some
edges between distant nodes to form. This is a type of small-world effect. We allow
some nodes to have r > k, this represents people who refuse to change their opinion
under any circumstances. This causes our definition of a threshold to differ somewhat
from the definition in [5, 18].

Our expected value of the degree of a node at position d and threshold r is now

k(r,d) =
9

∑
r′=0

∑
d′ 6=d

w(r,r′,d,d′)Pv(r′). (8)

This equation adds the probabilities that a test node and each other node are connected.
The value of k in Equation 8 is always rounded to the nearest integer. The expected
degree k(d) for a node at d is

k(d) =
9

∑
r=0

k(r,d). (9)
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2.2.4 Equations governing spread of ideas
We now incorporate the weighting factor and normal distribution of thresholds into
Miller’s model in [12]. Thus Equation 2 becomes

θ(t)=∑
d

9

∑
r>0

r−1

∑
m=0

k(r,d)Pu(r)(1/N2)

〈K〉

(
k(r,d)−1

m

)
θ(t−1)k(r,d)−1−m(1−θ(t−1))m.

(10)
and Equation 3 transforms into

〈K〉= 1
N2 ∑

d
k(d).

In what follows, the test node u is always the node at the centre of the grid at
d∗ = (N/2,N/2). So averaging over d is unecessary and Equation 10 becomes

θ(t) =
9

∑
r>0

r−1

∑
m=0

k(r,d∗)Pu(r)
〈K〉

(
k(r,d∗)−1

m

)
θ(t−1)k(r,d∗)−1−m(1−θ(t−1))m

(11)
and 〈K〉 becomes

〈K〉= k(d∗). (12)

3 Results and Discussion

Fig. 2: Simulation results for a 20×20 grid with a threshold distribution N(2,1.5)

We test our new model against a simulation written in Mathematica. The simula-
tion functions as follows:
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Algorithm 13 Simulation code

1: Input N, µ , σ , m, T
2: Generate an N×N grid of nodes
3: for i = 1 to m do
4: Assign each node a threshold using the threshold distribution
5: For each node, selected at random without replacement, generate a random

number
between 0 and 1. For any remaining node, if the random number is less than

w(r,r′,d,d′)
then the two nodes are connected by an edge.

6: for t = 1 to T do
7: An active node sends a signal to each node it is connected with.
8: Each node that receives a number of signals equal to or exceeding its

threshold in
this timestep now activates.

9: end for
10: Store the result.
11: end for
12: The mean and standard deviation of m results is calculated.

The simulation will test whether our equations accurately describe the spread of
ideas through the weighted threshold network we use. Since the simulation gives a
different result each time it is run, we give the mean and standard deviation of the
result of m outputs of the simulation. Each instance runs T times until all nodes are
active or a stable percentage of active nodes is reached.

Example 3.1. We use N(2,1.5) as a threshold distribution, giving Pr(0) = 0.1145.
So our initially inactive proportion of the population is 1− 0.1145 = 0.8855. We
choose N = 20 and a = 25 and use Equations 7 and 12 to calculate 〈K〉 = 4.71.
Equation 11 gives θ(1) = 0.791, θ(5) = 0.39888 and θ(20) = 0.173861.

An example of the simulation output is shown in Figure 2.
If the simulation is run 100 times, we have a mean infection of 83.36% and a

standard deviation of 2.97% after 20 time steps. This agrees well with Equation 11.
The simulation predicts 83.36% and Equation 11 predicts 1−θ(20) = 82.61%. The
large seed size we used led to an almost global spread.

The first simulations we run involve a threhold distribution with a small standard
deviation of σ = 1.5. Table 1 compares the simulation results with the result of
Equation 11. Here T = 20 except for N(3,1.5), N = 40 where we use T = 24. For
this result, Equation 11 needed more time to converge to a final value. There is some
considerable disagreement here. The standard deviation for the N(3,1.5), N = 20
result is especially high since the threshold distribution is such that there is an equally
likely chance of the grid being populated by low threshold nodes with r < 3 as it is
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Table 1: Comparison of 1−θ(T ) from simulation and Equation 11.

N a m P(0)% threshold distribution 〈K〉theory 〈K〉simulation theory % simulation %
20 25 100 0.10 N(5,1.5) 4.23 4.86±0.12 0.049 0.14±0.20
20 25 100 0.76 N(4,1.5) 4.25 4.84±0.11 0.6 0.91±0.59
20 25 100 3.63 N(3,1.5) 4.47 4.87±0.11 4.71 15.83±12.54
20 25 100 11.45 N(2,1.5) 4.71 4.94±0.12 82.6 83.83±2.94

40 60 20 0.10 N(5,1.5) 7.16 8.10±0.10 0.059 0.08±0.08
40 60 20 0.76 N(4,1.5) 7.16 8.13±0.06 0.632 1.25±0.54
40 60 20 3.63 N(3,1.5) 7.39 8.16±0.08 96.27 94.57±0.76
40 60 20 11.45 N(2,1.5) 6.96 7.89±0.09 99.27 97.68±0.26

by high threshold nodes with r > 3. The standard deviation for the N(3,1.5), N = 40
result is lower since the value for 〈K〉 is high enough to ensure that there is enough
connectivity that the number of nodes with r > 3 does not stop ideas flowing.

We now do the same for threshold distributions with a different standard deviation
and present the results in Table 2. The larger standard deviation gives a greater
disagreement between simulation and theory. This is because we round the value
for k in Equation 11. When the standard deviation of the threshold distribution is
small, most of the thresholds are similar and we have a larger value for k. This will
result in larger values of k being rounded off to the nearest integer in Equation 11
and therefore a smaller rounding error. However, integer values are required for the
binomial term in Equation 11.

As is expected, the greater the initial concentration of infected people P(0),
the greater the value of 1− θ(T ). The value for 〈K〉 is consistently higher in the

Table 2: Comparison of 1−θ(T ) from simulation and Equation 11.

N a m P(0)% threshold distribution 〈K〉theory 〈K〉simulation theory % simulation %
20 25 100 4.27 N(6,4) 3.68 4.02±0.11 10.57 6.45±1.98
20 25 100 5.81 N(5,4) 3.59 4.03±0.11 5.57 10.55±2.59
20 25 100 7.69 N(4,4) 3.59 3.98±0.11 7.85 15.85±3.73
20 25 100 9.90 N(3,4) 3.68 4.00±0.11 13.15 24.51±4.98

40 60 20 4.27 N(6,4) 6.13 6.74±0.07 3.54 10.98±2.31
40 60 20 5.81 N(5,4) 6.01 6.68±0.06 5.41 21.00±2.77
40 60 20 7.69 N(4,4) 6.01 6.68±0.07 10.57 43.89±4.63
40 60 20 9.90 N(3,4) 6.13 6.75±0.07 22.88 59.07±3.78

simulation than it is when using Equation 12. This is because 〈K〉, in Equation 12, is
calculated as the expected number of edges that the central node has rather than the
total number of edges in the network divided by the total number of nodes.
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3.1 Weighted average to speed up computation
We can speed up computation time considerably by taking a weighted average of
|N/2−D∞(d∗,d′)|

N/2
by noting that most of the nodes are in the outer regions of the

grid. Since there are 8n, n≥ 1 nodes in each unit of Chebyshev distance n from the
centre, we have

Weighted average =




N/2−1

∑
n=1

8n× |N/2−n|
N/2

× 1
N2−1


×N2

=
N2(N2−4)
3(N2−1)

(13)

This gives us

W (r,r′) =
N2(N2−4)
3(N2−1)

(
1− |r− r′|

rmax

)
1
a

(14)

We have thus defined W (r,r′) as a weighting factor that just depends on the threshold
r of the test node, the threshold r′ of a neighbour node and the parameter a used to
control how many edges each node has. This allows us to define an expected value
for the degree of a node that does not sum over all of the nodes in the grid. We call
this function K(r,r′) = W (r,r′)P(r′)P(r) and we note that we replace w(r,r′,d,d′)
in Equation 7 by the W (r,r′) we just defined.

This significantly speeds up our calculations and simplifies them by removing
the position terms d and d′. Rather than summing over 100(N2−1) terms, we now
sum over 100 terms. The results using this weighted average differ very little from
the results using the more time consuming calculation. We compare results from a
100×100 grid with a threshold normal distribution N(3,1.5) and a value of a in the
weighting equation (Equation 7) of 120 in Table 3 below.
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Table 3: comparison of results using weighted average for a 100×100 grid with a
threshold distribution N(3,1.5).

time θnot weighted(t) θweighted(t)
θ(0) 0.963689 0.963689
θ(1) 0.86026 0.851148
θ(2) 0.402703 0.37095
θ(3) 0.00118539 0.000803752
θ(4) 0.0000357656 0.0000357656

4 Conclusion and Future work
We have extended the model presented in [12] and see that by adding weighted
connections that take into account that people with similar ideas and who live close
together are more likely to influence each other, we have a model which agrees with
simulations as long as we use threshold distributions with a low standard deviation.
The way that the model timesteps have been calculated, especially the rounding of k
in Equation 11 causes most of the disagreement.

Future work may involve using a weighting factor such as

w(r,r′,d,d′) =
|N−D∞(d,d′)|

N

(
1− |r− r′|

rmax

)
1
a
, (15)

which decreases with distance and has no small-world effect. We can also allow any
node to be the test node and use Equation 10 together with a weighted average. This
will allow faster computation time and a more general result. Different arrangements
of nodes other than a grid could be studied and the conditions in which a cascade
occurs investigated. Rather than limiting thresholds to the range 0 to 9, varying this
range and perhaps making it vary over [0,k] may produce some interesting results.

Acknowledgement : This work forms part of the PhD thesis of the first author
taken under the supervision of the second and third authors. We thank the reviewers
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Abstract Standard approaches to the study of information diffusion draw on analo-
gies to the transmission of diseases or computer viruses, and find that adding more
random ties to a network increases the speed of information propagation through it.
However, a person sharing information in a social network differs from a computer
transmitting a virus in two important respects: a person may not have the opportunity
to pass the information to every tie, and may be unwilling to pass the information to
certain ties even when presented with the opportunity. Accounting for these two fea-
tures reveals that, while additional random ties allow information to jump to distant
regions of a network, they also change the composition of network neighborhoods.
When the latter increases the proportion of neighbors to whom people are less willing
to pass information, the result can be a net decrease in diffusion. I show that this
is the case in heterogeneous, homophilous networks: the addition of random ties
strictly impedes information dissemination, and the impediment is increasing in both
original homophily and the number of new ties.

1 Introduction
The study of information diffusion in social systems applies insights from epidemiol-
ogy to the spread of ideas, innovations, or behavior from node to node in a social
network [1, 11, 20, 23, 24, 26]. The basic logic holds that nodes “infected” with an
idea or behavior are “contagious”; network neighbors of the infected are exposed
and hence susceptible to the infection, with variants accounting for the consequences
of exposure to multiple sources [4, 5], variation in motivation [7, 10], the cumulative
effect of repeated exposures [8, 9], and homophily with respect to susceptibility [6].

The analogy to disease spread has generated important findings about the relation-
ship between network structure and information diffusion. Increasing the proportion
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of random ties in a regular network dramatically increases the propagation rate of
cascades [12, 19], the presence of particularly well-connected nodes is beneficial for
diffusion [16, 20, 21, 25], and random rewiring in small world networks accelerates
diffusion [12, 19]. In general, adding random ties to a network will improve diffusion.

While the epidemiological approach has offered valuable insights, ties in a social
network function quite differently for the spread of information than ties in a contact
network function for the spread of a disease. In the case of a contact network, a tie by
definition makes an alter susceptible to the disease of the ego. In the case of a social
network, a tie does not by definition spread information to an alter. A tie indicates a
social relationship. Whether or not this social relationship results in an ego passing
information to an alter depends on a variety of factors: whether the two happen to
encounter each other while the information is salient, whether they are together for
long enough for the information to come up, whether the ego thinks the information
is relevant to the alter, whether the ego is willing to share with the particular alter,
and so on.

In fact, for the type of information that is often the subject of diffusion studies, an
ego may have good reason to prefer to share it with some social ties over others. In
the case of collective action, the information may be a person’s dissatisfaction with a
regime or her willingness to participate in a protest [5, 7]. Given the sensitivity of this
information, especially in oppressive regimes, a person may only be willing to pass
it to her most trusted social ties. In the case of technology adoption, especially in the
developing world, relevant information may be news of a development organization
offering startup loans or handing out new technology like fertilizer [2]. A person
may judge the opportunity to be finite or selectively beneficial and prefer to share
information of it with her social ties that are kin or members of her salient in-
group like her tribe [14]. In social networks, a person can choose whether to share
information or whether to withhold it on a tie-by-tie basis.

In this conceptualization of information diffusion, a person in a social network
will only spread information to a particular network neighbor if (1) she is presented
with an opportunity to do so, and (2) is willing to share the information with that
neighbor.

I account for these two features in a model in which a person has a finite number
of opportunities to spread information with network neighbors. Individuals in the
network have a type, which could represent ethnicity, tribe, political party, or any
other salient division correlated with willingness to share new information. Given
an opportunity, a person always shares information with a same-type neighbor but
occasionally withholds information from a different-type neighbor.

When only one type is present in the network, the results reproduce those of earlier
work: the addition of random ties allows information to jump to distant regions of
the network, increasing the speed of diffusion. When multiple types are present,
however, random ties introduce a second effect: they change the composition of
network neighborhoods, possibly increasing the chances that the limited number
of encounters will be with different-type neighbors. I show that in heterogeneous
networks with type-homophily, the addition of random ties can result in the second
effect dominating. In heterogeneous networks, the addition of random ties can strictly
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reduce the speed of information diffusion. The reduction is increasing in the original
homophily, the number of types in the network, and the number of added ties.

Since homophilous communities within a network would facilitate information
spread, these results are consistent with others’ findings that network modularity can
improve information dissemination via social reinforcement [3, 18]. However, the
result here is even stronger: not only would rearranging links to reduce modularity
impede information spread, but adding new links to the network at random can
strictly impede information spread as well.

These findings refine those of earlier work, showing that the benefit of additional
random ties hinges on plentiful opportunities to share information with all network
neighbors and perfect willingness to share the information at every opportunity. In
the more realistic case of limited opportunities and differential willingness to share,
the addition of random ties may be counterproductive. In heterogeneous groups, the
greater the type-homophily, the more damaging random ties are to the wide reach of
information.

2 An Opportunity Model of Information Diffusion
Suppose a network g is comprised of a finite number of nodes that each have one
of n types τ ∈ {τ1, . . . ,τn}. A type is a descriptive feature of a node and is used to
separate an in-group from out-groups, like membership in a certain tribe or political
party. Call a network homogeneous if n = 1; that is, if all nodes have the same type.
A network is heterogeneous if n > 1.

Consider a simple model of information diffusion over time in which individuals
may pass along new information to some network neighbors when presented with the
opportunity. Call i’s neighbors in g Ni(g). In the model, an individual’s willingness
to share information depends on type: she is more willing to share information with
same-type nodes than with different-type nodes. Specifically, the diffusion process
proceeds as follows:

t = 0 One node i is randomly selected and endowed with information.
t = 1 Seed i randomly encounters x of her network neighbors, Ni(g). In each en-

counter, she passes information to the neighbor with probability psame if she and
the neighbor are both the same type, and probability pdi f < psame if they are
different types.

t = 2 All j who learned information in t = 1 randomly encounter x of their neighbors,
N j(g), passing information with probabilities psame and pdi f .

... Repeats for all who learned information in the previous period until the informa-
tion has reached everyone in the network or the spread halts.
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2.1 Consequences of randomly added links
Randomly added or rewired ties have been found to improve information diffusion in
homogeneous networks because random ties allow information to “jump” to distant
network locations [12, 19]. However, the diffusion process specified in section 2 intro-
duces a second, potentially-competing effect in heterogeneous networks. Randomly
added ties can change the composition of nodes’ neighborhoods. If neighborhoods
are comprised of more ties to other-type nodes, the expected number of neighbors
who receive the information declines.

Dual Effects of Random Ties in Heterogeneous Networks

Jump effect: random ties allow information to jump across distant network
locations, improving information dissemination.

Composition effect: random ties change the composition of a node’s neigh-
borhood, potentially impeding information dissemination.

In a heterogeneous network, which effect dominates– the jump effect which
improves dissemination or the composition effect which hinders dissemination–
depends on the relationship between homophily and the distribution of types in the
network.

Node i’s network neighborhood Ni(g) can be decomposed into Nsame
i (g), the

subset of his network neighbors that are the same type as i, and Ndi f
i (g), the subset

that are different. The expected number of nodes who receive information from i can
then be written

x
#Ni(g)

(
#Nsame

i (g)psame +#Ndi f
i (g)pdi f

)
, (1)

where # indicates the cardinality of a set.
The consequences of an additional tie added at random will depend on the pro-

portion of the nodes in g that are the same type as i. Call qτk the proportion of nodes
in g that are type τk. For simplicity, from any node i’s perspective, call qsame

i the
proportion of nodes of i’s type in g. Now a random link added to Ni(g) will reduce
the value of (1) whenever

#Nsame
i (g)

#Ni(g)
−qsame

i > 0. (2)

That is, when the network is homophilous with respect to type so that a larger
proportion of a node’s neighbors are his same type relative to the frequency of
his type in the overall network, the addition of random ties will strictly reduce the
expected number of people that that node informs.
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The extent to which the expected number of nodes who receive information from
i declines depends on the magnitude of the left hand side of (2). The greater the type
homophily, the bigger impact random ties will have on reducing the expected number
of people that a node informs.

When this relationship is prevalent enough throughout a network, network-wide
information dissemination can be strictly impeded by the addition of random ties.
The next section demonstrates the aggregate results using a simulated information
diffusion process.

3 Simulated Information Spread
In this section I simulate the information diffusion process from Section 2 on simple
networks generated with varying levels of homophily, heterogeneity, and random tie
additions.

3.1 The Downside to Density
I begin by generating four heterogeneous networks, each with two types of nodes. The
networks have 234 nodes, half of which are each type, and 864 links. Each network is
generated by randomly adding links according to a specified probability of attaching
to a same-type node. One network is generated for each same-type node probability
{.5, .65, .8, .95}. Let the difference between the proportion of same-type links present
and the proportion of same-type links that would be observed by uniformly random
link formation be called the network’s “homophily.” With two groups of equal size,
the expected proportion of random same-type links is .5, yielding networks with
homophily values {0, .15, .3, .45}.

I consider the consequences of increasing density for information diffusion by
randomly adding links to the network. For each value of homophily, I add links such
that the total number of links increases by a factor of 1, 2, 3, and 10.

Table 1 summarizes the interpretation of the model parameters and the values to
which they are set in the simulations reported below.

Figure 1 shows the results of the simulated information diffusion process on each
of these networks, grouped by homophily value. In each quadrant, the curves plot the
average proportion of the network that is informed by the timestep on the horizontal
axis over a set of 500 simulations for a particular value of density increase. Since
the population is finite, psame > 0, and pdi f > 0, diffusion follows the characteristic
s-shape. The lower the curve, the slower the diffusion.1

When the network exhibits no homophily (top left), randomly adding links can
improve information dissemination. In this case, since the composition of the pop-
ulation matches the composition of neighborhoods on average, randomly adding

1 This represents an impediment to diffusion in the sense that information reaches people more
slowly, and also in the sense that by any given point in time, fewer people are informed.
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Table 1: Model Parameters

Parameter Definition Set to

x Number of network neighbors a newly-informed node
encounters in a period

2

psame Probability pass news to an encountered neighbor if
neighbor is same type

1

pdi f Probability pass news to an encountered neighbor if
neighbor is different type

.5

τ =
{τ1, . . . ,τn}

Set of types {τ1,τ2},
{τ1,τ2,τ3},
{τ1,τ2,τ3,τ4}

qτk Proportion of type τk ∈ τ = {τ1, . . . ,τn} present in the
network

1/n

Homophily Proportion same-type ties in network minus propor-
tion same-type ties expected under random tie forma-
tion

{0, .15, .3, .45}

Diversity Number of types, or “groups”, present in the network {2,3,4}
Density Inc. Factor by which number of links is increased; e.g. 2

adds 200% of original links as new links
{0,1,2,3,10}

links has no composition effect. The jump effect dominates, improving information
dissemination on net.

When network neighborhoods contain more same-type links than would be ex-
pected based on the overall network composition (exhibit positive homophily), the
composition effect is present alongside the jump effect. In the cases of positive ho-
mophily shown in Figure 1, the composition effect dominates: an increase in density
actually impedes information diffusion. The greater the number of links added, the
worse the diffusion.

Note that the number of randomly-added ties is large in these simulations, in
some cases increasing the number of links in the network many-fold. Under standard
epidemiological models of information diffusion, the improvement in diffusion
would be vast. Here, these large additions actually reduce the spread of information.
Moreover, these simulations assume that individuals share with other-types half of
the time (pdi f = .5). When people are more hesitant to share with other types so that
pdi f is smaller, the reduction in information spread is even greater.

3.2 The Role of Diversity
Figure 2 holds the probability of same-type links constant and increases the number
of equal-sized groups in the network (the network’s “diversity”). The vertical bars



Information Diffusion in Heterogeneous Groups 455

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Homophily 0

Time

P
ro

p
. 
K

n
o
w

Density Inc.

*0

*1

*2

*3

*10

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Homophily .15

Time

P
ro

p
. 
K

n
o
w

Density Inc.

*0

*1

*2

*3

*10

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Homophily .3

Time

P
ro

p
. 
K

n
o
w

Density Inc.

*0

*1

*2

*3

*10

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Homophily .45

Time

P
ro

p
. 
K

n
o
w

Density Inc.

*0

*1

*2

*3

*10

Fig. 1: Proportion of network informed by each timestep in simulated information
spread on a network with τ = {τ1,τ2}, and qτ1 = qτ2 = 1

2 . Simulation parameters set
to x = 2, psame = 1, and pdi f = .5. When homophily = 0, random ties will not change
neighborhood compositions on average, so the jump effect dominants and increasing
density strictly improves information diffusion. At greater values of homophily,
increasing density does change neighborhood compositions and strictly impedes
information diffusion.

display the proportion of the network that has been informed on average by the tenth
timestep of the simulations for each network when it has ten times the number of
original links added at random minus this value for the original network. In other
words, this displays the gain or loss from increasing the density of each network
given a certain number of groups present in the network.

The cluster of bars on the left translates the information from Figure 1 in which
there are two groups present in the network. These show that when the probability
of sharing a link with a same-type is greater than .5, greater density reduces the
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Fig. 2 Difference in propor-
tion of network informed by
timestep 10 when the density
is increased by a factor of 10
compared to the proportion
informed by timestep 10 given
the original density. Shown
for 2 groups (τ = {τ1,τ2}
with qτ1 = qτ2 = 1

2 ), 3 groups
(τ = {τ1,τ2,τ3} with qτ1 =
qτ2 = qτ3 = 1

3 ), and 4 groups
(τ = {τ1,τ2,τ3,τ4} with
qτ1 = qτ2 = qτ3 = qτ4 = 1

4 ).
Simulation parameters set to
x= 2, psame = 1, and pdi f = .5.
The downside to greater den-
sity is more pronounced in
more diverse networks.
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proportion of the network that has been informed by the tenth time step. The next
two sets of clusters show the same from the case where there are three and four types
of equal size present in the network, respectively. Comparing across clusters shows
that the impediment to diffusion is greater when diversity is higher.

The negative consequences of adding random links to a network are even more
acute in the presence of greater diversity.

4 Conclusion
Previous studies have found that the addition of random ties unambiguously improves
information dissemination. Additional random ties generate a “jump effect,” allowing
information to jump from region to region within networks, speeding the spread of
information. However, the present work suggests that there is an additional, at times
competing effect that is masked when important features of information-sharing in
social networks are unaccounted for.

Ties in social networks represent potential opportunities for the spread of informa-
tion rather than certain conduits of information. People may be limited in the number
of encounters that would permit information-sharing, and people can decide whether
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or not to share information with any candidate recipient when given the opportunity.
This paper builds these two features into a model of information diffusion by assum-
ing a uniform number of encounters per person and the presence of types such that
people are more willing to share information with a same-type than a different-type
neighbor.

Accounting for these features reveals that a “composition effect” can result in
random ties impeding the spread of information. When random ties reduce the
proportion of same-type nodes in nodes’ neighborhoods, opportunities to share
information are more likely to arise with people of a different type. Since people
are more hesitant to share with different types, random ties can impede overall
information dissemination.

Note that the two effects can be on net negative, even when people are still willing
to share information with different type ties some of the time. In heterogeneous
groups, especially ones with high homophily, greater density can actually strictly
reduce the speed with which information spreads throughout a network.

In addition to revealing a potentially negative consequence of network density
in diverse groups, these results also help make sense of recent empirical findings in
the social sciences showing that group composition is directly related to both trust
[22] and the reach of novel information [14]. Areas that are heterogeneous in salient
types– for instance those that are ethnically diverse– fare poorly in outcomes that
require information to spread to coordinate outcomes like providing public goods
[17], keeping aspiring rebel groups’ secrets from the government[15], and enforcing
behavior through peer sanctions [13]. Heterogeneous groups may face difficulties
due to problems with information dissemination that homogeneous groups are able
to avoid.
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Abstract An efficient tweet dissemination predictor for retweets and replies is central
both to a better understanding of influentials (people and messages), as well as of
how social media revenue models can be better monetized. Traditionally research
concentrated on retweets popularity and information cascades while neglecting the
importance of features richness and classification. We propose a novel approach that
introduces feature planes for better prediction of single step tweet dissemination. We
show that our model can achieve a quasi-perfect prediction. This promises to be a
seminal step towards a better understanding of data dissemination in social networks.

1 Introduction
The widespread use of social networking sites like Twitter and Facebook allow
users to generate and share information anywhere and anytime. The receiver of a
message in such large scale networks has an option either to relay or forward it to
his/her followers. In Twitter, this process is called retweeting and typically users
retweet a message if they consider it interesting and worth sharing with others. A
sequence of retweets along the network is called information cascade. Due to this
process of sharing, a large amount of content is generated in Twitter and opened the
door for new research directions in the field of information spreading, advertising,
recommendations and social data mining. For example, online advertisers could use
this information for efficient targeted marketing campaigns. Media companies could
learn how to effectively generate buzz for new films or shows. Political groups could
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learn who they should try to influence in order to spread their message as far as
possible. Further, event results can also be predicted with good approximation.

Existing works in this area mainly tried to predict complete cascades by utilizing
specific aspects of information diffusion like social network structure, temporal
properties, profile features and topical features [6, 13, 14, 16] but none of them
successfully combined all these features together and, more importantly, they do not
quantify the importance of different features for retweet prediction. We argue that a
fundamental knowledge of different feature planes (defined as a group of features
with similar cost in terms of privacy and complexity to acquire), their individual
and combined contribution in retweet prediction has to be analyzed first for better
prediction of information diffusion. Therefore, we take a step back and identify
feature planes based on their complexity to acquire and privacy intrusiveness and
study their impact on retweet prediction to build a better understanding of diffusion.
We believe that a deeper understanding of single step diffusion can be utilized
as important building blocks for future models to precisely predict the complete
information cascades. Our approach allows a very effective single step retweet
prediction and quantifies the influence of different feature planes on prediction results.
Further, as opposed to other works, we also take into account reply for information
propagation by predicting the likelihood to reply to a particular tweet. To the best
of our knowledge, our work is the first one that deeply studies the importance and
impact of different planes of features on retweet and reply prediction. We summarize
our contributions as follows:

• We define different planes of features that differ in complexity to acquire and
level of privacy required.

• We introduce a novel approach that predicts the likelihood of tweet, retweet, and
reply for a given tweet and user by using different feature planes. As opposed
to other works, our approach does not limit the retweet and reply prediction
to tweets generated by friends of a target user but predicts the likelihood for a
generic tweet.

• We provide a deep understanding of single step information diffusion in social
networks.

• Our results show high precision for both retweet and reply for different planes
and also present that user twitter activities feature plane provides the highest
precision. Further, our results are also seminal to researchers by providing the
trade-off between high prediction accuracy and privacy.

In next sections, we first give an overview of the state of the art (Section 2) and
describe the dataset used in Section 3. Further, we introduce our feature planes classi-
fication (Section 4) and then our approach to classify retweet and reply in Section 5.
In Section 6, we validate our model and present the results for different feature planes.
Finally, we conclude the paper along with future directions in Section 7.
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2 Related Works
Although some initial work has been done to model complete diffusion cascades
in social media [6, 13], researchers have recently argued that cascades might be
inherently unpredictable, due to the high number of factors, either internal or external
to the network [12], that affect the outcome of diffusion [11, 15]. For this reason,
predicting the exact pattern of diffusion of a piece of information starting from a
given node in the network remains challenging.

Most of the works in literature are mainly focusing on the analysis of specific
aspects of information diffusion in social networks, such as whether diffusion will
grow in future or not [4], the impact of content sentiment on diffusion [5], and the
effect of features related to items or users on content popularity [8, 16]. In this paper,
instead of trying to predict complete information cascades, we decided to firstly
estimate whether a given user will retweet or reply a single tweet. Although some
work has been already done in this research direction, the proposed solutions are
still rather incomplete in terms of a number of features utilized and analysis of their
impact on the diffusion process. For example, the work by Yuan and colleagues [17]
is focused on the impact of social relationships and tie strength on the probability of
diffusion. The work aims at sorting the friends of a user by their likelihood to retweet
or reply its tweets and, does not specifically address information diffusion. Pezzoni
et al. [14] analyzed the impact of temporal features and popularity indicators on the
diffusion. The results indicate that content age and its visibility in the homepage of
the user strongly influence the probability of resharing. Yet, compared to our work,
this approach is particularly focused on temporal variables and does not consider
other feature aspects.

Another research area related to the analysis of single step diffusion is from the
perspective of personalized tweet recommendation. This approach aims to recom-
mend tweets that could be interesting to the users instead of predicting whether users
will reshare them in the future. On this line of research, Chen et al. use several fea-
tures related to users profiles and their similarity, the content of tweets, and the social
relationships between users to recommend existing tweets to users [3]. A similar
solution is also proposed by Hong et al. [9]. Differently from these approaches, we
focus on both retweet and reply prediction and we study the impact of different
feature planes by considering the complexity to download each feature plane and
the level of privacy it requires. Further, as opposed to existing works, our proposed
model does not limit the prediction of retweet and reply for tweets that are generated
by the friends of the user rather predicts it for any generic tweet.

3 Data Set Description
We used data collected from the Twitter activity of a large sample of about 2M
users. The dataset was downloaded by Arnaboldi et al. in 2013 [1]. The dataset
has been crawled through Twitter REST API, starting from a popular user in the
network and then downloading all the available information about user’s tweets and
profile. Subsequently, the crawler iteratively downloaded same information for all
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the followers and friends of the user who downloading phase was terminated. The
obtained dataset is a large snowball sample of the network, with some degree of
randomization due to the parallelization of downloads and the choice to start from a
user with a large number of followers. This makes this dataset particularly suitable
for the analysis of social interactions and information dissemination within groups
of connected users, especially for those within small groups, for which the crawler
possibly downloaded their complete network of social contacts.

For each user in the dataset, we have the complete history of tweets and retweets
they posted on Twitter up to the limit of 3,200 tweets per user imposed by Twitter
REST API. In total, the dataset contains more than 2 billion tweets, each of which
is characterized by creation time, the id of the creator, textual content, the number
of retweets it received, information about geo-location, and the set of entities it
contains such as hashtags, ids of other users mentioned in the text, URLs, etc.. In
addition, each tweet also contains information about possible directed interactions
between users. For retweets, this includes the id of the user who created the original
tweet (i.e., the tweet that has been retweeted) and the creation time of the original
tweet. For replies, the tweet includes the id of the user who replied. The profile
data downloaded for each user includes general user’s information, such as user’s
name, description, geo-location, language, a personal URL, as well as some statistics
about user’s Twitter usage like a total number of tweets created, and the number of
followers and friends.

Figure 1a depicts the CCDF of the number of tweets created by each user. It is
worth noting that the distribution is truncated around 3,2001 for the limit imposed
by Twitter API. Nonetheless, the number of Twitter users who reach this limit are
roughly 10% of the total number of users in the dataset. This means that for the
majority of people we have the complete history of tweets they created. In addition,
for the users who created more than 3,200 tweets, we have a large sample of their
recent Tweeting history. Figure 1b depicts the CCDF of the number of followers and
friends per user. Both graphs show a very long tail, with a very small fraction of
users in the dataset reaching about one million of friends, and more than 20 million
followers. This is a typical aspect of social networks and indicates the validity of our
sample.

4 Feature Planes
To model a person’s likelihood to retweet and reply, we propose different planes of
features and extract them from Twitter data according to the increased complexity
to acquire them and their privacy intrusiveness. From the privacy point of view, we
consider how much information do we need to mine and reveal about a user in order
to predict retweet and reply. The consideration of privacy during Twitter data mining

1 For some users, the number of tweets is slightly larger than 3,200 since we performed multiple
downloads during the set-up process of the crawler, which lasted roughly one month, and we might
have obtained the additional tweets generated during this month for some users.
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Fig. 1: Complementary cumulative distribution function of the number of tweets
created and number of friends and followers per user

is also highlighted in recent studies [10] [7]. Based on these contexts, we propose
different feature planes starting from profile features to sentiment analysis of tweets.

Figure 2 presents different planes of features considered in the paper starting
from Profile to Global plane. Please note that in each feature plane, we also consider
features associated to the current Tweet. With Tweet features, we intend to examine
the popularity of the original tweet and time sensitivity [13]. Other Tweet features
we considered in each plane are the sentiment of the tweet, the number of embedded
mentions and URLs obtained through tweet inspection.

Fig. 2: Feature planes based on the complexity to acquire and privacy intrusiveness
starting from user profile features to sentiment analysis of tweets.
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4.1 Profile Plane
Features associated with this plane are the easiest to acquire using public Twitter
API2. From the Twitter profile of a user, we intend to get information about the
user’s account history like the length of user screen name, availability of URL, user
description and image on his/her profile. We hypothesize that users with longer
account history and rich profile information may be more active on Twitter, therefore,
it is more likely to predict their likelihood to retweet and reply. Additionally, we also
capture social information of the user from their profile by extracting the number
of friends, the number of followers and the number of groups a user is associated
with (listed count). Finally, from user profile we also consider the activity of users
through their status counts (how many tweets users has published recently) and
favorite counts (how many tweets has been marked favorite by a user) features.

4.2 Social Plane
Features in this plane represent the social ties of a person. Intuitively, if a person
has more friends and followers then he/she has a higher probability to retweet and
reply. Recent works also show that potential of retweeting as an act of friendship
and to gain followers [2]. In this context, we process each user’s network of friends
and followers and extract features related to the number of friends, the number of
followers, ratio of a number of friends to the number of followers and, ratio of a
number of non-friends to the number of followers. As compared to Profile plane
features, Social plane features are difficult to acquire and more privacy intrusive as
we look into the entire social network of users.

4.3 Activity Plane
This plane captures all past and recent activities of Twitter users to predict their
willingness to retweet and reply. We assume that if a person exhibits more activity
on Twitter, then it is more likely that he/she will retweet and reply. We also quantify
user’s activity with respect to their friends, followers, and strangers like descriptive
statistics for tweets per follower, friends, and strangers. Activity plane features are
even more difficult to acquire and more privacy intrusive because we inspect all
tweets of users to extract statistics about their past tweet, retweet and reply behavior
with other users. In this plane, we capture both past and recent activities of users.
For past activities, we utilize all available tweets up to current time while for recent
activities we only take into account past month data (i.e. four weeks).

2 The profile data of a user can be accessed through a single Twitter API call.
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4.4 Sentiment Plane
The features associated with this plane are the most computational costly and privacy
intrusive as compared to other planes because, in this case, we inspect the content of
each tweet and process them to find associated positive, negative or neutral sentiment.
Similar to Activity plane features, we also extract all past and recent sentiments
of tweets and also quantify tweet sentiments for friends, followers, and strangers.
To measure the overall sentiment of a set of tweets (or retweets/replies) in a day,
we define sentiment index SI in Equation 1 where s+ represents positive sentiment
and s− presents negative sentiment values in a day. To calculate SI, we first detect
all English tweets from data set for each user and perform sentiment analysis on
day-wise tweets using TextBlob 3. To calculate SI values, we only consider tweets
whose sentiments can be classified through TextBlob library. Likewise, we calculate
SI values for each day of the tweets corresponding to each user.

SI =
∑s+−∑s−

∑s++∑s−
(1)

4.5 Global Plane
This plane combines all features from Profile, Social, Activity, and Sentiment planes
along with Tweet features. With the help of this plane, we intend to study the
aggregated impact of all feature planes on retweet and reply prediction.

5 Multi-Classification Prediction Model
5.1 Pre-processing and Training Data Generation
From the collected dataset, we only consider English tweets and also annotate each
tweet as a tweet, retweet or reply and call them type 0, 1 and 2 respectively. In this
way, we create ground truth to check the accuracy obtained from our prediction
results. Each tweet signifies no diffusion while retweet and reply represent the single-
step diffusion. From processed data set with English tweets, we calculate features
over time to capture possible changes in retweet and reply behaviors with time and
generate a time series for each variable to be more precise in predictions. Further, we
aggregate these features in a weekly time window for Activity and Sentiment plane
and store them in an SQLite database separately. The weekly aggregation was a good
trade-off between precision and complexity because with the daily aggregation the
complexity of the model was too high for the amount of data that we have.

Utilizing our database, we create a final set of features for a given user and tweet
pair < u, tw > to train our prediction model. To create Activity and Sentiment plane
features for < u, tw > pair, we extract data only till the current time of the tweet tw.
Please note that, since the features for Profile and Social planes do not change with

3 textblob.readthedocs.io/en/dev/quickstart.html
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time for a given user, they remain static for a given < u, tw > pair. Table 1 presents
the format of feature sets for all planes given as input to train our model.

Table 1: Feature Set Input For Prediction Model

Feature Plane Feature Set

Profile Plane <UserID,TweetFeatures,Pro f ileFeatures,TweetType >

Social Plane <UserID,TweetFeatures,SocialFeatures,TweetType >

Activity Plane <UserID,TweetFeatures,UserActivityFeatures,TweetType >

Sentiment
Plane

<UserID,TweetFeatures,SentimentFeatures,TweetType >

Global Plane <UserID,TweetFeatures,Pro f ileFeatures,SocialFeatures,

UserActivityFeatures,SentimentFeatures,TweetType >

5.2 Prediction Model
We tested a number of classification algorithms such as Logistic regression, Random
Forests models and Support Vector Machines, and chose regularized gradient boost-
ing XGBoost to classify tweet, retweet, and reply. We chose XGBoost as it showed
more stable performance across target variables and it does not require feature space
specification, therefore, not affected by feature selection performance.

Our implementation of Gradient Boosting Method is based on the Python library
XGBoost 4. To classify tweet, retweet, and reply, we utilize multi-class classification
using the softmax objective function. Further, we tried a set of parameter combinations
to prevent overfitting using three parameters, eta that determines the learning rate,
gamma regulating the sensitiveness to training examples, and the number of rounds.
Based on different experiments, we set eta and gamma as 0.1 and 0 respectively.
We apply 10-fold cross-validation to select an appropriate number of rounds based
on the multi-classification error rate. For a given < u, tw > pair, our model predicts
the likelihood of diffusion by classifying tweet, retweet, and reply. If our model
predicts retweet and reply for a < u, tw > pair then, the single-step diffusion will
occur otherwise, there will be no diffusion due to the likelihood of tweet predicted
by our model for the given pair.

4 xgboost.readthedocs.io/en/latest/python/python intro.html
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(a) Sample 1-Precision (b) Sample 1-Recall

(c) Sample 2-Precision (d) Sample 2-Recall

Fig. 3: Precision and Recall obtained from different models utilizing different planes
of features starting from Profile to Global plane.

6 Results and Discussion
We measure precision and recall obtained from XGBoost model for the tweet, retweet,
and reply classification. We split the set of tweets into a training and a testing set
based on the timestamp of the tweets. The training set consists 60% of all tweets and
the remaining 40% of the data is used to evaluate the prediction quality. We tested our
model on two different samples (Sample 1 and Sample 2) of dataset selected based
on different time intervals with 673,858 and 1,031,116 tweets respectively. Sample
1 data consists only one-month tweets of users while Sample 2 have all tweets of
users for all years. For each sample, we tested model accuracy for different planes of
features starting from Profile plane to Global plane. Figure 3 presents the precision
and recall obtained from both samples for all feature planes for the tweet, retweet,
and reply classification. From our results, we observe that for both samples, Activity,
and Global plane features outperform and provide retweet, and reply classification
with 99% and 82% precision and 99% and 80% recall values. Further, our model is
also able to correctly classify tweets with high precision (99%) and recall (100%)
values. These results show that if we process and mine more information about users,
the model becomes more precise in classifying tweet, retweet, and reply. We also
observe that our model performs slightly better ( 2%) in Profile plane as compared to
Social and Sentiment planes. This happens because, in Profile plane, we have more
information about the user in terms of the number of status messages, association to
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(a) Profile Plane (b) Social Plane (c) Activity Plane

(d) Sentiment Plane (e) Global Plane

Fig. 4: Confusion Matrix for Tweet, Retweet, and Reply classification obtained from
our model utilizing different feature planes starting from Profile to Global for Sample
1.

groups while Social plane only has high-level information about friends and followers
and Sentiment plane only considers sentiment of tweets. From above results, we
observe the importance of the profiles of users and their activities on Twitter.

The precision and recall obtained using Activity and Global planes are equivalent
and show that the maximum precision can be achieved only by considering user
activities on Twitter i.e. Activity plane features. The inclusion of other feature planes
such as Profile, Social, and Sentiment do not further improve prediction results. Our
results highlight that only with Profile plane features, we can still achieve good
accuracy thus, our model also takes away the complexity of large data processing
and privacy concerning issues. Finally, we also present the confusion matrix for
both sample 1 and 2 in Figure 4 and 5 respectively. From both confusion matrix, we
observe that our model is able to correctly classify tweets, retweets, and reply for all
planes thus, confirms the results obtained from Figure 3.

Table 2 presents the most important features associated with each plane utilized
by our prediction model. From Table 2, we observe that Tweet features are one
of the most important features across all planes. The tweet related features that
contribute the most to precise prediction results are the time of the tweet, a number
of times the tweet has been retweeted (Retweet count) and length & sentiment of
the tweet. Since Tweet features are associated with each plane, therefore, we also
quantify their impact on model accuracy and observe that they contribute 30% to
the overall model accuracy across all planes. Our prediction model obtains similar
results for both samples (sample 1 one month data while sample 2 with years of data)
across all planes. Therefore, our results show that only with one-month of the Twitter
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(a) Profile Plane (b) Social Plane (c) Activity Plane

(d) Sentiment Plane (e) Global Plane

Fig. 5: Confusion Matrix for Tweet, Retweet, and Reply classification obtained from
our model utilizing different feature planes starting from Profile to Global for Sample
2.

activity for a set of users is enough for accurate predictions. This result provides
the implications for the amount of data required for the tweet, retweet, and reply
classification and could be utilized in future diffusion models.

Compared to other resharing prediction models in the literature, we obtain sensibly
higher accuracy values. For example, the model presented in [9], which is, to the
best of our knowledge, the only model that can be directly compared to ours, obtains
prediction accuracy lower than 80%. It is also worth noting that this model limits
the prediction to tweets only generated by friends of the target users, whereas in our
model we calculate the likelihood to retweet or reply a generic tweet, not necessarily
generated by someone connected to the selected user.

Finally, we also validate the applicability of our prediction model for different
time periods. To do this, we further group our testing data in the order of time (hour,
day and week) after the last tweet of training data. For example, in the case of one
hour, we only classify tweets that have been generated at max one hour after the last
tweet in training data. Similarly, for days and week, we only classify those tweets
that have been generated till the current day or week. From our results, we observe
that for testing tweets generated up to one day after the last tweet of training data, our
model classifies tweets, retweet, and reply with slightly higher precision ( 2%) for all
planes except Activity and Global planes. In the case of Activity and Global planes,
the precision obtained from our model was same across different time periods thus,
show the preciseness and applicability of our model for different time periods and
makes our model time independent. This happens mainly due to our rich dataset and
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Table 2: Most Important Features For Different Planes

Profile Plane Tweet time, # Followers, Tweet length, Twitter account age, # status
messages, # Friends, Retweet count, Tweet sentiment, Listed Count,
Length of user description

Social Plane Tweet time, Ratio of friends and followers, # Friends, Tweet length, #
Followers, Retweet count,Tweet sentiment

Activity Plane Retweet count, Tweet length, Time elapsed since last Retweet, Tweet
time, # Mentions, Tweet sentiment, STD of inter Retweet time, STD of
# urls in Retweet, # Hashtags, Min. of inter Reply time, Mean of inter
Tweet time, Time elapsed since last Tweet, Max. of total Retweets per
follower, # Url

Sentiment Plane Tweet time, Tweet length, Retweet count, Tweet sentiment, STD Retweet
SI per follower, STD of Retweet SI, Max. of Retweet SI, Max. Retweet
SI per follower, STD of Reply SI, STD of Tweet S, Entropy of Retweet
SI, STD of Tweet SI per week,Entropy of Retweet SI

Global Plane Retweet count, Tweet length, Time elapsed since last Retweet, Tweet
time, # Mentions, Tweet sentiment, STD of inter Retweet time, STD of
# urls in Retweet, # Hashtags, Min. of inter Reply time, Mean of inter
Tweet time, Time elapsed since last Tweet, Max. of total Retweets per
follower, # Url

consideration of both recent and overall past activities of Twitter users and the right
features selected from our Gradient Boosting model.

7 Conclusions and Future Work
In this paper, we present a novel approach to predict the likelihood to tweet, retweet,
and reply based on different feature planes. Our approach provides the deeper under-
standing of the diffusion process and quantifies the impact of different feature planes:
Profile, Social, Activity, Sentiment, and Global. We propose feature planes based
on the complexity to acquire and privacy intrusiveness. Differently from existing
solutions, our model enables tweet, retweet and reply prediction for any generic
tweet and does not limit the prediction for tweets generated by someone connected
to the user. We validated our model on two different samples of the large-scale
Twitter dataset and observe that our model outperform existing works for all planes
by providing higher precision and recall for both samples. From our results, we also
observe that Activity and Global feature planes outperform as compared to other
feature planes. Further, our results are also seminal to researchers by providing the
trade-off between high prediction accuracy and privacy.
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In future, we plan to utilize user-level and tweet-level interest similarities for
retweet and reply prediction by creating knowledge graph of topics from tweets.
Finally, we intend to use our model to predict complete cascades in Twitter.
Acknowledgements This work was supported by the EU FP7 ERANET program under grant
CHIST-ERA-2012 MACACO.
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Abstract Studying diffusion process in complex networks has become an important
issue nowadays. This issue has been addressed for different objectives, including
quickly detecting the diffusion outbreak, blocking the propagation, and localizing
the diffusion source. In this paper, we are mainly interested in developing an efficient
algorithm to estimate both the source and the start time of the diffusion, under the
constraint that only a subset of nodes can be observed. In doing so, we use the
Ordinary Least Squares method (OLS) on the data gathered at observers, taking
advantage of the linear correlation between the relative infection time of a node
and its effective distance from the source (Brockman [2]). The proposed algorithm
ensures an estimation at few hops from the actual source. We show its efficiency
through numerical simulations on both synthetic and real networks.

1 Introduction
Epidemics propagation in populations, virus cascading in computer networks, rumors
spreading in social networks are considered as examples of diffusion process in
complex networks. Studying this process has attracted much attention in recent
years. This issue has been considered for different objectives, including: inferring the
underlying diffusion network [3], maximizing the spread of influence [4], blocking
the contagion diffusion [5], and locating the diffusion sources [11][8][14]. The last
one has recently received much attention.
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Localizing the source of diffusion is an important task that has many applications
in several areas, such as: identifying the culprit by the authorities [11], determining
the patient-zero of a pandemic [8], disclosing the person who started a rumor (in a
social network) [13], finding the administrator of a cyber-attack [14], etc.

An intuitive solution to efficiently localize the diffusion source is to observe the
state of all nodes in the network. This assumption has been considered in a first
class of works, where the state of all nodes is supposed known by giving a snapshot
of the diffusion spread [8, 14]. With this hypothesis, authors in [14] proposed a
Maximum-Likelihood Estimator (MLE) for trees and extended for general graphs.
The estimator depends on a defined metric denoted rumor centrality. As well, in [8],
a probabilistic algorithm has been developed using the dynamic message-passing
equations. However, Observing all nodes fails for two reasons: first, it is generally
unfeasible as the most of the networks of interest are very large, and second, it is
not cost-efficiently as controlling nodes has usually a cost. This constraint has been
considered in the second generation of works, which tries to localize the source under
the constraint that the state of only a subset of nodes can be observed [10, 11, 13, 16].
Under this constraint, a MLE that maximizes the localization probability has been
developed in [11]. This estimator is optimal for trees and suboptimal for general
graphs. In [10], the diffusion source has been proven to be the Jordan center of the
tree formed by the set of observed nodes. In [9], a two-stage algorithm has been
proposed, which first identifies the most likely candidate cluster to contain the source,
and then tries to locate the source within this cluster using a MLE.

In this paper, we consider the source localization problem under the constraint
that only a subset of nodes can be observed. Thus, two main questions arise: the first
one concerns the design of an efficient observation model, and hence we ask about
which nodes we should observe in order to efficiently control any diffusion outbreak.
This question has been considered in [11, 13, 16], and it has been shown that the
strategy for selecting nodes to be observed affects the source estimation performance
through a comparison between different strategies. The second question involves the
development of an efficient method to accurately localize the diffusion source using
only the partial information gathered at the observed nodes. Our answers to these
questions provide our main contributions summarized as follow:

1. Proposing an efficient parameterized observation model taking advantage of
the network structural properties, which is an efficient way to have a good
observation given that the network is the conduit for the diffusion. For this
purpose, we use the critical nodes of the network [6]. The model provides a
useful tool which deals with different diffusion objectives together, namely,
detecting, blocking and localizing the source of diffusion.

2. Developing an efficient approach to estimate both the diffusion source and the
time zero of the diffusion (if it is unknown). For this purpose, we first use the
proposed observation model to gather the infection time information. Then,
taking advantage of a fundamental diffusion property showed by Brockman [2],
where the infection time of a node and its effective distance from the source are
linear correlated, we use a linear regression method, namely the Minimum Least
Squares method to estimate both the source node and the time zero. We note that
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the proposed method is model-free and works for any observation model. Also,
it does not depend on the underlying diffusion model.

3. Conducting simulations on both synthetic and real-world networks to show the
efficiency of our approach in localizing the diffusion source .

The rest of the paper is organized as follows. In Section 2, we give the definitions
used in the paper. Section 3 describes our proposed observation model for sparse
networks. In Section4, we detail our approach for localizing the diffusion source,
and then we evaluate its performance in Section 5. Finally, we close up the paper by
some perspectives and future works.

2 Definitions and notations
In this section, we introduce the needed concepts for locating the diffusion source.
The Diffusion model in networks: The network on which diffusion occurs is modelled
as an undirected graph G = (V,E), where V is the set of nodes, and E is the set of
edges (if G is unknown, we can infer it using inferring algorithms [3]. To model
the diffusion in the network, we adopt the well-known Susceptible-Infected (SI)
model, where each node is in state: (i) Susceptible (S): the node is able to being
infected, or (ii) Infected (I): the node can spread the contagion further. Once a node
is infected, it will stay infected forever. This model covers most of the possible
situations. In addition, a propagation probability puv is associated with each edge uv,
and the diffusion process is the following. At time t, each infected node u tries to
infect all its neighbors. Each neighbor node v becomes infected with a probability
puv, and will remain infected throughout. The process continues until there is no
possible propagation. We assume that the diffusion outbreak occurs by a single node,
called the source node s ∈V , at time t0. This diffusion model is general enough to
accommodate various scenarios encountered in practice.
Critical Nodes: The critical nodes of a graph are those whose deletion significantly
degrades the graph connectivity according to a predefined metric [6]. Here we are
interested in the so-called Component Cardinality Constraint Critical Node Problem,
defined as follows. Given a graph G and an integer L, find the minimum set of nodes
whose deletion disconnects G on connected component of at most L nodes.
Effective distance: Given two adjacent nodes u and v in a graph G = (V,E), the
effective distance duv between u and v is defined as follows:

duv = 1− log2(puv)

where puv is the propagation probability from u to v. This measure implies that a
small fraction puv is effectively equivalent to a large distance between u and v, and
vice versa. Based of this concept, we define the path-effective distance of a path
P(u1,un) = {u1,u2, . . . ,un} as:

λ [P(u1,un)] = ∑
uv∈Γ

duv
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the effective distance Duv from an arbitrary node u to another node v is defined as:

Duv = minP(u,v)λ [P(u,v)]

A diffusion process starting at node u is equivalent to a homogeneous wave propa-
gated on the u-rooted tree formed by the shortest paths P(u,v),∀v ∈V (see [2]).

3 Observation model for sparse graphs
Network controllability using only a subset of nodes, called observers, has been
considered in [7]. The objective is to select a minimal set of nodes whose monitoring
allows to control the network state and hence detect any diffusion. Using this idea, we
propose to take as observers the critical nodes [6] of the network (the nodes whose
deletion disconnects the network on components of at most L nodes). The motivation
behind using these nodes as observers is that observing them:

1. ensures an early detection of any diffusion outbreak in the network, and hence
makes easier the localization of the source since detecting the diffusion as soon
as possible allows to minimize the number of infected nodes, and thus the nodes
likely to be the source. This is possible since observing critical nodes ensures that
each diffusion that spreads in the network is observed by at least one observer
after at most L hops. Note that critical nodes are the connection between the
components and any path between two component pass through them.

2. provides an easily locating of the part of the network where the outbreak occurred
(the part containing the source), without the need for the direction of infection.
For that, each observer, once observing the diffusion, it halts it and does not
spread it further, and hence the diffusion will be contained only on the connected
component bounded by the first critical nodes receiving the infection.

3. provides distributed and balanced control on the whole network, which we should
ensure in the case where all nodes are equally likely to start the diffusion. Also,
it allows different levels of network controllability with respect to the values of
L (the size of component), which provides more flexibility and more potential.

4. it is cost efficient. In fact, observing nodes has usually a cost, which we aim to
minimize, and in finding critical nodes we seek for the minimal set of nodes.

4 Diffusion Source localization
In this section, we detail our approach for locating the diffusion source. We assume
that the diffusion process is initiated by a single node s at time t0. The time t0 can be
(i) known, this is the case, for example, of diffusions occurred due to disasters, where
the disaster start time is known, or (ii) unknown, which is the general case. We also
assume that any node in the network is equally likely to be the source a priori. Let
O = {ok}K

k=1 ⊂ V be the set of K observer nodes. We denote the active observers
Oa ⊆ O, the subset of observers that receives the infection, and Ca the infected
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component i.e., the part of the network where the diffusion is detected, and hence
the part containing the source node. Based on the first time the observers become
infected, Ca is easily identified as the component bounded by Oa since besides
observing the diffusion, each observer is designated to stop and do not disseminate
further the diffusion once observed. That allows the diffusion to be contained in only
one component (denoted Ca). Accordingly, each observer oi ∈ Oa provides the time
at which the infection is received. We denote Ta = {tok}K

k=1 the infection times of
observers. In [2], it has been shown that the relative infection time of a node u is
linear with its effective distance from the source s, so we have:

tu = α ·Dsu + c (1)

where tu is the relative infection time of node u, Dsu the effective distance from s to
u. Based on this fundamental property, we estimate the real diffusion source using
the well-known Ordinary Least Squares method [12].

4.1 Estimating the source node
In this section, we describe the use of the OLS method to locate the diffusion source.
Note that given two random variables X (the independent variable) and Y (the
dependent variable), and a set of n pairs of observations {Yi,Xi} where the value of Y
and X are related by a linear equation: Y = a+b ·X , OLS estimates the parameters a
and b of the ”best fit” line to the observed data. The estimation is defined as the values
which minimize the sum of the squared errors (for more details, see[12]). In our case,
the independent variable X is the effective distance (D), and the dependent variable
Y is the infection time (t). We recall that each observer saves its infection time, while
its effective distance from the node supposed to be the source is computed using the
underlying network. We consider the two cases, wether the time t0 is known or not.

4.1.1 Case 1. The start time t0 is known
In this case, we suppose that t0 is known. To estimate the source node, we investigate
all suspects node in Ca (the infected component). For each node u ∈Ca, we compute
the effective distance between node u and all observers oi ∈ Oa. Thus, we have K
pairs of observations {toi ,duoi}, corresponding to the relative infection times and
the effective distances between observers and node u. Then, we apply OLS on
{toi ,duoi}K

i=1 to compute the parameter α as shown in line (6) of Algorithm 0, while
compelling the line to pass through the point {t0,0} (c = t0). The parameter α is
then used to compute the sum of the squared errors. We do the same with all suspect
nodes, and the real source node is the node which minimizes the residual sums.
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4.1.2 Case 2. The start time t0 is unknown
Now, we consider the case where t0 is unknown. Thus, we seek for both locating the
diffusion source and estimating the initial time of the diffusion. Identifying the time
zero has many advantages. For instance, it helps in discovering the real reasons of the
diffusion by locating where the source was. Indeed, learning about the environment
where the source was can lead to a good control of the diffusion. This is the case
of epidemics, where determining exactly where the patient zero travelled and who
they came into contact with, helps the epidemiologists to discover the origin of the
infectious disease, to track its spread, and undertake procedures to isolate it. Note
that harmful viruses often exist in some nidus1, and the infection starts when the
virus comes into contact with patient zero.

We proceed as for Algorithm 0, we investigate all nodes u in Ca and obtain the
set of data {toi ,duoi}K

i=1 corresponding to the relative infection times of observers
and their effective distances from u. Then, we compute the correlation coefficient
between the effective distances and the infection times of observers. As the infection
time of a node is linear with its effective distance from the diffusion source, then the
most likely node to be the real source is the suspect node with the best value of the
correlation coefficient (computed as shown in line (11) of Algorithm 0). In our case,
the closer the coefficient is to 1, the better is the correlation, since the infection time
increases as the effective distance increases (0 < ρ ≤ 1). Also, the estimated start
time t̂0 is the intersection between the regression line and the time-axis i.e., t̂0 = c,
since tu = c+α ·Dsu and Dsu = 0 when u≡ s.

5 Experimental results
In this section, we present simulation results using both synthetic and real-world
networks to evaluate the performance of the proposed estimator for diffusion source
localization. To model the virus spreading in the network, we adopt a discrete time
Susceptible-Infected model (SI). The time is slotted, i.e., divided into discrete slots,
at time t = 0, there is only one infected node, called the source. A susceptible node
u∈Ca adjacent to any infected node v becomes infected with probability puv ∈ (0,1),
at the beginning of the next time slot.

For synthetic networks, we consider the two well-known models, namely small-
world and scale-free networks [15]. We first identify the observers (which are the
critical nodes) using the heuristic described in [1], and then we run the estimator
described in Section 4.1. Without loss of generality, in diffusion simulation we
consider only the infected component with a predefined set of observers. All reported
results are averaged over 100 independent runs. For each run, and since there is no
prior knowledge of the source of diffusion, we randomly select a node to be the
source. The main metric we use to evaluate the estimation accuracy is the distance

1 Nidus is the long-term host -natural reservoir- of a pathogen of an infectious disease, such as
animals like rats.
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Algorithm 14 Diffusion Source Localization- t0 is known

1: Input: a graph G = (V,E) with propagation probability puv for each edge
uv ∈ E, a set of k active observers Oa = {o1, . . . ,ok} and their infection times
Ta = {to1 , . . . , tok}, and the diffusion start time t0.

2: Output: the estimated diffusion source s∗.
3: s∗←{}, τ ←+∞.
4: for each node u ∈Ca do
5: For each observer oi ∈ Oa, compute the effective distances Duoi = 1−

log(puoi), and lets D = {Duo1 , . . . ,Duok}.
6: Compute the equation of the regression line for the independent variable D

and the dependent variable Ta while forcing the line to pass through {t0,0}, as
follows:

c = t0, and α = ∑(toi −Ta)(Duoi −D)

∑(Duoi−D)
2

7: Let σ = ∑i [toi − (c+αDuoi)]
2 be the residuals sum returned by the line.

8: if σ < τ then
9: s∗← u, and τ ← σ .

10: end if
11: end for
12: Return the estimated diffusion source s∗.

error2, denoted θ . Different algorithms are implemented using C++, R (using igraph
package) and Python (using Networkx package).

As our approach is based on the linear relationship between the relative infection
time of a node and its effective distance from the source [2], we first show through
experimentation the concreteness of this property. Fig. 1. clearly shows a strong
linear correlation between the infection time of a node and its effective distance from
the source on both small-world and scale-free networks of 1000 nodes.

When the start time is known, we select as estimated source the suspect node
with the smallest residual sum, and when the start time is unknown, we select the
node with the greatest correlation coefficient value. In order to evaluate this idea,
we investigate, in Fig. 2.(left), the influence of the distance from the source on both
the correlation coefficient and the residual sum, considering a small-world network
of 300 nodes and diameter of 22 hops, and where 20% of nodes are observed. Here
the distance from the source is given by the ratio of the number of hops from the
source and the network diameter. We can see that when the distance from the source
increases, the correlation coefficient decays (it reaches 0.1 for a distance of 46%
away from the source), while the residual sum increases (up to a max value 300 for a
distance of 58% away from the source). In Fig. 2.(right), we show the relationship
between the localization accuracy and the number of observed nodes. We perform the
simulation on 100 small-world networks of 300 nodes, and we take the percentage

2 The number of hops between the actual source and the estimated source
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Algorithm 15 Diffusion Source Localization- t0 is unknown

1: Input: a graph G = (V,E) with propagation probability puv for each edge
uv ∈ E, a set of k active observers Oa = {o1, . . . ,ok} and their infection times
Ta = {to1 , . . . , tok}.

2: Output: the estimated diffusion source s∗, and the estimated start time of diffu-
sion t0.

3: s∗←{}, ρ ←−∞.
4: for each node u ∈Ca do
5: For each observer oi ∈ Oa, compute the effective distances Duoi = 1−

log(puoi), and lets D = {Duo1 , . . . ,Duok}.
6: Compute the correlation coefficient between D and Ta as follows:

ρ∗ = Cov(D,Ta)
σDσTa

=
∑

K
i=1 (Duoi−D)(toi−Ta)

∑
K
i=1 (Duoi−D)

2

7: if ρ∗ < ρ then
8: s∗← u, and ρ ← ρ∗.
9: end if

10: end for
11: Compute the regression line of the variables D and Ta according to the found

source node s∗ as follows:

t̂0 = Ta−α ·D, where α = ∑(toi −Ta)(Duoi −D)

∑(Duoi−D)
2 ,

12: Return the estimated diffusion source s∗, and the estimated start time t̂0.
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Fig. 1: Correlation between the relative infection time of a node and its effective
distance from the source for a small-world network (left), and a scale-free network
(right) of 1000 nodes.

of solutions where the distance error θ ≤ 1. Clearly, we can see that the average
error distance decreases when the number of observers increases (87% of solutions
with θ ≤ 1 are reached when 58% of nodes are observed), which is explained by the
fact that the more observations we make (i.e., more observers we have), the more
information we have about the diffusion, and hence the best is the regression line.
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Fig. 2: (left) The influence of the effective distance on the residual sum and the
correlation coefficient (right) The influence of the observer number on the locating
accuracy in a small-world network on the case when t0 is known (using residual
sums) or not (using correlation coefficients).

5.1 The diffusion start time is known
Fig. 3. shows the accuracy of the proposed estimator through a histogram of 100
networks of 500 nodes, where 20% have been observed. The network diameter is
between 14-32 hops for the small-world network, and 15-23 hops for scale-free. In
more than 82% of runs, the estimator localizes the source with a distance error at
most 2 hops. For scale-free networks, 75% of runs localizes the source in at most
3 hops from the actual source. Thus, a good performance has been noted for both
small-world and scale-free networks. Note that some bins (of distance error 10 and
11) lie far away from the distance error values center. This is due to outliers.
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Fig. 3: A histogram of the source estimator accuracy for small-world and (left) and
scale-free (right) networks of 500 when the start time is unknown.

5.2 The diffusion start time is unknown
Now, consider the case when t0 is unknown. In this case, the estimated source is the
node with the greatest correlation coefficient. Fig. 5. shows a histogram of distance
error for 100 small-world and scale-free networks, of diameter average, respectively,
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23 hops and 19 hops. The network size is 500 nodes. We can see that the method
ensures a localization within at most 3 hops from the actual source with probability
95% for the small-world model while observing only 20% of nodes. For scale-free,
82% of runs ensure an estimation with a distance error at most 4 hops.
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Fig. 4: A histogram of the source estimator error for 100 networks of small-world
(left) and scale-free (right) networks of 500 nodes when t0 is unknown.

Once the source localized, we can estimate the diffusion start time using the
regression line. Histograms in Fig. 5. show that the estimated start time is only 15%
away from the initial time with a probability of 84% and 73%, for small-world and
scale-free networks, respectively. We note that we measure the time estimation using
time ratio, which is the ratio of the time error and the total diffusion time. The time
error is the number of time units between the estimated start time and the actual t0.

Fig. 5: Diffusion start-time estimation for small-world and scale-free networks of
500 nodes.

5.3 Real-world networks
In this section, we perform experimentation on real-world networks. Table 1 summa-
rizes some properties of the infected component considered for two networks3.

3 The used benchmark can be download from http://snap.stanford.edu/data/index.html ] email
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Table 1: Different properties of the networks used in the experiments.

Network n (# nodes) m (# edges) Diameter

Facebook net. 4 039 88 236 8
Email-Enron net. 10 500 109 488 10
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Fig. 6: (left) Source estimation accuracy when t0 is known (Residual sums) or
not (Correlation coefficients) of Facebook network (right) The diffusion start time
estimation probability.

On Facebook where 10% of nodes are observed. Fig. 6. shows a localization
accuracy of a distance at most 3 hops from the actual source in more than 90% of
runs for both cases where t0 is known or not. Also in more than 75% of runs, the
start time estimation is less than 10% away from the initial time. On Email-Enron
network (Fig. 7.), the source is located at a distance at most 3 hops in more than 70%
of runs when the time t0 is known, and more than 80% of runs when t0 otherwise.
The start time is estimated at less than 10% away from the real t0 in 90% of runs.
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network (right) The diffusion start time estimation probability.
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6 Conclusion and Future works
The results in this work clearly show that using the linear regression analysis provides
an efficient approach for locating the diffusion source when only partial observations
are available. In fact, the proposed algorithm achieves a good record on estimating
both the source and the start time of the diffusion. In order to demonstrate the effec-
tiveness of our estimator, we have to compare it with existing estimators, especially
the Maximum Likelihood Estimator [11]. Also, we have to enhance the observation
model (using other metrics) to take into account networks which do not contain so
many critical nodes. In the other, and as these encouraging results have been obtained
using the most basic linear regression analysis approach, then more promising results
can be expected using more sophisticated approaches where multiple parameters can
be considered (the OLS method exploits only one parameter, namely the relation-
ship between distance and infection time). Also, the OLS method has an important
drawback, which is the sensibility to outliers (extreme observations) as observed in
some diagrams. Thus, the use of more advanced approach such as robust regression
methods helps in dealing with this impairment.
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Abstract Epidemiology has long used human interaction patterns to understand
spreading dynamics. Recently network scientists have embraced the notion that
these pattern are best described using a complex multi-layered system, a network of
networks, yielding a stream of literature focused on understanding spreading in such
coupled systems. Adding this macro level perspective to disease spreading, focusing
on the interaction among systems, has shifted focus away from the role of local
(within-system) structure. In this paper, using a multi-level Agent-based model, we
highlight the importance of the local structure in determining spreading dynamics in
coupled settings. We show that the local dynamics in both the focal and neighboring
networks, play a significant role in determining focal dynamics. As both are driven
by the local structure this highlights a need for incorporating structural details across
all levels for accurate modeling of disease spreading dynamics.

1 Introduction
Understanding the spread of disease in populations has long been a focus of the
field of epidemics. The inherent difficulty of measuring disease spread has resulted
in a tendency to rely on modeling to gain insight into epidemics. Traditional epi-
demic models assumed a compartmentalization of the population into different states
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(Susceptible, Infected, Removed) and assumed homogenous mixing of such compart-
ments. A vast body of work created since has incorporated a network perspective in
modeling of epidemics (eg. [17, 18]). The underlying assumption in these studies is
that the network structure serves as the infrastructure for propagation and therefore
bounds the dynamics that can occur. Adoption of such a network perspective has
yielded an increased understanding of disease spreading behavior.
The notion that spreading phenomena are based on more complex interaction patterns
has more recently gained traction in network science. Resulting in studies of cascades
in inter-dependent [5, 6], multi-layered [2, 4, 7, 14], and multiplex networks [11].
Specifically in the field of physics, considerable progress has been made in model-
ing and in understanding how coupling between networks affects the dynamics in
multi-layered systems [4, 12]. This body of work has highlighted that the inter-layer
connections –both in terms of structure [10] and strength [8, 11]– strongly impacts
the spreading dynamics [7], highlighting the importance of adopting a coupled sys-
tem perspective for spreading phenomena.
While previous examples are all part of the set of coupled system studies, capturing
the idea that spread occurs in systems which consist of multiple coupled systems, the
way in which the system is described varies strongly across studies. For example, a
multiplex network setting assumes a single set of nodes (agents or actors) connected
by multiple types of ties, whereas multi-layered and inter-dependent settings assume
two (or more) systems, each with a set of separate nodes and ties that are (partially)
connected by an inter-system layer.
Especially in social contexts, which are based on the behavior of people, the multi-
layered perspective seems to naturally fit. People have a variety of drivers for multiple
types of interactions, and mobility patterns (and thus interaction patterns) that are
strongly bound by geographical constraints. It is easy to interact with those that are
geographically proximate, e.g. within a city of residence. Although long geographical
jumps are possible (for example by air travel) such jumps are often much less likely.
Therefore, the human interaction system is both fundamentally multiplex (many
types of interactions) and multi-layered (mobility on different scales). In this system,
locally dense networks across the globe are coupled by means of occasional long
jumps. The inherent structure of this system makes any propagation process based
on the human interaction a prime example of a phenomena that should be studied
using a coupled networks approach.
In line with this reasoning, [2] is a prime example of adopting a coupled system
approach in epidemiology, and the model presented is a big step forward from the
single system model. It should be noted that, albeit being multi-layered, this is not a
model of coupled networks as the local layer consists of a gravity model rather than
a network model. While this might have been a modeling choice, as network data
with this granularity is hard to obtain, it is indicative of a general issue that applies to
most coupled network research. As the scope shifts from a single networked system
towards a system of coupled networks, the focus shifts from characteristics of the
single network towards the characteristics of layer that connects the networks; from
the local structure towards the structure of inter-system layer. In doing so the lessons
learned from the local structure seem to be more and more forgotten and/or ignored.
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There are many studies that have shown that, in single network settings, the network
structure is a critical factor if one wants to understand, predict, and steer spreading
dynamics. For example, it is known that shorter average path lengths greatly increase
spreading potential [21], skewed degree distributions allow for even faster and more
widespread disease cascades [1, 18] and that local clustering improves local spreading
but hampers widespread disease cascades [19]. Yet in coupled network studies these
local influences are commonly oversimplified, receive little attention, and are by no
means systematically addressed. This raises the question whether, in the context of
coupled networks, the local structure indeed plays no role (as suggested by [15]), or
whether this role is falsely being ignored.

2 Methodology
Exploring the role of local network structure on disease spread in a coupled setting
requires a model consisting of two main components; a system consisting of coupled
network structures, and a disease spreading mechanism. We incorporate these two el-
ements in an agent-based model (ABM) in NetLogo [22], and using LevelSpace [13]
we adopt a multi-level modeling approach [16] for the coupled network scenarios.

2.1 The structure of the system
Building on the notions put forward by [2]) we create a system that consists of two
types of layers: the “within-city” layer and the “between-city” layer. The within-city
layer describes the structure of a single city which consists of a population of 1000
individuals which are connected in a fixed network structure. The network structure is
one of the classical network topologies; Erdös-Rényi [9], scale-free [3], small-world
[21] with a rewire probability of 0.05, or a regular ring lattice. The between-city layer
consists of a model that captures the effects of coupling, each within-city layer is
modeled separately and is connected by means of the between-city layer. Therefore
the between-city layer acts as a bridge between the within-city models, effectively
making this a multilevel model.
In this study we are interested in the effects of the local structure, the structure of
the within-city layers, on disease spread dynamics in coupled settings. We know
from previous literature that the inter-system (between-city) structure and strength
are critical factors that influence the local dynamics, therefore we aim to reduce the
impact of this layer as much as possible. We do so by simplifying the between-city
model in three ways. First, we assume that there are only two coupled cities. Second,
we assume that any between-city interaction will occur randomly. Both assumptions
reduce the complexity of the between layer structure, of which a schematic repre-
sentation can be found in Figure 1. Third, we assume that the spreading dynamics
within and between cities are the same. More details on the dynamics can be found
in the next section. Note that the third assumption implicates that the type of ties
within and between cities are the same. Therefore one could model this as single
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Fig. 1: In our model two within-city networks (n = 1000) with a fixed structure are
coupled by randomly occurring encounters across the layers

giant network, where every individual in one cluster (city) is connected to every
individual in the other cluster (be it with lower weights). Note that the resulting
model would have orders of magnitude more links than the multi-level approach
adopted in our study. For our parameter-set, in which cities are relatively small, the
number of links in a single network would increase from 10,000 (5000 links in each
city), to 1,010,000. This growth in the number of links would significantly increase
the computational resources required, indicating that a multilevel modeling approach
is far more powerful and scalable in coupled network settings.

2.2 description of disease spreading rules
In line with traditional compartment models, we assume individuals can be in one of
four states: Susceptible, Exposed, Infected, or Removed (SEIR). All individuals are
by default in the susceptible state. At the beginning of the simulation, two individuals
in the focal city are exposed to the disease, effectively seeding the disease to 0.2%
of that city. By interacting with susceptible and infected alters, individuals can then
move from Susceptible→ Exposed→ Infected→ Removed states.
We assume that disease spread is caused by interactions (encounters) rather than the
network structure itself. One can imagine the network structure as describing the
structure of friendships, this structure provides the infrastructure of interactions. This
means that having a friend that is sick does not put one directly at risk, however,
interacting with that friend does. It is therefore the encounters in the network which
drive the spread of disease, not the structure itself. We assume that during each
time-step (tick) of the simulation, each Exposed and Infected individual has a certain
number of encounters with its network neighbors. The number of such encounters is
drawn from a Poisson distribution with a mean that is conditional on the state of the
actor which can be varied in our model. Exposed individuals have a mean encounter
rate of cES while infected individuals have a mean encounter rate of cIS. We assume
that the social activity (number of encounters) of individuals depends on how how
sick they are, hence Exposed (asymptomatic) individuals will have a higher number
of encounters than Infected (symptomatic) ones.
The neighbors encountered are chosen randomly and independently; a neighbor
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may be encountered multiple times in a single tick. Note that this means that the
number of encounters an individual has is completely independent of their degree.
This ensures that varying degree does not directly influence the rate at which the
disease spreads. When comparing different network structures, keeping the encounter
rate independent of degree ensures that any differences we observe are a result of
the different network structures rather than different distributions of encounter rates.
An example to illustrate: if encounter rates were proportional to degree, almost all
individuals in the scale-free network would have a very low encounter rate (due to
their low degree) while all individuals in the ring network would have the same, mid-
sized encounter rate. This would make it impossible to distinguish if the observed
effects are caused by variations in network structure or encounter rate.
When an Exposed (or Infected) individual encounters susceptible neighbors they
become exposed with a given probability, which depends on the state of the individual
that encountered them (whether the source is exposed (iES) or infected (iIS). Exposed
individuals automatically become infected after a certain duration which is drawn
from an exponential distribution with mean 1/δ , and infected individuals become
removed after a certain duration also drawn from an exponential distribution with
mean 1/δ .
In line with [19] all experiments use the following parameters:

• mean degree (for all network types): 10
• cES – mean number of encounters for exposed: 4
• cIS – mean number of encounters for infected: 1.25
• iES – probability of infection from exposed: 0.05
• iIS – probability of infection from infected: 0.06
• 1/ε – mean duration of exposed: 15
• 1/δ – mean duration of infected: 15

As stated prior, disease dynamics follow the same logic in both layers (between-city
and within-city). Rather than adding ties and increasing the pool from which en-
counters are pulled, the between-city model will redirect a certain percentage of the
within-city encounters to be with individuals in the neighboring city. The reasoning
behind redirection rather than addition is that adding between-city encounters would
effectively change the rate at which disease can spread, which would make compari-
son across scenarios invalid. In our simulations 1% of the within-city encounters are
redirected to the other city, meaning that within-city encounters are reduced to 99%
of their initial rate in the single non-coupled city scenarios.
Selection of between-city encounters occurs completely random and independently,
where any individual in one city can encounter any individual in the other city. For
the purpose of this paper this way of modeling the between-city network is most
applicable, yet, future work should be performed that compares different methods
of connecting cities in order to understand interaction effects between the local
(within-city) and the inter-system (between-city) structures.
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2.3 Differential equation model
To create a base-line of disease spreading behavior we compare the within-city
Agent-based model (ABM) with the classic SEIR compartmental model based on
differential equations (DE). Similar to the ABM, in the DE model the population is
divided into four segments: susceptible (S), exposed (E), infected (I), and removed
(R). Also similar to the ABM, the susceptible population becomes exposed at a rate
based on the infection rate and encounter rate of the exposed and infected populations.
The differential equations encoding these relationships are given in the following
equations:

dS
dt =−(cESiESE + cISiISI)S

dE
dt = (cESiESE + cISiISI)S− εE
dI
dt = εE−δ I

dR
dt = δ I

3 Results
To see if the simulation model behaves as intended, we start our analysis by re-
producing the study conducted in [19] in a single network setting. We find that, in
comparison, disease dynamics in our model (Figure 2) are stretched out over a longer
period of time but follow corresponding trends across various structures. The ob-
served delay is to be expected given our cities are 5x larger than those in the original
work. This makes it more time consuming for the disease to reach saturation, which
is indeed what we observe. As our disease spread dynamics are in line with [19], this
serves as a sign that the agent-based simulation model is behaving as intended.
The single city results show that the spreading dynamics in the ABM differ signifi-
cantly from those of a Differential Equation (DE) model; the peak load is much lower
and occurs much later. Note that, even though the DE model effectively allows any
individual to come into contact with any other individual, the number of encounters
in the network model is fixed to be the same as in the DE. Therefore these difference
do not stem from a reduced number of encounters in the network settings. Instead,
the observed differences in spreading speed arise from localized connections and
local clustering. The higher clustering increases the chance of inefficient encounters
—from sick to sick—, reducing the effective spreading rate [19].
We continue the analysis by using the ABM to study the effects of coupling of
within-city networks. While adding inter-city ties effectively adds a second mode
of spreading (not only within but also between cities) we correct for the potential
effects of such an increase in connectivity by keeping the rate at which individuals
encounter others equal across all scenarios. The results (shown in Figure 3) reveal
that the effect of coupling on the focal city dynamics is strongly conditional on the
structure of the focal city. On the one hand, in cities with Scale-free and Erdös-
Rényi networks, coupling does not result in any observable effect on disease spread
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Fig. 2: This figure shows the disease spreading dynamics in cities with varying
within-city networks. The top (and bottom) percentiles are depicted in greyscale
for a total of 1000 simulation runs in the Agent-based model. The dynamics of the
differential equation of the same disease are plotted in blue.

dynamics. On the other, in cities with a small-world or ring networks, the spreading
seems to be improved due to coupling. This is in line with previous work claiming
coupled networks can suffer from increased volatility [20]. These results suggest
that the effect of coupling on the focal city’s dynamics is strongly dependent on the
within-city network structure of the focal city.
It is interesting to note that the focal cities affected by coupling are those that have
structures with otherwise highly localized, and thus slow, spreading dynamics. This
might suggest that random pathways facilitated by the between-city layer (individuals
encountered in the neighboring city are chosen randomly) allow for long jumps which
are otherwise unavailable in the focal network structure. This suggests that coupling
effectively reduces the diameter of the focal city network via the between-city layer. A
more intuitive explanation is that due to the slow spread within the focal network there
is enough time for a second order spread —from the focal city to the neighboring
city and back to the focal city— to occur before the within-city dynamics have
saturated the focal city. The ring network (Figure 3b) clearly shows a second peak
of spreading after the initial peak seems to flatten. This suggests the presence of
the latter described second order spreading, in which the neighboring city causes

(a) Disease spreading dynamics in a single
Erdös-Rényi network

(b) Disease spreading dynamics in a single
Ring network

(c) Disease spreading dynamics in a single
Small-world network

(d) Disease spreading dynamics in a single
Scale-free network



494 W. Vermeer, B. Head and U. Wilensky

reseeding in the focal city.
These results indicate that the timing of epidemics across coupled networks seems to
play a crucial role in the effects of such coupling. As the timing of an epidemic is
directly related to where a disease starts, the seed becomes a critical aspect in our
simulation. Seeding the focal city, as has been the case in previous analysis, causes
the epidemic in the neighboring city to occur with a lag. This lagging reduces the
potential impact of the neighboring city on the focal city and consequently the effects
of coupling will likely be dominated by the epidemic dynamics within the focal city.
To increase the potential effects of coupling we adjust our seeding location and repeat
the previous analysis. Now, rather than seeding the focal city, the neighboring city
will be seeded. The results (Figure 4) show that when the disease originates from the
neighboring city the effects of coupling become much more apparent, resulting in a
variety of dynamics in the focal city. When the focal city’s epidemic is lagging behind
those of the origin city —the city which was seeded with disease— the opportunities
for secondary infections increase substantially, but the extent to which they occur
depends on the disease growth rate in the the origin city. As we know this growth rate
is determined by the local structure (see Figure 2) the observed variance in coupling
effects should be attributed to the within-city structure in the origin city.
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4 Discussion
Previous research has identified that both network structure and coupling of networks
as drivers which can have significant effects on the local dynamics of disease spread.
The focus on understanding the effects of coupling has shifted the attention away
from the local structure as a driver, resulting in little systematic connection between
these two bodies of work. Consequently, the effects of local network structure seem
to be poorly integrated in the coupled network literature, both in terms of describing
the structure of the local layers of interaction as well as the interaction of such local
structures with the inter-layer structure [10]. While both could be addressed using
the methodology presented in this paper, the scope of this paper is on highlighting
the role of local structure in a coupled network setting.
By means of an Agent-Based Model of two coupled cities we have shown that local
growth dynamics, caused by the local within-city structure, plays a crucial role in
understanding if and how coupling will affect the focal disease spreading dynamics.
While the relevance of the local (within-city) structure of the focal city has been
identified in both single [17] as well as in coupled network settings [10], we find
that the local (within-city) dynamics of the neighboring city also impacts the focal
spreading dynamics. This indicates that simply knowing the focal city’s structure
and the way in which it is coupled to other cities is not sufficient for understanding
spreading behavior. We find that the dynamics in neighboring cities, which depend on
the neighboring city’s local structure and the dynamics in the neighbor’s neighbors,
play a critical role in focal city’s spreading dynamics. The feedback among cities
not only indicates that the structural details in each of the local (within-city) layers
matters, but also that dynamics of the focal city cannot be accurately considered
without incorporating the coupled perspective.
Our results further emphasize the critical role of the effectiveness of the between-
city layer. We find that a sufficient amount of time is needed for the coupling to
become effective. This amount is conditional on both the focal growth rate (driven by
within-city structure) and neighboring growth rate (driven by neighboring within-city
structure). When the focal city’s disease load is saturated it will not likely be affected
by anything from the outside, making coupling a less important factor. This draws the
attention to path dependence as a driver of spreading in coupled networks. If enough
time is available, coupling can become efficient and has a strong effect on focal
spreading dynamics. This observation is in line with previous work that identifies
coupling strength as a key driver for coupling effects [8, 11].
While our model is conceptual in nature, there are interesting implications for health
policy that can be devised from it. A comparison among seeding locations (the
comparative plots are not included in this paper but can be done by comparing Figure
3 to Figure 4) indicates that for structures with relatively slow disease spreading
(Small-world, Ring) a scenario that has a seed outside the focal city results in earlier
and higher peak loads in the focal city, compared to the same scenario in which
the focal city is seeded. Therefore, outside infections provide a higher risk for the
focal population. In concrete terms, our results suggest that reducing disease load
within a city (or country) is best achieved by preventing coupling, and this indeed
seems to be a strategy implemented to prevent global pandemics like the 2014 Ebola
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spread. However, as very small coupling probabilities have significant effects and
complete decoupling seems infeasible, the effectiveness of such strategies will be
limited, especially as global travel increases over time. When complete uncoupling is
not an option it seems that reducing outbreaks in neighboring cities is more critical
for controlling the dynamics in the focal city.
This is somewhat in conflict with the current way in which health policy is imple-
mented; based on local agencies (be it the city, state, country) with local data and
dynamics. Our results suggest a different approach with global coordination, in
which the coupling of networks is considered and a global intervention strategy is
implemented, not only because it is socially desired, but because it is in each local
network’s own self interest.
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Fig. 3: This figure compares the dis-
ease spread dynamics in the focal city
in scenarios in which the focal city
is seeded with disease, while the net-
work structure of the neighboring city
is varied.

Fig. 4: This figure compares the dis-
ease spread dynamics in the focal city
while the neighboring city is seeded
with disease, while the network struc-
ture of the neighboring city is varied.

(a) Mean disease spread for a focal city with a
Erdös-Rényi network, for various structures
in the neighboring city

(b) Mean disease spread for a focal city with
a Ring network, for various structures in the
neighboring city

(c) Mean disease spread for a focal city with
a Small-world network, for various structures
in the neighboring city

(d) Mean disease spread for a focal city with
a Scale-free network, for various structures in
the neighboring city

(a) Mean disease spread for a focal city with a
Erdös-Rényi network, for various structures
in the neighboring city

(b) Mean disease spread for a focal city with
a Ring network, for various structures in the
neighboring city

(c) Mean disease spread for a focal city with
a Small-world network, for various structures
in the neighboring city

(d) Mean disease spread for a focal city with
a Scale-free network, for various structures in
the neighboring city



Abstract The epidemic spreading over a network has been studied for years by ap-
plying the mean-field approach in both homogeneous case, where each node may get
infected by an infected neighbor with the same rate, and heterogeneous case, where
the infection rates between different pairs of nodes are also different. Researchers
have discussed whether the mean-field approaches could accurately describe the
epidemic spreading for the homogeneous cases but not for the heterogeneous cases.
In this paper, we explore if and under what conditions the mean-field approach
could perform well when the infection rates are heterogeneous. In particular, we
employ the Susceptible-Infected-Susceptible (SIS) model and compare the average
fraction of infected nodes in the metastable state, where the fraction of infected
nodes remains stable for a long time, obtained by the continuous-time simulation
and the mean-field approximation. We concentrate on an individual-based mean-field
approximation called the N-intertwined Mean Field Approximation (NIMFA), which
is an advanced approach considered the underlying network topology. Moreover,
for the heterogeneity of the infection rates, we consider not only the independent
and identically distributed (i.i.d.) infection rate but also the infection rate correlated
with the degree of the two end nodes. We conclude that NIMFA is generally more
accurate when the prevalence of the epidemic is higher. Given the same effective
infection rate, NIMFA is less accurate when the variance of the i.i.d. infection rate
or the correlation between the infection rate and the nodal degree leads to a lower
prevalence. Moreover, given the same actual prevalence, NIMFA performs better
in the cases: 1) when the variance of the i.i.d. infection rates is smaller (while the
average is unchanged); 2) when the correlation between the infection rate and the
nodal degree is positive. Our work suggests the conditions when the mean-field
approach, in particular NIMFA, is more accurate in the approximation of the SIS
epidemic with heterogeneous infection rates.
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1 Introduction
By considering the system components as nodes and the interactions or relations in
between nodes as links, networks have been used to describe the biological, social
and communication systems. On such networks or complex systems, viral spreading
models have been used to describe processes e.g. epidemic spreading and information
propagation [8, 10, 13, 20]. The Susceptible-Infected-Susceptible (SIS) model is one
of the most studied models. In the SIS model, each infected node infects each of its
susceptible neighbors with an infection rate β . The infected node can be recovered
with a recovery rate δ . Both processes are independent Poisson processes. The ratio
τ , β/δ is called effective infection rate, and when τ is larger than the epidemic
threshold τc, the epidemic spreads out with a nonzero fraction of infected nodes in
the metastable state. The average fraction of infected nodes y∞ in the metastable
state, ranging in [0,1], indicates how severe the influence of the virus is: the larger
the fraction y∞ is, the more severely the network is infected.

In this paper, we concentrate on deriving the average fraction y∞ of infected
nodes in the metastable state. Although the continuous-time Markov theory can
be used to obtain the exact value of y∞, the number of states is too large to be
solved in a large network [12]. Hence, the derivation of the average fraction y∞

of infected nodes in the metastable state mostly relies on mean-field theoretical
approaches. The first approach to study the SIS model in complex networks is
a degree-based mean-field (DBMF) theory, also called heterogeneous mean-field
(HMF) approximation, proposed by Pastor-Satorras et al. [14], which assumes that all
nodes with the same degree are statistically equivalent, i.e. the infection probabilities
of those nodes are the same. An individual-based mean-field (IBMF) approximations,
called the N-Intertwined Mean-Field Approximation (NIMFA), of the SIS model is
then introduced [19] with the only assumption that the state of neighboring nodes is
statistically independent. NIMFA, taking the network topology into account, turns
out to be more precise on different types of networks for the classic SIS model with
the homogeneous infection rates[7] while comparing to the DBMF approximation.
However, as discussed in [4, 15, 22], the infection rates could be heterogeneous,
i.e. the infection rates between different pairs of nodes could also be different. The
accuracy of NIMFA with heterogeneous infection rates has not yet been discussed.

In this paper, we explore the influence of the heterogeneous infection rates on the
precision of NIMFA. In particular, we compare the average fraction y∞ of infected
nodes as a function of the effective infection rate τ computed by NIMFA to that ob-
tained by the continuous-time simulations of the exact SIS model when the infection
rates are heterogeneous but the recovery rate is the same for all nodes. In fact, the
effective infection rate τ refers to the average infection rate divided by the recovery
rate in the SIS model with heterogeneous infection rates. We set the average infection
rate to 1 and tune the recovery rate δ to control the effective infection rate τ . We
consider both the independent and identically distributed (i.i.d.) and the correlated
heterogeneous infection rates in different network topologies.



The Accuracy of NIMFA for SIS model 501

2 Preliminary
2.1 The N-Intertwined Mean-Field Approximation
The N-Intertwined Mean-Field Approximation (NIMFA) is so far one of the most
accurate approximations of the SIS model that takes into account the influence of the
network topology. For the classic SIS model with the homogeneous infection rate β

and recovery rate δ . The single governing equation for a node i in NIMFA is

dvi(t)
dt

=−δvi(t)+β (1− vi(t))
N

∑
j=1

ai jv j(t) (1)

where vi(t) is the infection probability of node i at time t, and ai j = 1 or 0 denotes if
there is a link or not between node i and node j. The governing equation (1) can be
extended to the heterogeneous case:

dvi(t)
dt

=−δvi(t)+(1− vi(t))
N

∑
j=1

βi jai jv j(t) (2)

where βi j = β ji is the infection rate between node i and j. In the steady state,
defined by dV (t)

dt = 0 where V (t) = [v1(t) v2(t) · · · vN(t)]T , limt→∞ vi(t) = vi∞ and
limt→∞ V (t) =V∞, we have

(
1
δ

diag(1− vi∞)BA− I)V∞ = 0 (3)

where A is the N×N adjacency matrix with elements αi j, I is the N×N identity
matrix, diag(vi(t)) is the diagonal matrix with elements v1(t),v2(t), ....,vN(t) and B
is the infection rate matrix with elements βi j. The trivial, i.e. all-zero, solution of (3)
indicates the absorbing state where all nodes are susceptible. The non-zero solution
of V∞ in (3), if exists, points to the existence of a metastable state with a non-zero
fraction of infected nodes. Or else, the metastable state can be figured as 0 or not
existing. We are interested in actually the metastable state in this paper.

2.2 The i.i.d. heterogeneous infection rates
In this paper, we keep the average infection rate to 1 and tune the recovery rate δ to
control the effective infection rate τ . In the case of the i.i.d. heterogeneous infection
rates, we aim to explore how the heterogeneous infection rates influence the accuracy
of NIMFA when the variance of the infection rate varies. We choose the infection-rate
distribution that is frequently observed in real-world and importantly the variance is
tunable with a fixed mean so that we can systematically explore how the accuracy of
NIMFA changes with the broadness of the i.i.d. infection rate.

We consider the log-normal distribution, of which we can keep the mean un-
changed and tune the variance in a large range. The log-normal distribution [18]
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B∼ Log-N(β ; µ,σ), of which the probability density function (PDF) is, for β > 0

fB(β ; µ,σ) =
1

βσ
√

2π
exp

(
− (lnβ −µ)2

(2σ2)

)
(4)

has a power-law tail for a large range of β provided σ is sufficiently large. The
log-normal distribution has been widely observed in real-world, where interaction
frequencies between nodes are usually considered as infection rates. Wang et al. [21]
find that by employing the log-normal distributed infection rates, their epidemic
model can accurately fit the infection data of 2003 SARS; we also find that the
infection rates in an airline network follow the log-normal distribution [15].

In [15], we find that, if the epidemic does not die out, the larger the variance of
the i.i.d. infection rate is, the smaller the average fraction y∞ of infected nodes is. We
will show that this conclusion can actually explain the observation about how the
accuracy of NIMFA changes with the variance of the i.i.d. infection rates at a given
effective infection rate τ in this paper.

2.3 The correlated heterogeneous infection rates
For correlated heterogeneous infection rates, we build a correlated infection-rate
scenario and a reference one. In the correlated infection-rate scenario, we assume

βi j = c(did j)
α (5)

where di and d j are the degree of node i and node j respectively, c is selected so that
the average infection rate is 1 and α indicates the correlation strength. As discussed in
[17], such a correlation between the infection rate and the nodal degree is motivated
by the real-world datasets. In this case, the infection rate of each link is determined
by the given network topology and α . For the reference scenario, we shuffle the
infection rates from all the links as generated in the first scenario and redistribute
them randomly to all the links. In this way, we keep the distribution of infection rates
but effectively remove the correlation between the infection rates and nodal degrees.
For simplicity, we name this reference scenario as the uncorrelated infection-rate
scenario. Though the i.i.d. infection rates are also uncorrelated, we can tune the
variance of the infection rate in the case of the i.i.d. infection rates while keeping
the distribution and the mean of the infection rates. However, in the scenario of
uncorrelated infection rates in this paper, the distribution of the infection rate changes
with the parameter α , hence the variance of the heterogeneous infection rates cannot
be systematically tuned.

A positive α > 0 (or negative α < 0), suggests a positive (or negative) correlation
between infection rates and nodal degrees. Too large or small values of α could
not be realistic. For example, [3, 9, 11] suggest that α is around 0.5 or 0.8 in their
datasets. Hence, we select α = −0.25,−0.5,−1 for the negative correlation and
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α = 0.25,0.5,1 for the positive correlation. Different values of α also offer the
possibility to explore how NIMFA performs with different correlation strengths.

In this paper, we aim to understand how the correlation influences the accuracy of
NIMFA by comparing the average fraction y∞ of infected nodes obtained by NIMFA
and the simulations of the exact SIS model. In [17], we explored the influence of
the correlation between the infection rate and the nodal degree on the prevalence of
epidemic, which can be used to partially explain the conclusions in this paper.

2.4 The network construction and simulations
As in our previous work [15, 17], we perform the continuous-time simulations of the
SIS model. We consider both the scale-free (SF) and Erdös-Rényi (ER) models for
different network topologies. The SF model has been used to capture the scale-free
nature of degree distribution in real-world networks such as the Internet [5] and
World Wide Web [1]: Pr[D = d]∼ d−λ ,d ∈ [dmin,dmax], where dmin is the smallest
degree, dmax is the degree cutoff, and λ > 0 is the exponent characterizing the
broadness of the distribution [2]. In real-word networks, the exponent λ is usually
in the range [2,3], thus we confine the exponent λ = 2.5 in this paper. We further
employ the smallest degree dmin = 2, the natural degree cutoff dmax = bN1/(λ−1)c as
in [6], and the size N = 1000. Hence, the average degree is approximately 4. The
distribution of the degree of a random node in ER network is binomial: Pr[D = d] =(N−1

d

)
pd(1− p)N−1−d and the average degree is E[D] = (N−1)p. We consider the

ER networks with N = 1000 and E[D] = 4.
Given a network topology and a recovery rate δ , we carry out 100 iterations. In

each iteration, the networks are constructed as described above and the infection
rates are generated as described in Section 2.2 and 2.3. Initially, 10% of the nodes
are randomly infected. Then the infection and recovery processes of SIS model are
simulated until the system reaches the metastable state where the fraction of infected
nodes is nonzero and unchanged for a long time if the epidemic spreads out, or the
fraction is zero if the epidemic dies out. The average fraction y∞ of infected nodes is
obtained over 100 iterations (no matter the epidemic dies out or not).

3 Effect of the heterogeneous infection rates
In this section, we first explore the accuracy of NIMFA with the i.i.d. infection rates,
and particularly how NIMFA performs when the variance Var[B] of the infection rate
B varies. Then we explore the influence of the correlated infection rates on NIMFA.

3.1 The i.i.d. infection rates
We aim to understand the precision of NIMFA under different effective infection
rates, different variances of infection rates and different network topologies: we set
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the average infection rate to 1 and tune the recovery rate δ to control the effective
infection rate τ; we change the variance of infection rates which follow the log-
normal distribution; we consider both ER and SF networks to represent different
topologies. For each value of the variance of the infection rate, we obtain the average
fraction y∞ of infected nodes as a function of the effective infection rate τ for NIMFA
by numerically solving (3) and compare with that by the continuous-time simulations.
As shown in Fig. 1a, no matter what the variance of the infection rate is, the curve of
y∞ vs. τ obtained by NIMFA for ER networks is close to that obtained by simulations
when the actual prevalence of the epidemic is high, i.e. the effective infection rate τ

is large.

(a) (b)

Fig. 1: (a) The average fraction y∞ as a function of the effective infection rate τ

and (b) the plot of the difference ζ as a function of the effective infection rate τ .
The variances of the infection rates are 1 and 4 in the main figure and the inset
respectively. All results are on ER networks.

In order to quantify the difference between the two curves obtained by NIMFA
and simulations, we define the variable ζ :

ζ (τ) =
|y∞,N(τ)− y∞,S(τ)|

y∞,S(τ)
(6)

where y∞,N(τ) > 0 and y∞,S(τ) > 0 denote the average fraction of infected nodes
obtained by NIMFA and simulations respectively. The larger the value of ζ (τ) is, the
less accurate NIMFA is at the corresponding τ .

In Fig. 1b, the plot of ζ vs. τ is shown for ER networks. We find that, for a
given effective infection rate τ , NIMFA becomes less accurate when the variance of
the i.i.d. heterogeneous infection rates increases. This observation can be to a large
extent explained by: 1) our finding in Fig. 1a that NIMFA is more accurate when the
prevalence is higher; 2) that given an effective infection rate τ a smaller variance of
the i.i.d. infection rates leads to a higher prevalence [15]. We observe the same in SF
networks, and the figures, which can be found in [16], are not shown here due to the
page limit.



The Accuracy of NIMFA for SIS model 505

We further explore how the variance of the infection rates influences the accuracy
of NIMFA if the actual prevalence y∞,S(τ) of epidemic is similar. We plot the variable
ζ in (6) as a function of the actual average fraction of infected nodes obtained by
simulations in Fig. 2. We find that though it is less evident for ER networks in Fig. 2a,
the difference ζ in (6) is actually larger if the variance of the infection rate is larger
as shown in Fig. 2b for SF networks when the prevalence is the same. Hence, the
higher heterogeneity, i.e. the larger variance, of the i.i.d. infection rates tends to lower
down more the accuracy of NIMFA. Overall, we conclude that the prevalence of the
epidemic mainly affects the accuracy of NIMFA, i.e. the higher the prevalence is, the
more accurate NIMFA tends to be, and given the same prevalence, a larger variance
of the i.i.d. infection rates tends to lower down the accuracy of NIMFA.

(a) (b)

Fig. 2: The plot of the difference ζ as a function of the average fraction y∞ obtained
by simulations for (a) ER networks and (b) SF networks.

3.2 The correlated infection rate

In this subsection, we aim to understand how the correlation between the infection
rate and the nodal degree as shown in (5) influences the accuracy of NIMFA. We
first employ ER networks as an example and discuss the case when the correlation is
positive. Afterwards we explore the influence of the negative correlation.

As mentioned in Section 2.3, we build the scenario of uncorrelated infection rates
as a reference to study the influence of the correlation between the infection rate
and the nodal degree by shuffling the infection rates from all the links as generated
in the scenario of correlated infection rates and redistributing them randomly to all
the links. As shown in Fig. 3a, we compare the difference ζ between NIMFA and
simulations in the scenario of uncorrelated and correlated infection rates for both
α = 0.25 and α = 1, and find that ζ is smaller in the scenario of correlated infection
rates, i.e. NIMFA is more accurate at a given effective infection rate τ when the
correlation between the infection rate and the nodal degree is positive comparing
to the scenario of uncorrelated infection rates. The observations are also consistent
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(a) (b)

(c) (d)

Fig. 3: The plot of the difference ζ as a function of (a) the effective infection rate
τ or (c) the average fraction y∞ of infected nodes obtained by simulations in the
scenarios of uncorrelated and correlated infection rates for α = 0.25 (the main figure)
and α = 1 (the inset). The plot of the difference ζ as a function of (b) the effective
infection rate τ or (d) the actual average fraction y∞ of infected nodes in the scenario
of correlated infection rates where different values of α are considered.

with our conclusion that NIMFA is more accurate when the prevalence is higher: the
positive correlation tends to increase the average fraction of infected nodes [17], and
thus the accuracy of NIMFA, when the effective infection rate τ is small; however,
when the effective infection rate τ is large, though the positive correlate may lower
down a bit the average fraction y∞ of infected nodes, the prevalence in both scenarios
is high, i.e. NIMFA is relatively accurate, and the difference of the accuracy of
NIMFA in the two scenarios is not obvious. As the correlation strength α increases
in Fig. 3b, the difference ζ decreases at a given τ . That is to say, NIMFA tends to be
more accurate when the positive correlation becomes stronger.

We further consider the influence of the positive correlation on the accuracy of
NIMFA when the prevalence is the same. The plots of the difference ζ as a function
of the average fraction y∞ of infected nodes are shown in Fig. 3c and Fig. 3d. Given
the prevalence of epidemic, the positive correlation is more likely to increase the
precision of NIMFA and the stronger the correlation is the more accurate NIMFA is.
We observe the same on SF networks which is though not shown here.

Regarding to the influence of the negative correlation between the infection rate
and the nodal degree on the accuracy of NIMFA, we compare the variable ζ in
the scenario of correlated and uncorrelated infection-rate scenario with α = −1
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(a) (b)

(c) (d)

Fig. 4: The plot of the difference ζ as a function of (a) the effective infection rate τ

or (c) the actual average fraction y∞ of infected nodes in the scenarios of uncorrelated
and correlated infection rates for α =−1. The plot of the difference ζ as a function
of (b) the effective infection rate τ or (d) the actual average fraction y∞ of infected
nodes in the scenario of correlated infection rates where different values of α are
considered.

for both ER and SF networks as shown in Fig. 4a. We find that, in general, the
negative correlation significantly decreases the accuracy of NIMFA when the effective
infection rate τ is small but may slightly increase that when τ is large. Moreover,
NIMFA becomes less accurate when the negative correlation is stronger as shown in
Fig. 4b. As mentioned in Section 2.3, the negative correlation tends to decrease the
prevalence when the effective infection rate τ is small while increase the prevalence
when τ is large. Hence, the influence of prevalence on the precision of NIMFA could
largely explain our observations here.

When the prevalence of epidemic is the same, the influence of the negative
correlation on NIMFA’s accuracy is shown in Fig. 4c and Fig. 4d. We find that, in
general, 1) NIMFA is less accurate with the negative correlation comparing to the
uncorrelated scenario especially when the prevalence is low as shown in Fig. 4c; 2)
NIMFA becomes even less accurate if the negative correlation becomes stronger as
shown in Fig. 4d.
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4 Real-world network
In this section, we choose the airline network from the real world as an example to
illustrate how its heterogeneous infection rates affect the accuracy of NIMFA of SIS
epidemics on the network.

In the airline network, the nodes are the airports, the link between two nodes
indicates that there’s at least one flight between these two airports, and the infection
rate along a link is the number of flights between the two airports. We construct this
network and its infection rates from the dataset of openFlights1. As shown in [17], the
airline network possess roughly a power-law degree distribution. The heterogeneous
infection rates from the dataset are normalized by the average so that the average is
1. We compare the difference ζ between NIMFA and the simulations of the exact
SIS model in three scenarios: 1) the network is equipped with its normalized original
heterogeneous infection rates (correlated) as given in the dataset; 2) the network is
equipped with the infection rates in the normalized original dataset but randomly
shuffled (uncorrelated); 3) the network is equipped with a constant infection rate
(homogeneous) which equals to 1. The original heterogeneous infection rate between
a pair of nodes are approximately correlated with the degrees of the two nodes as the
relationship (5), and the parameter α ≈ 0.14 indicates a positive correlation [17].

(a) (b)

Fig. 5: The plot of the difference ζ as a function of (a) the effective infection rate
τ and (b) the average fraction y∞ of infected nodes obtained by simulations in the
airline network with different scenarios of infection rates.

We show the difference ζ as a function of the effective infection rate τ in Fig. 5a
for the 3 scenarios defined as above. We find that NIMFA is generally more accurate
when the effective infection rate τ is larger, i.e. the prevalence of epidemic is high. The
variable ζ is smaller in the scenario of homogeneous infection rates than uncorrelated
infection rates with any effective infection rate. This is because the i.i.d. infection
rates with a non-zero variance tends to decrease the prevalence, and thus lower
down the accuracy of NIMFA at a given effective infection rate τ . NIMFA is more
accurate with the positive correlation by comparing the difference ζ in the scenario
of correlated infection rates and uncorrelated infection rates. Furthermore, Fig. 5b

1 http://openflights.org/data.html
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shows that, given the same actual prevalence, i.e. the average fraction y∞ of infected
nodes obtained by simulations, NIFMA is more accurate: 1) in the homogeneous
scenario than in the uncorrelated scenario; 2) in the correlated scenario than in the
uncorrelated scenario. All the observations agree with our previous observations and
explanations about how the heterogeneous infection rate influences the accuracy of
NIMFA in network models.

5 Conclusion
In this paper, we study how the heterogeneous infection rates affect the accuracy of
NIMFA – an advanced mean-field approximation of SIS model that takes the underly
network topology into account. By comparing NIMFA with the continuous-time
simulations of the exact SIS model at a give effective infection rate τ , we find that
the prevalence of epidemic could largely characterize the accuracy of NIMFA which
is reflected in two aspects: 1) NIFMA is generally more accurate when the effective
infection rate τ is larger, i.e. the prevalence of epidemic is higher; 2) when the
variance of the i.i.d. infection rates or the correlation between the infection rate and
the nodal degree decreases the prevalence at a given τ , NIMFA tends to become
less accurate as well. Moreover, we also explore the influence of the heterogeneous
infection rates on the accuracy of NIMFA at a given prevalence, i.e. when the average
fraction y∞ of infected nodes obtained by simulations is given. Regarding to the
i.i.d. heterogeneous infection rates, the accuracy of NIMFA tends to decrease as the
variance of infection rates increases. In the scenario of correlated infection rates, the
positive correlation between the nodal degree and the infection rate is more likely
to increase the accuracy of NIMFA whereas the negative correlation tends to lower
down the accuracy especially when the effective infection rate τ is small. Note that
we discuss the conditions when NIMFA is accurate but the cases where NIMFA is
far from the simulations are still unexplored. Our work sheds light on the conditions
when we the mean-field approximation of the SIS model with heterogeneous infection
rates is accurate.

References

[1] Albert, R., Jeong, H., Barabási, A.L.: Internet: Diameter of the world-wide web. Nature
401(6749), 130–131 (1999)

[2] Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

[3] Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex
weighted networks. Proceedings of the National Academy of Sciences of the United States of
America 101(11), 3747–3752 (2004)

[4] Buono, C., Vazquez, F., Macri, P., Braunstein, L.: Slow epidemic extinction in populations
with heterogeneous infection rates. Physical Review E 88(2), 022,813 (2013)

[5] Caldarelli, G., Marchetti, R., Pietronero, L.: The fractal properties of internet. EPL (Euro-
physics Letters) 52(4), 386 (2000)



510 Bo Qu and Huijuan Wang

[6] Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to random
breakdowns. Physical Review Letters 85, 4626–4628 (2000). DOI 10.1103/PhysRevLett.85.
4626. URL http://link.aps.org/doi/10.1103/PhysRevLett.85.4626

[7] Li, C., van de Bovenkamp, R., Van Mieghem, P.: Susceptible-infected-susceptible model: A
comparison of n-intertwined and heterogeneous mean-field approximations. Phys. Rev. E
86(2), 026,116 (2012)

[8] Li, D., Qin, P., Wang, H., Liu, C., Jiang, Y.: Epidemics on interconnected lattices. EPL (Euro-
physics Letters) 105(6), 68,004 (2014). URL http://stacks.iop.org/0295-5075/
105/i=6/a=68004

[9] Li, W., Cai, X.: Statistical analysis of airport network of china. Physical Review E 69(4),
046,106 (2004)

[10] Liu, M., Li, D., Qin, P., Liu, C., Wang, H., Wang, F.: Epidemics in interconnected small-world
networks. PloS one 10(3), e0120,701 (2015)

[11] Macdonald, P., Almaas, E., Barabási, A.L.: Minimum spanning trees of weighted scale-free
networks. EPL (Europhysics Letters) 72(2), 308 (2005)

[12] Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in
complex networks. arXiv preprint arXiv:1408.2701 (2014)

[13] Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex
networks. Physical Review E 63(6), 066,117 (2001)

[14] Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Physical
Review Letters 86(14), 3200 (2001)

[15] Qu, B., Wang, H.: SIS epidemic spreading with heterogeneous infection rates. arXiv preprint
arXiv:1506.07293 (2015)

[16] Qu, B., Wang, H.: The accuracy of mean-field approximation for susceptible-infected-
susceptible epidemic spreading. arXiv preprint arXiv:1609.01105 (2016)

[17] Qu, B., Wang, H.: SIS epidemic spreading with correlated heterogeneous infection rates. arXiv
preprint arXiv:1608.07327 (2016)

[18] Van Mieghem, P.: Performance analysis of communications networks and systems. Cambridge
University Press (2014)

[19] Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Transactions on
Networking 17(1), 1–14 (2009)

[20] Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the
interconnected network structure on the epidemic threshold. Physical Review E 88(2), 022,801
(2013)

[21] Wang, W., Wu, Z., Wang, C., Hu, R.: Modelling the spreading rate of controlled communicable
epidemics through an entropy-based thermodynamic model. Sci. Sin.-Phys. Mech. Astron.
56(11), 2143 (2013). DOI 10.1007/s11433-013-5321-0

[22] Yang, Z., Zhou, T.: Epidemic spreading in weighted networks: an edge-based mean-field
solution. Physical Review E 85(5), 056,106 (2012)

http://link.aps.org/doi/10.1103/PhysRevLett.85.4626
http://stacks.iop.org/0295-5075/105/i=6/a=68004
http://stacks.iop.org/0295-5075/105/i=6/a=68004


Abstract An accurate approximate formula of the die-out probability in a SIS epi-
demic process on a network is proposed. The formula contains only three essential
parameters: the largest eigenvalue of the adjacency matrix of the network, the effec-
tive infection rate of the virus, and the initial number of infected nodes in the network.
The die-out probability formula is compared with the exact die-out probability in
complete graphs, Erdős-Rényi graphs, and a power-law graph. Furthermore, as an
example, the formula is applied to the N-Intertwined Mean-Field Approximation, to
explicitly incorporate the die-out.

1 Introduction
The SIS epidemic process models spreading phenomena of information or viruses
on networks [7]. In a network, each node has two states: susceptible and infected.
A Bernoulli random variable X j(t) ∈ {0,1} denotes the state of each node, where
X j(t) = 0 means that node j is susceptible and X j(t) = 1 indicates that node j is
infected at time t. An infected node can infect its susceptible neighbors with a
infection rate β by changing the susceptible neighbor nodes into infected nodes,
and each infected node is cured and becomes a susceptible node with a curing rate
δ . If the infection and curing processes are Poisson processes, the SIS epidemic
model is Markovian, where the sojourn times in the infected and susceptible state are
exponentially distributed. The governing equation of a node j in the Markovian SIS
epidemic process in an unweighted and undirected network with N nodes, represented
by an N×N symmetric adjacency matrix A, is [10, p. 449]
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dE[X j(t)]
dt

=−δE[X j(t)]+β

N

∑
k=1

ak jE[Xk(t)]−β

N

∑
k=1

ak jE[X j(t)Xk(t)] (1)

The epidemic threshold τc of the SIS epidemic process implies that, if the effective
infection rate τ = β/δ > τc, the virus will spread over the network for a very long
time, and if τ < τc, the number of infected nodes decreases exponentially fast after
sufficiently long time [7, 11]. There is an approximate value [14] and lower bound
[13] of the epidemic threshold τc > τ

(1)
c = 1/λ1, where λ1 is the largest eigenvalue

of the adjacency matrix A. In this paper, the threshold τ
(1)
c is referred to as the N-

Intertwined Mean Field Approximation (NIMFA) threshold, where the superscript
(1) in τ

(1)
c refers to the fact that NIMFA is a first order mean-field approximation

[13].
The structure of this paper is organized as follows. Section 2 introduces the relation

between the prevalence (2) and the average fraction of infected nodes conditioned
to the survival of the virus. Clearly, the virus die-out probability plays a key role.
Section 3 proposes an accurate approximate formula (6) for the die-out probability
in the metastable state of the SIS epidemic process. Figure 1 and Fig. 2 demonstrate
the accuracy and the limitation of (6) in complete graphs, Erdős-Rényi graphs, and
power-law graphs. Finally, we apply formula (6) to correct the NIMFA prevalence
(8) as shown in Fig. 3.

2 The Prevalence and the Die-out Probability
The prevalence y(t) of a SIS epidemic process is the expected fraction of infected
nodes at time t,

y(t) = E[S(t)] (2)

where S(t) = 1
N ∑

N
j=1 X j(t) is the fraction of infected nodes. The prevalence in the

exact Markovian epidemic process after infinitely long time tends to zero, where the
absorbing state is reached. Before the virus dies out, virus may exist in networks
for a very long time [2, 9]. In the metastable state, the prevalence y(t) changes
very slowly and there is a balance between the infection and curing processes. We
confine ourselves to the time region [0, tmax] that the prevalence y(tmax) 6= 0, and the
prevalence is approximately equal at every time t ∈ [tm, tmax], where tm is the time
that the SIS process reaches metastable state. However, for one realization of the
epidemic process, we cannot expect that the fraction of infected nodes oscillates
around the level of the prevalence y(t) with time t, because the prevalence y(t) is
the average over all possible realizations including the die-out realizations. In real
observed diseases, the virus has not died out yet, so that the fraction of infected
population is positive. So, there are actually two kinds of average: the average over all
possible realizations (prevalence), and the average over the realizations conditioned
to the survival of the virus. To prevent confusion, the faction of infected nodes
under the condition that the virus survives at time t is denoted by a random variable
S̃(t) in this paper. Consequently, we have Pr[S̃(t) = i/N] = Pr[S(t) = i/N|S(t) 6= 0]
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for S̃(t) ∈ {1/N,2/N, · · · ,1} while S(t) ∈ {0,1/N,2/N, · · · ,1}. The removal of the
absorbing state [3] or the assumption that the virus survives is associated with the
quasi-stationarity or metastability of the SIS process [8]. The expectation of S̃(t) of
an epidemic process in a network with N nodes is

E[S̃(t)] =
N

∑
i=1

i
N

Pr[S̃(t)] =
N

∑
i=1

i
N

Pr

[
S(t) =

i
N

∣∣∣∣S(t) 6= 0

]

With the definition of the conditinal probability,

Pr

[
S(t) =

i
N

∣∣∣∣S(t) 6= 0

]
=

Pr
[{

S(t) = i
N

}
∩
{

S(t) 6= 0
}]

Pr[S(t) 6= 0]

=
Pr
[
S(t) = i

N

]

Pr
[
S(t) 6= 0

] provided i > 0

we have

E[S̃(t)] =
1

Pr[S(t) 6= 0]

N

∑
i=0

i
N

Pr
[

S(t) =
i
N

]
=

E[S(t)]
Pr[S(t) 6= 0]

Since Pr[S(t) 6= 0] = 1−Pr[S(t) = 0], the prevalence can be written as

y(t) = ỹ(t)
(
1−Pr[S(t) = 0]

)
(3)

where ỹ(t) = E[S̃(t)]. Equation (3) shows the relation between the prevalence y(t)
and the average fraction ỹ(t) of infected nodes under the condition that the virus
survives, where the die-out probability Pr[S(t) = 0] is essential. Both the prevalence
y(t) and the virus die-out probability Pr[S(t) = 0] are difficult to compute analytically
in general graphs.

The Markovian SIS epidemic process on the complete graph KN is a birth-and-
death process [3, 10]. The states {0,1, · · · ,N} of the birth-and-death process are
the number of infected nodes, where 0 is the absorbing state or overall-healthy
state. Therefore, the die-out probability Pr[S(t) = 0] can be obtained by solving the
birth-and-death process, (

s′(t)
)T

= sT (t)Q (4)

where Q is the infinitesimal generator of the birth-and-death Markov chain, and
sT (t) = [s0(t), · · · ,sN(t)] is the state probability vector with each element si(t) =
Pr[S(t) = i/N] for 0≤ i≤ N, and s0(t) = Pr[S(t) = 0].

The die-out probability Pr[S(t) = 0] of SIS epidemic process in complete graphs
also equals the gambler’s ruin probability [10, p. 231] as shown in the Appendix,
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µn =
∑

N−n−1
j=0 j!τ j

∑
N−1
j=0 j!τ j

(5)

Different from solving (4), Eq. (5) only applies to the metastable state and cannot be
used to calculate the die-out probability at an arbitrary time t. As demonstrated in the
Appendix, Eq.(5) upper bounds the actual die-out probability, because (5) assumes
that the virus wins only when it infects all N nodes in a finite time before dying out.

3 The Die-out Probability: an Accurate Approximation
Apart from solving (4) or employing the gambler’s ruin formula (5), in this section
we propose a novel approximate formula of the virus die-out probability in the
metastable state.

We assume that the prevalence y(t) is approximately constant in the metastable
state. Relation (3) then indicates that the die-out probability is also approximately
constant. In the metastable state, we then find that the virus die-out probability in a
sufficiently large graph is approximately

Pr[S(tm) = 0]≈ 1
xn , with x≥ 1 (6)

where S(tm) denotes the fraction of infected nodes of the SIS epidemic process in the
metastable reached at time tm, x = τ/τ

(1)
c = λ1τ is the normalized effective infection

rate of the virus, and n is the number of initially infected nodes. The situation x < 1
is not considered, because the infection rate is below the threshold and the SIS
process dies out before reaching the metastable state. In addition, 1/x > 1 cannot
represent a probability. As the first order NIMFA threshold τ

(1)
c = 1/λ1 is a lower

bound of the actual threshold τc, the prevalence y(t) decreases exponentially fast for
sufficiently large time [11] when x≤ 1, and the virus die-out probability tends to 1.
Also, the accuracy of formula (6) is related to the accuracy of the NIMFA threshold
τ
(1)
c = 1/λ1. For example, if the effective infection rate is below the real threshold

and τ
(1)
c < τ < τc, formula 1/xn < 1, but the virus dies out within finite time with

the probability tending to 1. In the Appendix, an analytically approach to (6) from
the gambler’s ruin probability (5) in complete graphs is presented.

By introducing the normalized effective infection rate x = τ/τ
(1)
c = τλ1 into

(6), the network topology—the largest eigenvalue of the adjacency matrix λ1—is
reflected. Formula (6) is simple, and only three essential parameters are involved:
the spectral radius λ1, the virus spreading ability τ , and the initially infected number
of nodes n. If a few nodes are infected and the infection rate is above the threshold
x > 1, then formula (6), which is equivalent to Pr[S(tm) = 0]≈ e−n logx, shows that the
network will experience a disease outbreak, because the die-out probability decreases
exponentially fast with n above the epidemic threshold (logx > 0).
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In the sequel, we compare (6) and the die-out probability Pr[S(t) = 0] obtained via
simulations. The curing rate of all the calculations and simulations below is δ = 1.

3.1 Complete Graphs
After solving the epidemic process (4) in the complete graph K126 with effective
infection rate τ = 0.016, Fig. 1a shows the prevalence y(t) and the die-out probability
Pr[S(t) = 0] as an example. The metastable state is reached approximately at time t =
10 and hereafter, and the prevalence y(t) keeps steady. Also, the die-out probability
Pr[S(t) = 0] becomes approximate constant earlier from t = 5. The prevalence y(t)
decreases slowly to 0 after an infinitely long time [2, 9], and correspondingly, the
die-out probability increases to 1. At t = 45 in the metastable state, the number of
die-out realizations of the SIS epidemic simulation and the solution of the Markov
chain Eq. (4) are recorded and shown in Fig. 1b, 1c, and 1d. The simulation results in
Fig. 1b and 1c are obtained by the SSIS simulator [1] which applies a Gillespie-like
algorithm [4], and 106 realizations of the Markovian epidemic process are simulated.
By counting the number of realizations which have zero infected nodes at t = 45, the
die-out probability is obtained.

Figure 1b and 1c illustrate that, our simulation results match with the computation
of the birth-and-death process (4). To avoid redundancy, we omit the simulation
results in Fig. 1d. From Fig. 1b, the die-out probability at t = 45 is approximately
1 corresponding to formula (6), when the normalized effective infection rate x = 1.
Also, if x = 1, the infection rate is below the threshold, and no matter how many
nodes are infected initially, the prevalence y(t) decreases exponentially fast for
sufficiently large time. The mean-field approximations are usually not accurate
around threshold [6], which is also verified by Eq. (3) when x = 1 and the die-out
probability Pr[S(tm) = 0] = 1. For a different number of initially infected nodes n,
Fig. 1 shows that the virus die-out probabilities converge to the concise formula
(6) fast with the network size N. Furthermore, the larger the normalized effective
infection rate x is, the faster the probabilities convergence towards (6).

3.2 General Graphs
For general graphs, it is infeasible to obtain the virus die-out probability by solving
the differential equations of Markov chain, because the number of equations is 2N .
However, it is still possible to obtain the virus die-out probability efficiently by
simulation. We construct three Erdős-Rényi (ER) graphs Gp(N) with the network
size N = 100 and the link generation probability p = 0.9, 0.5, and 0.1, respectively.
The epidemic process is simulated on the ER graphs by randomly choosing the
initially infected nodes. For every normalized infection rate x and every number of
initially infected nodes n, 104 realizations are simulated. Fig. 2a, 2b, and 2c give the
the comparison between the die-out probabilities and formula (6) for the number of
initially infected nodes n = 1,2,3. Formula (6) is accurate in the general ER graphs,
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Fig. 1: The virus die-out probability in complete graphs.

especially when the normalized effective infection rate x is large. The accuracy of
formula (6) decreases with decreasing link generation probability p in ER graphs
Gp(N).

The die-out probability of the SIS epidemic process in a power-law graph is
presented in Fig. 2d with 105 realizations, and formula (6) shows its limitation. The
power law graph has N = 1000 nodes, and the degree distribution is Pr[k]∼ k−2.6. Fig.
2d exhibits that the die-out probability is almost 1 when the normalized effective rate
is around 2, which also indicates that the real epidemic threshold in the power-law
graph is much larger than the NIMFA threshold 1/λ1. The inaccuracy of formula (6)
is affected by the inaccuracy of the NIMFA threshold as mentioned above.
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The simulations seem to indicate that formula (6) is always smaller than the actual
die-out probability, which may be attributed to the fact that the NIMFA threshold
always lower bounds the actual threshold in any network.

3.3 NIMFA: Corrected for Die-out
The mean-field approximation methods are usually not accurate when the initial
number of infected nodes is small, because the prevalence obtained by mean-field
approximations will generally converge to fixed value due to the existence a steady
state, no matter what the initial condition is. When a small number of nodes is initially
infected, the die-out probability is relatively large. In this section, we will discuss
the accuracy of NIMFA as an example. Previously, the accuracy of NIMFA has been
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studied from a network topology viewpoint [12], but in this section, we focus on the
influence of the initial condition.

NIMFA [13] reduces the computation complexity of a Markovian epidemic pro-
cess by assuming independency between the state X j(t) of node j and the state Xk(t)
of node k, which closes the governing Eq. (1)

dv j(t)
dt

=−δv j(t)+β

N

∑
k=1

ak jvk(t)−β

N

∑
k=1

ak jv j(t)vk(t) (7)

where v j(t) denotes the NIMFA infection probability of node j at time t. The NIMFA
prevalence is similarly derived as

y(1)(t) =
1
N

N

∑
j=1

v j(t) (8)

The NIMFA prevalence y(1)(t) decreases exponentially fast to 0 when the infection
rate is below the NIMFA threshold τ ≤ τ

(1)
c . If the initial condition y(1)(0) 6= 0, the

NIMFA prevalence y(1)(t) converges to a non-zero value when τ > τ
(1)
c , which is

proved in [5]. Thus, NIMFA is conditioned to the case where the virus in the epidemic
process will not die-out, and the absorbing state is removed when y(1)(0) 6= 0. Based
on (6), we propose an approximate virus surviving probability function at the time t
as

f (t) = 1− 1
xn +

1
xn e−λ1t (9)

Equation (9) is motivated as follows. At time t = 0 and y(1)(t) 6= 0, the virus surviving
probability is 1 and f (0) = 1, because a curing event happens with zero probability,
when the time interval is 0. Next, simulations seem to indicate that the virus die-out
probability decreases exponentially fast to 1/xn in metastable state with a rate λ1.

To incorporate the die-out, the NIMFA prevalence can be corrected by applying
(3)

y(t)≈ y(1)(t) f (t) (10)

Figure 3 presents the prevalence and the approximation (10) of the SIS epidemic
process in the complete graph K50 and the random generated ER graph in Sec 3.2.
Starting from one or two infected nodes, NIMFA fails to predict the prevalence. The
steady state of NIMFA is independent of the initial conditions. Fortunately, (10)
seems a good approximation at the initial stage of the SIS epidemic process.

4 Conclusion
In this paper, we discuss the virus die-out probability, which is the probability that
the SIS Markovian epidemic process reaches the absorbing state. The importance of
the virus die-out probability lies in that it connects the virus spreading phenomena
omitting die-out and the exact Markovian model with an absorbing state. Furthermore,
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realizations.

we propose an approximate formula (6) of the virus die-out probability, which only
contains three essential parameters: the largest eigenvalue of adjacency matrix λ1 (the
topology parameter), the effective infection rate τ (the spreading ability parameter),
and the number of initially infected node n (the initial condition parameter). If a few
nodes are infected, then formula (6) indicates that the virus will almost surely cause
a disease outbreak when the infection rate is above the threshold, irrespective of the
network size N. However, the accuracy of formula (6) also depends on the accuracy
of the NIMFA epidemic threshold 1/λ1. Based on formula (6), an approximate virus
surviving probability function (9) is proposed. We also discuss the correction for
NIMFA.
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Appendix
In the gambler’s ruin problem, the goal of the virus is to infect a certain number of
nodes and to successfully reach the metastable state. If the virus cannot achieve the
goal, the virus loses the game and dies out in the network. The analytic solution of
the gambler’s ruin probability of a birth-and-process, which gives the probability µn
that the virus dies out before infecting all N nodes in a finite time starting from an
arbitrary number of infected nodes n, equals [10, p. 231],

µn =
∑

N−1
k=n ∏

k
m=1

1
(N−m)τ

1+∑
N−1
k=1 ∏

k
m=1

1
(N−m)τ

(11)

with effec
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First, we evaluate the expression (11). Since

k

∏
m=1

1
(N−m)τ

=
1
τk

(N− k−1)!
(N−1)!

we have that
N−1

∑
k=n

k

∏
m=1

1
(N−m)τ

=
1

(N−1)!

N−1

∑
k=n

(N− k−1)!
τk

Let j = N− k−1, then 0≤ j ≤ N−n−1 so that a change of variable results in

N−1

∑
k=n

(N− k−1)!
τk =

1
τN−1

N−n−1

∑
j=0

j!τ j

Combining all yields (5), it is

µn =
∑

N−n−1
j=0 j!τ j

∑
N−1
j=0 j!τ j

=
pN−n−1 (τ)

pN−1 (τ)

which is a fraction of two polynomials of the type pm (z) = ∑
m
j=0 j!z j = 1+z+2!z2+

· · ·+m!zm with positive coefficients (all derivatives are positive). Thus, pm (z) is
rapidly increasing for z > 0 and possible real zeros are negative.

The ratio j!z j

( j−1)!z j−1 = jz of two consecutive terms in the polynomial pm (z) in-
dicates that, if jz > 1 holds for all 1 ≤ j ≤ m, the terms are increasing, while if
jz < 1 for all j, the terms are decreasing. Hence, if jτ < 1 for all 1 ≤ j ≤ N− 1,
which is satisfied if τ < 1

N−1 , then the terms in pN−1 (τ) as well as in pN−n−1 (τ) are
decreasing and both pN−1 (τ) and pN−n−1 (τ) tend to each other so that µn→ 1. In
the other case, for τ > 1

N−1 and for sufficiently large N, the polynomial pN−1 (z) will
be dominated by the largest term and µn is approximately equal to

µn ≈
(N−n−1)!τN−n−1

(N−1)!τN−1 =
(N−n−1)!
(N−1)!

1
τn =

1
(N−1)(N−2) . . .(N−n)

1
τn

=
1

(
(N−1)τ

)n
(

1− 1
N−1

)(
1− 2

N−1

)
· · ·
(

1− n−1
N−1

)

If n << N, then we arrive at formula (6)

µn ≈
1(

(N−1)τ
)n

because x = τ

τ
(1)
c

= λ1τ = (N−1)τ for the complete graph KN as λ1 (KN) = N−1.
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Abstract We analyze the tolerance of network controllability to degree-based edge
attacks as well as random edge failure. In particular, we leverage both control-based
and reachability-based robustness metrics to investigate the case when a fixed number
of controls are allowed to change locations following each attack. This ability to
change the locations of controls models the more realistic scenario in which operators
may have a fixed budget of resources but that these resources can be redeployed in
response to attacks on the system. We also identify that the most potent targeted
attack for network controllability selects edges (on average) based on betweenness
centrality.

1 Introduction
Due to their ubiquitous appearance in many applications, such as economics, trans-
portation, biochemical processes, and power systems, large-scale complex networks
have received widespread attention from the control community in recent years
[10, 19]. Classical control techniques, however, perform poorly for these network
structures since they do not scale well with size and complexity. Moreover, in many
situations the exact system parameters (the strengths of the interconnections between
nodes) are not known. Thus, structural control tools are used to analyze and design
various properties of large-scale networks, such as controllability.
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Although a large body of work addresses static networks, one of the defining
characteristics of real-world networks is their natural processes of growth and change
[1]. This is true for social networks in which friendships come and go, or also in
engineered networks, such as power distribution networks, where natural events can
interrupt service due to power line damage. More recently, concerns over security of
cyber-physical systems has drawn more attention to targeted attacks with malicious
intent. Analysis of network controllability under such attacks not only helps to iden-
tify the most vulnerable points in the network but also informs about the robustness
of the communication structure. Such information can be used to design networked
systems to make them resilient to failures and attacks. Several recent studies have
begun to address the robustness of network controllability under various types of
attacks [11, 14, 15, 18].

Most of this recent work studies the increase in the number of controls required
to recover network controllability following failures of links or nodes [14, 18]. This
kind of control-based robustness analysis assumes that the network operator has
the capability to add additional controls at any location in the network. A more
realistic assumption is that managers have a fixed budget or have a limited quantity
of resources that can be deployed in response to an attack or failure. Moreover, the
increase in additional controls is only a proxy for the most relevant information -
how much of the network is still controllable.

In response to these ideas, [15] introduces a new type of reachability-based
robustness metric which captures the extent to which a network remains controllable
in the face of an attack. While this allows us to directly study the change in number
of controllable nodes, the work required the location of the controls to stay fixed
throughout the process. In this paper, we assume that the designer has the ability to
relocate the same fixed number of controls after an attack occurs. We quantify the
advantage gained by allowing the control input locations to be free rather than fixed.

The first contribution of this paper is to frame the free- versus fixed-controls
scenarios and provide graphical algorithms that allow us to analyze these robustness
schemes. Subsequently, we characterize the behavior of synthetic networks (both
random Erdos-Renyi networks and scale-free Barabasi-Albert networks) under se-
quential degree-based edge attacks or random edge failure. We study the robustness of
these networks based on three metrics: increase in the number of controls to achieve
complete controllability (control-based robustness), and decrease in the number of
controllable nodes under fixed and free controls (reachability-based robustness).
In doing so we identify the most damaging form of degree-based edge attack and
demonstrate that potency of attacks is directly correlated to the betweenness central-
ity of the removed edges. While it is known in literature that scale-free networks are
highly robust to failure but sensitive to targeted attack when it comes to connectivity
[1, 4], we establish that in the context of controllability both scale-free and random
networks behave in a consistent manner; i.e., the order of potency of attack types are
identical for both network models.
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2 Background
We consider networks whose state evolves according to linear time-invariant dynam-
ics,

ẋ(t) = Ax(t)+Bu(t), (1)

where x(t) ∈ RN and u(t) ∈ Rm represent the state and externally applied input. The
matrices A ∈ RN×N and B ∈ RN×m denote the state and input matrices, respectively.
The system (1) is controllable if and only if the rank of the controllability matrix
C =

[
B AB · · · An−1B

]
equals N [3].

To make the controllability analysis of such systems feasible for large-scale
networks, we focus on structured linear systems, where the parameters (entries)
of system matrices A and B are unknown, but their sparsity structures are known.
Such matrices are called structured matrices, where the entries are either fixed zeros
or free independent parameters. Systems with structured matrices are said to be
controllable if there exists a non-structured real-valued system with the same sparsity
structure that is controllable in the classical sense [9]. The control properties of
structured systems are defined in a generic sense; i.e., they hold for almost all choices
of parameters except for a set of Lebesgue measure zero [9, 20].

Directed graphs offer an attractive alternate approach to study linear systems. The
linear system (1) can be represented by a directed graph G(A,B) = (V,E) where
V = {x1, . . . ,xN ,u1, . . . ,um} denotes the set of state and input nodes and E ⊆V ×V
denotes the set of edges. We say that an edge exists from x j ∈V to xi ∈V (u j ∈V
to xi ∈ V ) if and only if the (i, j)th entry of the matrix A (the matrix B) is not a
fixed zero. Standard notions of paths, cycles, walks, and families of paths and cycles
related to directed graphs are used throughout the paper. However, we also use the
somewhat less standard graphical notion of cactus for studying the properties of
structured linear systems. A cactus is a subgraph of G(A,B) that consists of a stem
(a directed path) with buds (cycles) connected from the stem or from other buds via
distinguished edges.

It is well known that the existence of a cacti structure (i.e., a single cactus or
multiple disjoint cacti) originating from the input nodes (i.e., {u1, . . . ,um}) spanning
all the state vertices is both necessary and sufficient for the overall system to be
structurally controllable [6, 9]. A cacti structure is the minimum graphical structure
that satisfies two fundamental conditions which make the system controllable: all
state nodes must be reached from at least one input node; and there must be a
sufficient number of inputs to properly control each of the nodes [5]. Loss of either
one of these properties renders the system uncontrollable.

A maximum matching algorithm, which runs in polynomial time, can be used
to determine the spanning cacti structure that guarantees structural controllability
with the fewest number of input nodes required [5, 12]. The algorithm produces the
set of edges that compose the stem(s) and the cycle(s) of the cacti. Joining together
these edges into stems and cycles and identifying distinguished edges constructs
the overall cacti structure. The matrix B is constructed by connecting each of the
base nodes of the stem(s) from an input node (if for some cycles no distinguished
edge exists in the state connectivity given by A, then a distinguished edge must be
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added directly from one of the input nodes, i.e., added to B). Due to the degeneracy
of the maximum matching (there are possibly multiple matchings with equal number
of matched edges), the spanning cacti structure is, in general, not unique; however,
the minimum number of input nodes required is unique and is a feature of the state
connectivity matrix A.

2.1 Robustness Metrics for Network Controllability
In this study we are interested in capturing the ability of the network to retain con-
trollability in the face of edge removal, i.e., changes in topology. We, and the related
literature, therefore, use a metric that quantifies the change in network controllability
over the course of these changes. In this work, as a continuation of our prior work in
[15], we advance the notion of reachability-based robustness as a more direct measure
of robustness of controllability and compare that with control-based robustness.

Control-based robustness metric. This is the standard metric that has been used
in literature analyzing network controllability robustness [14, 18]. The metric (Nc)
specifies the minimum number of additional controls required to maintain complete
controllability of the network after an attack. This number can be determined from
the result of a maximum matching run on the attacked graph structure, using the
method described above. To understand network controllability from a control-based
approach, we observe the increase in Nc associated with a combination of network
topology and strategy of edge attack. We will denote the minimum number of controls
needed to control the original graph, prior to edge removal, by N0

c .
Reachability-based robustness metrics. In comparison to the control-based, the

reachability-based robustness metric provides a measure of the number of nodes
that are controllable by the chosen inputs after an attack on the network [15]. In
the simplest case, we considered a set of fixed controls, fixed in terms of both the
number of controls and the connectivity of controls to nodes. The fixed control set
is given by the set of original minimal controls found by the maximum matching;
therefore, the fixed number of controls is given as N0

c . The number of nodes that can
be controlled (the generic dimension of the reachable subspace) in this fixed controls
case is denoted Nr. This value can be found using a weighted maximum matching
procedure (described in Section 3) [15].

In this current work, we consider a new model for control in the context of failure
and attacks. We seek to understand the value of being able to change the connectivity
of the controls to nodes, subject to a fixed number of controls (N0

c ). This situation
emulates an operator’s ability to redeploy controls after each attack, subject to a
fixed budget of controls. The number of controllable nodes in this free controls case
is denoted N f . We adapt the weighted maximum matching method from the fixed
control case to compute N f . By definition, we expect that N f ≥ Nr.
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3 Algorithm
The reachability-based metrics computing Nr and N f involve identification of the
number of nodes which remain controllable after removal of edges under external
attacks using a set of a given number of controls, but with fixed or free connectivity
to the state nodes. Equivalently, this amounts to the identification of the generic
dimension of the controllable subspace for the system after the attack [8, 15]. The
solution of this problem has been shown to correspond to finding a cycle partition
of G(A,B) and formulated as an integer linear program [16]. In prior work, we
extracted this result and presented it in the context of robustness using the equivalent
graphical formulation of a weighted maximum matching, specifically for the case
where the locations of control inputs are considered fixed [15]. Here, we generalize
the algorithm to compute the value of N f ; i.e., the situation in which the designer has
the flexibility to change the locations of controls after the attacks. For the sake of
completeness, we first describe in brief the original procedure to find Nr, followed by
the modifications necessary to extend it to the case of free controls, N f .

To compute the cacti control structure subject to a fixed set of controls (the
structure of B is known), we form a special weighted bipartite representation GB of
G(A,B):

1. Remove nodes that cannot be reached by any control.

For all i, j = 1, . . . ,N and k = 1, . . . ,m:
2. Split the remaining nodes into a pair of positive and negative nodes: xi→ x+i ,x

−
i .

3. Add unit-weight edges (x+i ,x
−
j ) if (xi,x j) ∈ E.

4. Add unit-weight edges (u+k ,x
−
j ) if (uk,x j) ∈ E.

5. Add zero-weight edges (x+i ,x
−
i ) (self-loops).

6. Add zero-weight edges (u+k ,u
−
k ) (self-loops).

7. Add zero-weight edges (x+i ,u
−
k ).

8. Add a weight W ≥ |E| to all edges in GB.

The original unit-weight edges correspond to the existing edges in the network or to
edges that connect the inputs to state nodes. Adding the zero weight edges ensures
that a perfect matching is possible (to construct the cycle family that covers all
nodes). In particular, the cycles in the cycle family must close the path either through
a zero-weight edge to a control (edges in step 7) or as a self edge (edges in steps
5 and 6). Note that the control self-loops in step 6 are rarely matched, unless the
control nodes are disconnected. Finally the large weight W ensures that the weighted
maximum matching finds the perfect matching, i.e., without the extra weight W there
may be a collection of true edges (each with weight W +1) that would form a heavier
matching without being a perfect matching.

A weighted maximum matching on the bipartite graph GB yields a set of matched
edges. Mapping these edges (only keeping the edges with weight W +1) back into
edges in G(A,B) constructs a set of paths and cycles. Following the same procedure
described for the paths and cycles found by a maximum matching (identifying
distinguished edges), the cacti can be formed. The nodes contained within the stems
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and cycles rooted in a control node are controllable, whereas those in stems and
cycles without connection to a control node are not controllable.

If the number of controls is fixed, but the connectivity is flexible, we modify this
method slightly to find the location of the connectivity of these free controls and
the number of controllable nodes. We first preprocess the graph by adding the fixed
number of control nodes and then placing edges from each control node to every
state node in the network (equivalent to setting B to have no fixed zeros). Then we
execute the above process for the preprocessed graph G(A,B). In the process of the
weighted maximum matching described above, only one edge from each control can
be matched. Thus the matched edges of the form (u+i ,x

−
j ) indicate a connection of

inputs to states that yields the maximum number of controllable nodes; the rest of
the control connections are removed.

4 Experimental Setup
We now employ these developed methods to empirically calculate the evolution of
the number of controls, Nc and the number of controllable nodes, Nr (fixed controls)
and N f (free controls), as the topology of the network changes due to random edge
failure and targeted edge attack. We remove 90% of the total number of edges (L)
in the network in steps of 5% (if 0.05L is not an integer number of edges, we round
down). We denote the number of edges removed as `. This procedure is repeated
for 100 different networks (with the same network type, attack type, and average
degree) and the network statistics and robustness metrics are averaged over these 100
networks.

While there are a number of interesting features to be studied, here we, in partic-
ular, aim to (1) determine the potency of various degree-based attacks on network
controllability, and (2) quantify the advantage of being able to reconfigure controls
following an attack.

Random network models provide an efficient platform for studying change in
network properties because they can be synthesized according to strict criteria,
such as a fixed average degree. We use Erdos-Renyi (ER) and Barabasi-Albert (BA)
models generated with N = 1000 nodes and average degrees q= 2,4,6. These models
represent the stereotypes of random and scale-free networks and are commonly used
to represent these fundamental classes of network topology. The Erdos-Renyi model
is used for generating random graphs by connecting nodes randomly with probability
p [7]. The Barabasi-Albert model starts with a clique of q nodes. A node is added to
the graph and q edges establish connection from the new node to the nodes already
in the network, preferentially biased towards nodes with high degree. This process is
repeated until the graph has n nodes [2].

The networks generated using the BA and ER models were subjected to random
edge failures as well as targeted edge attacks, and the change in network control-
lability was analyzed using both control-based and reachability-based robustness
metrics. A wide variety of edge attacks are viable, however, we restrict our attention
to degree-based attack strategies because degree is a local property of the network.
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More sophisticated attacks may be possible - for example based on the paths and cy-
cles of the cacti - however, they would require global information about the network,
which is less likely in terms of the capabilities of an attacker. There is precedent that
connects node and edge degrees to controllability [17].

• Random edge attack emulates a spontaneous failure of a connection by selecting
an edge uniformly randomly.

• Degree-based edge attack removes edges in decreasing order (largest first) in
terms of the in-, out-, or total-degree characteristics of the edge’s source and
target nodes. In our terminology the attack is denoted, for example, in-out if
the edge is ranked highly for having a high combined in-degree of the source
node and out-degree of the target node. We consider all combinations: in-out,
in-in, out-in, out-out, as well as an attack simply based on the total degree of the
source and target node.

• Betweenness centrality edge attack is not a degree-based attack, however, we
will show in Section 5 that this attack provides insight into the potency of the
degree-based attacks. The betweenness centrality of an edge is related to the
number of shortest paths passing through that edge [13].

5 Results
For all network types and average degrees (as a sample, Fig. 1 presents ER networks
with average degree q = 2), the in-out attack is decisively the most potent attack
in terms of loss of network controllability; out-in is definitively the weakest attack.
The remaining degree-based attacks fall in between these extremes and are not
significantly different from random failure. This trend is so strong that we have
dropped, for visual clarity, all other attacks in the presentation of Figure 3, which
shows the evolution of the reachability-based robustness measures Nr (fixed controls)
and N f (free controls), as well as the control-based robustness measure Nc under
different attacks types on BA and ER networks with average degree q = 2 and q = 6.
We use nα = Nα/N to denote the fraction with respect to the total number of nodes,
for α ∈ {c,r, f}.

The literature on network robustness - as opposed to this work on network control-
lability robustness - studies how the connectivity (e.g., the diameter) of the network
changes in response to edge failure and attack [1]. A fundamental result in this
body of work is that scale-free networks like BA tend to be highly robust to random
failure, but highly sensitive to degree-based attacks. In contrast random graphs like
ER evidence a more moderated response to both failure and attack. Our results here
reveal that this differentiation between ER and BA networks does not exist in the
context of robustness of network controllability.

A few other observations help us to understand the potency of the in-out attack.
Fig. 1 also plots the evolution of the number of strongly connected components
(SCCs) as edges are removed. A strongly connected component S is a maximal
subgraph such that every node u ∈ S can reach every other node v ∈ S along a
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Fig. 1: Fraction of controllable nodes in the free controls case and the saturation
of strongly connected components; all attack types; ER networks with q = 2. A
schematic showing that edges with high in-out degree have a greater likelihood of
belonging to an SCC.

directed path. The smallest SCC possible is, therefore, a single node. In ER graphs,
we observe a saturation of the number of SCCs (see Fig. 1), effectively witnessing the
breakdown of larger SCCs into smaller ones until all SCCs are single nodes (because
there are 1000 nodes). Because BA networks are acyclic, the number of SCCs is
always 1000 (we omit these figures). The rate and early onset of the saturation of
SCCs corresponds directly to the potency of the attack.

While the precise causal link between SCCs and network controllability is a topic
for future work, our observations do, however, help to lead us to an explanation
behind the potency of the in-out attack, and, therefore, degree-based attacks in
general. Consider an edge with high in-out degree, as shown in the schematic in Fig.
1. We argue that the high out-degree of the target node and the high in-degree of the
source node increase the likelihood for there to be a path from the target node back
to the source node. This return path would imply that the source and target nodes are
part of an SCC; and most importantly, the edge in question is part of an SCC. We
have now argued that the in-out attack is likely to remove edges within SCCs, but
have not yet made the connection that relates this back to network controllability.

The high in-degree of the edge’s source node and high out-degree of the edge’s
target node makes the edge a natural bridge between parts of the network (Fig. 2).
This notion of edges being “bridges” between nodes is similar to the concept of
betweenness centrality, which ranks edges according to the number of shortest paths
that pass through an edge. More precisely, between all pairs of nodes in a network
there exists a minimum number of edges that separates them, although there could
be several such shortest paths that achieve this minimum. Betweenness centrality
of an edge is the fraction of shortest paths between two nodes containing the edge,
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s t

Fig. 2: Average betweenness centrality of the edges removed for each attack step in
BA networks with q = 6. The schematic shows that edges with high in-out degree
are more likely to act as bridges between parts of the network.

summed over all possible pairs of nodes in the network. Edges that connect clusters
of nodes act as bridges between these nodes and, therefore, will be involved in many
of the shortest paths between nodes in the different clusters.

We assert that the ranking of an edge according to in-out degree correlates strongly
with a ranking by betweenness centrality. Therefore, we ascribe the potency of the
in-out attack to the fact that it is a rough proxy for betweeness centrality. Fig. 2 shows
the average betweenness centrality of the edges removed at every attack step, for
each attack type, revealing that the in-out attack (green curve) indeed targets high
betweenness edges much more directly than any other attack.

To cement the connection relating betweenness centrality to the potency of the
degree-based attacks, we define a new non-degree-based attack targeting edges
in decreasing order of their betweenness centrality. It is evident from Fig. 3 that
this attack matches or outperforms the in-out attack, and all other attacks, (while
0 ≤ `/L ≤ 40% for BA q = 6). For low average degree, the in-out attack tends to
be a more accurate proxy for betweenness centrality. The reason why in-out attack
marginally outperforms the betweenness centrality attack (past `/L > 40% for BA
with q = 6) is due to the fact that once the network connectivity is sufficiently sparse,
the betweenness centrality of all remaining edges is 1 (i.e., there is mainly just one
shortest path between pairs of nodes). Therefore, beyond this point the betweenness
centrality attack is no longer able to be discriminatory between edges, whereas the in-
out attack still provides a meaningful ranking based on the local degree information.
We can see the betweennesss centrality flatten out at 1 in the inset plot in Fig. 2.
This point occurs when the potency of the in-out attack overtakes the betweenness
centrality attack - around 40% for BA q = 6.

In summary, we observed that the in-out attack seems to aggressively destroy
SCCs if they are present. This motivated the notion of viewing high in-out edges as
bridges, which connects with betweenness centrality. Through a direct evaluation
of the betweenness centrality of the edges removed under different degree-based
attack schemes and by implementing a betweenness centrality based attack, we
clearly connect betweenness centrality with the most rapid decrease in network
controllability. Although there are possibly other even more potent attacks, they
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would require global knowledge of the network topology. We use the betweeness
centrality attack not as a focus of this paper, but as a benchmark to explain the
behavior of the in-out degree based attack.

These same arguments can also be used to explain the performance of the other
degree-based attacks as well. In particular, edges with high out-in degree function
entirely opposite to edges with high in-out degree. Reversing the arrows in the
schematics of Figs. 1 and 2 shows that such edges do not participate with high
likelihood in SCCs or as bridges. The out-in attack line (red) in Fig. 2 clearly
indicates that it systematically selects edges with the lowest betweenness. The peak
towards the end is simply the artificial inflation of edges’ betweenness due to the
removal of all the edges with less betweeness centrality early on in the process. The
other attacks tend to fall in between these extremes.

5.1 Free Controls vs Fixed Controls
By construction the number of controllable nodes in the free control case is the same
or greater than the fixed control case; here we quantify this improvement. Figure 3
presents a comprehensive picture of all network controllability statistics for BA and
ER networks and confirms that N f ≥ Nr for both networks at all average degrees.

The last row of plots in Fig. 3 displays the difference n f −nr. We observe that the
general qualitative curve of these plots is equivalent across network types and average
degrees, which emphasizes that free controls provide a systematic benefit over fixed
controls, e.g., the initial peak at around 20% of edges removed. This benefit scales
based on network type and average degree. A clearer signature difference between
fixed and free controls is presented in Fig. 4, where we plot the difference in the
changes in reachability- and control-based robustness. More precisely, ∆Nα(`) =
|Nα(`)−Nα(0)|, i.e., the absolute change from the initial value of the robustness
metric, for α ∈ {c,r, f}. We know that the number of controls, Nc will increase as
edges are removed - in particular, for each edge we remove either no new controls will
need to be added, or one new control will need to be added to maintain controllability.
Therefore, there is a limit on the rate of increase of ∆Nc. On the other hand, ∆Nr
and ∆N f have no such limits on the reduction in controllable nodes; for each edge
that is removed, it is possible to lose controllability to many nodes. The quantities
∆Nr−∆Nc and ∆N f −∆Nc, thus capture the extent to which the rate of increase in
the number of controls is matched or exceeded by the decrease in the number of
controllable nodes under the fixed or free control scheme. One interpretation of Fig.
4 is that it shows that the free control case is able to reduce the loss of controllable
nodes to the same rate as the increase in number of controls when the plot has zero
value. For the weaker attacks, the ability to move controls is able to compensate for
up to about `/L = 0.7. For the more powerful in-out and betweenness attacks, this is
true only up to about `/L = 0.1. When we compare this to the fixed control case in
Fig. 4, we observe that fixed controls are not able to perfectly compensate for any
amount of edge loss.
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Fig. 3: Change in robustness measures of ER (columns 1 and 3) and BA (columns
2 and 4) networks for q = 2 (columns 1 and 2) and q = 6 (columns 3 and 4) under
in-out (green), out-in (red), random (purple), and betweenness centrality (black)
attacks. The horizontal dashed lines in rows 2 and 3 indicate the initial number of
required controls, N0

c .

6 Conclusion
In this work, we have quantified and analyzed the changes in the controllability of
synthetic networks (random ER and scale-free BA networks) in response to degree-
based edge attacks using both control- and reachability-based metrics. We identified
that the potency a degree-based attack is directly related (on average) to the between-
ness centrality of the edges being removed. Moreover, we have discovered that for
robustness of network controllability, both random networks models behave in a
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Fig. 4: Cumulative difference between the reachability-based and control-based ro-
bustness metrics for the free and fixed cases; ER network with q = 2. ∆Nα(`) =
|Nα(`)−Nα(0)| represents the absolute change from the initial value of the robust-
ness metric, for x ∈ {c,r, f}.

very similar manner, contrasting with findings on robustness of network connectivity,
where scale-free networks evidence higher robustness to random failures.
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Abstract In this paper, we study practical strategies for controlling the behaviour of a
synthetic social network modelling the dynamic diffusion of knowledge. The problem
of controlling the evolution of complex networks has been extensively studied in
recent years and remarkable theoretical results have been achieved. However, still
largely unexplored is the analysis of realistic control strategies for complex networks
and the special case of social networks. Our model of knowledge diffusion in a social
network is used for simulating and evaluating possible control strategies of social
network behaviour. Our approach is to exploit the controlled injection of random
topics into some driver nodes for influencing the overall dynamics. This way, it is
possible to modify some key control parameters in a deterministic way with realistic
inputs, considering the strong practical constraints of social networks with respect
to control measures. Control parameters considered are: The injection interval of
random topics, the rate of driver nodes with respect to the network size, and the
selection criteria of driver nodes. Finally, we discuss possible applications and the
challenges that social networks pose to the issue of network control.

1 Introduction
The idea behind our research started from a simple consideration: Both with syn-
thetic models and in real social networks, it is well-known and documented that a
strong tendency of agents towards polarization often emerges. Agents often form
tight communities with few, if any, weak ties between them, heterogeneity of traits
and characteristics of connected agents tend to disappear with the increase of ho-
mophily [12, 17]. At practical level, it was often observed how people on social
networks tend to slide into ”filter bubbles” [9, 22] - i.e., self-reinforcing social con-
texts dominated by information homogeneity with few occasions to have contacts
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with critical analyses, information from unaligned sources or contrasting opinions -
or, in knowledge diffusion and networked learning, how knowledge sometimes dif-
fuses unevenly, exhibiting strong polarization - e.g., agents showing strong tendency
towards specialisation like when students/recipients of information grow strong inter-
ests only in a narrow set of topics disregarding the richness of the full information
spectrum [2].

In this work we specifically considered research that have applied results from tra-
ditional control theory to complex systems. From those theoretical and experimental
results we have derived new control strategies for our synthetic model.

Structural controllability of networked systems [15] has been extensively studied
since the end of the past decade, following the growing interest in network sci-
ence [20]. The property of structural controllability is central in the study of how the
dynamic of a complex system can be controlled [14]. In short, from control theory, a
dynamic system is said to exhibit structural controllability if, with a suitable selection
of inputs, it can be driven from one state to any other states in finite time. Inputs to
the system are represented by driver nodes receiving external perturbations. Liu et al.
in a seminal paper demonstrated how the problem of determining the minimum set
of driver nodes required for structural controllability can be mapped into a maximum
matching problem [16]. Some remarkable theoretical results have been recently
demonstrated for complex networks [6, 18].

However, demonstrating structural controllability for a complex systems is neither
always necessary nor sufficient when realistic scenarios are considered [10, 19]. It
is not strictly necessary because often it is not required to be able to drive a system
from every initial states to every final states. In most practical situations there is the
need to tune the dynamical evolution from one trajectory driving the system towards
a negative outcome to another trajectory, possibly unknown but leading to a better
outcome. So, in many practical situations, it is not an optimisation problem the one
we should solve (i.e., applying the best inputs to the smallest set of driver nodes in
order to reach the optimal final state), rather it is a problem of perturbing the system
evolution for modifying the basin of attraction (i.e., modify the dynamics so that the
system that was attracted towards a certain state space becomes attracted towards a
different one) [5]. The property of structural controllability is not sufficient because
often there are many practical limitations to the type of perturbations that could be
injected into the system through driver nodes and also limitations to the accessibility
of driver nodes. In many real cases, we are neither free to choose the best inputs nor
to observe and manipulate all agents.

These two considerations regarding the limitations of structural controllability
are the core motivations for the present research. We consider our synthetic model
for knowledge diffusion and study the strategic use of random information to enrich
the state of some agents as a possible realistic input to driver nodes. In a social
context, different from typical industrial case studies of control theory, it is extremely
difficult to provide means to change some agents state parameters or deleting some
information and replace with others. We do not have actuators for tuning agent’
states, there is no hook, knob or controlling interface to handle. The best tools we
have in a social context are external perturbations in the form of new information
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injected into the system and the reduction of physical and cultural barriers pre-
venting agents to acquire more information. However, attempting to directly and
openly influence individuals with messages and actions explicitly tailored to change
their opinions, preferences, or interests can easily backfire, as the long experience
with many advertising campaigns that ultimately produced adverse reactions (i.e.
reactance) [23] or the many criticisms concerning the lack of ethics in the social
experiment run by Facebook [13] have witnessed. Differently, attempts to sustain
the circulation of information and to increase serendipitous encounters even through
digital interfaces (e.g. browsers) have typically received good acceptance and were
perceived as beneficial for the social welfare [21]. Therefore, we assume that eth-
ically, culturally and even practically, a strategy for perturbing the behaviour of a
social network in order to modify its basin of attraction based on the injection of
random information into the system could be accepted as fair and ethical. On the
other side, the goal of a control strategy applied to a social context is often to fix
a bad trajectory in system evolution, rather than reaching an exactly defined final
state. For example, in a networked learning scenario, the goal could be to increase
the average level of knowledge on a set of topics by limiting the tendency of agents
to dedicate all their interest on few of them only. Similarly the goal could be to
limit the degree of homophily to reduce the formation of secluded communities
based on same ideology, tastes, or cultural preferences. There are many examples
of perverse dynamics affecting a social network ultimately resulting in negative
outcomes like network partitions (or quasi-partitions), severe drop in communication,
diffusion of knowledge limited to enclaves, or topological structures further limiting
the controllability, the observability, and the communication efficiency [4, 7].

In this work, randomness in agent behavior has been modelled as new topics
exogenously inserted in agents’ state during a simulation: This event wish to represent
the typical ”unsought encounter” of serendipity and modifies both an agent’s criterion
of choice of who to communicate with and how knowledge among agents is shared.
A study of the adaptation of the serendipity concept for our social network model has
been presented in [8]. Results of this work have been produced through simulations
defined as variations of a reference configuration of our synthetic social network. In
particular, our goal was to study how the network behavior depends from three key
control parameters: The injection interval of random topics, the rate of driver nodes
with respect to the network size, and the selection criteria of driver nodes. For each
parameter, simulations were replicated for different network sizes to verify how the
effects of scale influence control strategies.

2 Original Model
In this section we provide a summary of the characteristics of our original agent-based
model, before the extensions we made to test control strategies. A more detailed
description and analysis can be found in [2]. The model is inspired by question-
answer networks where knowledge is shared from expert agents (with respect to a
certain topic) answering questions received from less knowledgeable ones.
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We assume a set of agents and a set of topics to be given. Each agent has a certain
level of interest and skill (quality) on each topic, both change through interactions
with other agents. In more detail, we consider a set of N agents, n1,n2, ...,nN , each one
characterized by a Personal state PSni (what ni knows) and a Friend state FSni (who
ni knows). The Personal state has the form PSni =(

⋃
j∈Ti

(topic j,qualityi, j, interest i, j)),
where T is the set of topics that the population knows; each agent ni knows a variable
subset of them Ti ⊆ T . The Friend state has the form FSni=(

⋃
j∈Ni

(n j,answersi, j)),
where n j are the identifiers of agents connected with ni and answersi, j is a counter to
keep track of the number of interactions with each peer. The setup has been defined
to be the most neutral, with topics Ti assigned to each agent and associated qualities
selected randomly, interests distributed uniformly and no connection.

A network is dynamically formed according to the following steps:

1. At each tick, an agent ni′ is randomly selected with no repetition (i.e., the
simulator can only run actions on one node for each tick), then a topic (topic j∗)
is selected from its Personal state. The choice of the topic is a weighted random
selection with values of the associated interests (interest i, j∗) as weights, this way
topics with higher interest are more likely to be selected;

2. Among ni′ ”friend” agents and their ”best friend” holding topic (topic j∗), select
agent ni′′ with maximum value of topic’s quality (qualityi, j∗);

3. If qualityi′′, j∗ > qualityi′, j∗ then the communication takes place and agent ni′

increases qualityi′, j∗ of topic j∗;
4. Otherwise, if either step 2 or 3 fail (i.e., there is no 1-step or 2-steps connected

agent holding topic j∗ with a topic’s quality greater than that of agent ni′) then
select an agent ni′′′ at random among the population;

5. if ni′′′ holds topic j∗ and qualityi′′′, j∗ > qualityi′, j∗, then the communication takes
place and qualityi′, j∗ increases, otherwise the communication fails.

Best ”friend-of-friends”. Given agent ni′ , and a selected topic j∗, for each of its
friends, the “best friend” agent is the one owning topic j∗ and the higher value of
the attribute answer. The reason for this solution is that we consider unrealistic in
a social context to scan all agents with a distance of 2 from the one selected. The
selection based on the answer attribute represents a basic form of transitive trust. It
is worth noting that the inclusion of “best friends” fosters network transitivity and
the formation of triads, two key characteristics of social networks.

Start up. At start up, agents have no connection (i.e., Friend state is empty).
When, for an agent, the 5-steps algorithm is executed, a topic is selected in Step1,
then Step2 and Step3 fail and in Step4 a random agent is selected. If Step5 succeeds,
then the connection is established. This mechanism triggers the network formation at
start up.

State update: Quality and Interest. After a successful interaction, the agent
that started the communication is updated. For model simplicity no change in the
respondent’s state is produced, because knowledge, being an intangible good, does
not decrease when shared, and we assume no cost for the transmission. Quality and
interest are always non negative quantities. For the quality parameter associated to
each topic an agent owns, we decided that it simply increases in chunks calculated as
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a fraction of the knowledge difference between two interacting agents. This implies
that in subsequent interactions between two agents (and assuming the quality of the
more expert stay the same), the less expert accumulates knowledge in chunks of
diminishing size. For completeness, in a more elaborate version of the model, we
assumed the presence of distrust. In that case, an agent distrusts another one when
they interact for the first time and the distrust progressively vanishes as successfully
interactions occur. Distrust was modelled as a discount rate going to zero exponen-
tially. Motivations for the assumption could be found in the literature about collective
behavior [11] and refers both to the prevalence of egocentrism in assimilating new
information and to trust dynamics.

The dynamics we have assumed for the interest associated to the topic for which
the interaction took place is similar to the previous case, but with the difference that
the sum of the interests in different topics of an agent is a bounded value. This means
that when the interest associated to a certain topic increases, interests associated to
the other topics decrease uniformly. Motivations for this assumption can be found
in cognitive science studies, which have shown the tendency of people to shift their
attention and interest, rather than behave incrementally [11], and in associating the
interest for a topic to the time spent dealing with that topic (studying, experimenting,
etc.); in this sense the sum of all interests per time period (day, week, etc.) has an
upper bound.

For space limitation, we do not present here the functional forms of quality and
interest, the metrics defined for measuring the model dynamic behavior, and its
analysis. Interested readers could found them discussed in [2]. For the scope of the
present work, the following aspects are important to know:

• some agents become hubs, receiving a disproportionate amount of questions;
• a giant component typically emerges in the network;
• agents tend to polarize their interests on only few of the topics owned;

Therefore, in a network produced by our model, agents have clearly different roles
with respect to communication, there are very few isolated nodes or components,
and the diffusion of knowledge is globally uneven, and locally very skewed on just
few topics. In other words, some super-experts emerge in a population of specialised
individuals, rather than generalists.

3 Control Strategies
The original model was modified with the aim of permitting to select certain nodes as
driver nodes and to modify the local state by inserting some random topics, according
to a given frequency of perturbation. Injected random topics wish to represent an
external perturbation in the form of information already existing into the system
forced to circulate between agents. These are not brand new information inserted
into the network, for this reason the mechanism can be also seen as a solution to
lower barriers to information spreading. The goal is to study how the behaviour of
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the network changes as a result of such a perturbation and how this approach could
be used as a control strategy.

With respect to the mechanism that the original model implemented to construct
a network, the injection of random topics in selected driver nodes has the effect of
triggering new communications among agents. More specifically, with new random
topics, the network construction mechanism strictly based on topology is occasionally
bypassed and a rewiring effect is produced. In the results we will see that it is this
rewiring effect the key for controlling some network characteristics.

The base configuration that we perturbed with random topics typically produces
a giant component, some nodes emerge as hubs, and interests are often polarized
on few topics per node. The following parameters are fixed for all simulations we
run: Number of information in the system |T |: 100; Max Number of information per
node at setup λT : 10; Duration of simulation (#ticks) Γ : 100000. These values have
been choose for presentation sake among the many tested as representative of typical
behaviours.

The model configurations representing the control strategies of this study corre-
spond to network setup obtained adjusting one of the following features:

• Selection of driver nodes: the top 1% to 30% of nodes ordered based on decreas-
ing node degree or betweenness;

• Amount of perturbation: from 1% to 30% of topics owned by each driver node
are added as new random topics;

• Periodicity of perturbation: from every 1000 to every 5000 ticks driver nodes
are modified with random topics.

For sake of presentation, we only present the results of six configurations (C1-C6)
defined by parameters showed in Table 1. In addition, to study the effects on network
behavior of each control strategy with respect to the network size, each configuration
is tested with network size increasing from 100 to 1000 nodes. We limited the
maximum size to 1000 for practical reasons. In particular, for larger networks the
dynamics become very slow due to communication congestions provoked by the
diminishing ratio between the number of information in the system (|T | = 100)
and the number of agents. By testing with longer simulation periods or with more
information we did not observed meaningful differences with respect to the results
already obtained.

Configuration C0 serves as a benchmark, representing a typical network behaviour
with no injection of random topics in nodes.

With configurations C1, C2, C3, we show how the network dynamics reacts to
different number of perturbations. This suggests how frequent should be the control
input for achieving a certain effect. For these three configurations, the other key
control parameters are: driver nodes are selected as the 10% of higher degree nodes,
and the number of random topics injected at each perturbation equals to 30% of
one node’s topics. The choice of 10% and 30%, again, is mostly for presentation
sake. However, we note that these are values aligned with the real ones for network
controllability of social communication networks, as showed in Table 1 of [16].
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With configuration C4 and C5, we wish to show how the control strategy works
with few driver nodes. We present the results for rate of driver nodes, of 1% and 5%,
which are actually small values for driver nodes’ rate, similar only to those of small
intra-organizational networks presented in [16]. For these two configurations, the
other control parameters are set to 30% for the random topics injected (perturbation
value), and a perturbation interval of 1000 ticks. This way, C4 and C5 are actually
variations of C1 for different number of driver nodes.

Finally, with configuration C6 we discuss an example of driver nodes selected
from a list of nodes ordered for decreasing betweenness rather than degree. Again,
for facilitate the comparison, the other parameters are the same of configuration C1.

Configuration C0 Configuration C1, C2, C3

Selection criteria: none
# of driver nodes: 0
Perturbation value: 0
Periodicity: 0

Selection criteria: node degree (decreasing)
# of driver nodes: 10% of nodes
Perturbation value: 30% of new random topics
Periodicity (ticks): 1000 (C1), 2000 (C2), 5000 (C3)

Configuration C4, C5 Configuration C6

Selection criteria: node degree (decreasing)
# of driver nodes: 1% (C4), 5% (C5)
Perturbation value: 30%
Periodicity: (ticks): 1000

Selection criteria: node betweenness (decreasing)
# of driver nodes: 10%
Perturbation value: 30%
Periodicity (ticks): 1000

Table 1: Control strategies: configuration parameters

4 Simulation Results and Discussion
We first present in Figure 1 the results comparing the behaviours of the six control
strategies and the original network with no control. In addition, Figure 1 also com-
pares the same control strategies for two network sizes of N=200 and N=1000 to
show how the effects changes on different scale.

Average Node Degree. In general for both network sizes, we observe that injecting
driver nodes with random topics produces a sensible reduction of the average degree
with all control strategies with respect to the original network. Even configuration
C3, for which a weaker effect was expected being the one with less perturbation
events, produces a remarkable reduction at both network sizes. Qualitatively, this
may suggest that injecting random information into driver nodes with high node
degree could drive a reduction of a key network parameter as the average node degree.
Configuration C4 presents an interesting case. This is the one selecting the smallest
number of driver nodes. For the smaller network (N=200), it just selects 2 driver
nodes, likely hubs, and produce a strong reduction effect on the average degree. This
result confirms what has been already found theoretically, that few driver nodes are
responsible for a large average degree reduction. With the larger network (N=1000),



546 Francesca Casamassima and Marco Cremonini

10 nodes are selected and the effect becomes weaker, similar to C3. Another effect
we observed is that in these tests, network hubs are certainly selected as driver nodes
and while globally control strategies strongly reduce the average node degree, on
hubs the effect is the opposite, their degree increases, so they become even more
relevant for the network communication.

Clustering Coefficient. Associated to the general reduction of the average degree,
the other important effect on a key network parameter is that the clustering coefficient
generally increases, with respect to C0. This signals that the communication has
become more decentralised and local (i.e., more triangles have formed), a direct
effect of the the rewiring effect carried by the introduction of random topics. Together,
the reduction of the average degree and the increase of the clustering coefficient
tends to enhance the small-world characteristics of the network, which is another
important effect in terms of controllability.

Connected Components. An effect of increasing the network size is that the
formation of a giant component becomes slower and some disconnected components
may persist. We can see this effect comparing the Connected Components graphs
for the two sizes. With N=200 there is always one component, while for N=1000
the number varies with some configurations producing more than one component,
signalling that the convergence of the network towards a single giant component has
become much slower.

Overall, these results are in line with the theoretical results of [16], which has
demonstrated that the less heterogeneous in degree is a network, the more is control-
lable (the fewer the driver nodes). Therefore, with the injection of random topics, as
we expected, we increase the theoretical controllability of our network.

Finally, in Figure 2 we compare how the network behaves, represented by average
degree and average clustering coefficient, with some control strategies on an extended
range of network sizes. The goal here is to better present how the network size may
affect the results. Specifically, we compare Configuration C1, to Configuration C4
having a reduced number of driver nodes (1%), and to Configuration C6 that uses
the betweenness as the selection criteria for the agents.

In general, we observe that the number of driver nodes is the critical parameter.
If driver nodes are too few the control becomes weak, as in case of C4, where it is
evident that for N=100 the 1% rate of driver nodes, which means selecting just the
single node with highest degree, is insufficient to modify the dynamics. C1 and C6,
with 10% of driver nodes, perform much better at N=100.

However, many driver nodes, thus high level of rewiring, may introduce communi-
cation inefficiencies. The same C4 produces better results (i.e. larger average degree
reduction) than C1 and C6 from N=200 to N=500. For networks larger than N=500,
C1 and C6 perform better again. These results present an interesting practical control
problem still not fully investigated in the literature. While some theoretical results
have been studied for reference network topologies [5, 16, 18], very few has been
done in terms of mechanisms for dynamically adjusting the degree of control on a
live situation, when the social network is actually evolving.

With respect to configuration C6 using betweenness instead of node degree for
ranking nodes, the results are actually very similar to C1. After a more detailed
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Network size N=200
Average Degree Clustering Coefficient

Network Diameter Connected Components

Network size N=1000
Average Degree Clustering Coefficient

Network Diameter Connected Components

Fig. 1: Results for the different configurations along the simulation time and for two
network sizes. x-axes represent the simulation time (ticks), y-axes the absolute values
of metrics.
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investigation we have found that the reason is because the nodes selected with the
betweenness ranking largely overlaps with those selected with the degree ranking.
This depends in part on the peculiarities of our model and in part from topology.
Clearly, while in this work we started by selecting driver nodes based on node degree
and betweenness because of their relevance as network parameters, and because
several studies had presented theoretical analyses focused on them, many other
possibilities are still unexplored. We plan to consider some of them in future works.

Average Degree Clustering Coefficient
Configuration C1

Configuration C4

Configuration C6

Fig. 2: Average degree and clustering coefficient in case of perturbation every 1000
ticks and 10% of driver nodes (C1), perturbation every 1000 ticks and 1% of driver
nodes (C4), and using betweenness instead of the average degree for node selection
(C6). For every configuration, the results with different network sizes are presented.
x-axes represent the simulation time (ticks), y-axes the absolute values of metrics.
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5 Conclusions
In this paper we discussed a possible use of random topics as control inputs for driver
nodes of a social network. The idea of using random information in control strategies
has some common aspects with research in recommendation systems, which have
the same problem of polarization of interest and the need to improve diversity that
we consider for knowledge diffusion [1, 3]. However, explicitly considering random
information as a control input for social networks is an idea worth exploring, in our
opinion.

Our analysis is based on a synthetic network model and we run simulations in
order to, at least, derive some qualitative general observations. Network behaviors
observed in our tests are in line with theoretical studies on complex network con-
trollability and some detailed investigations of our simulations have highlighted
the specific mechanisms modifying network dynamics. Furthermore, considering
that in practical situations it is often impossible to either recognise all theoretical
driver nodes or accessing them with external perturbations, we have presented some
empirical solutions based on network centrality metrics for selecting nodes that might
have practical usage.

The problem of controlling social networks presents striking differences with
respect to the study of structural controllability for complex industrial networks.
The social context, in particular, introduces many limitations (ethical, operational,
functional), but often does not strictly require full structural controllability. For
these reasons, the application of control theory to social networks requires important
adaptations. However, the results of our work look promising to us and encourage
more analyses, tests, and verifications with respect to real social networks.

There are many situations in which it would be important to know how to handle
the level of random information that agents receive. For instance, in learning situa-
tions, in social media, journalism, knowledge diffusion, skill acquisition, experience
dissemination, immunisation from threats, and possibly risk management. In all these
situations, there could be the problem of an excessive homophily and polarization
(of interests, attention, analyses), but the solution cannot be to simply change what
individuals prefer or believe or regard as important/interesting. Increasing informa-
tion heterogeneity and serendipity could be effective approaches for improving the
controllability of social contexts.
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Abstract Multilayer networks have been the subject of intense research in the recent
years in different applications. However, in urban mobility, the multi-layer nature
of transportation systems has been generally ignored, even though most large cities
are spanned by more than one transportation system. These different modes of trans-
port have usually been studied separately. It is however important to understand the
interplay between different transport modes. In this study, we consider the multi-
modal transportation system, represented as a multiplex network, and we address the
problem of urban mobility in the transportation system, in addition to its robustness
and resilience under random and targeted failures. Multiplex networks are formed
by a set of nodes connected by links having different relationships forming the
different layers of the multiplex. We study, in particular, how random and targeted
failures to the transportation multiplex network affect the way people travel in the
city. More specifically, we are interested in assessing the portion of the city covered
by a random walker under various scenarios. We consider the public transport of
London as an application to illustrate the proposed capacity analysis method of
multi-modal transportation, and we report on the robustness and the resilience of
the system. This study is part of a project to develop a computational framework to
better understand and predict mobility patterns in the city of Doha once its ambitious
metro system is deployed in 2019. The computational framework will help the city
to efficiently manage the flow of people and intelligently handle capacity through
different transportation modes, in particular during mega events such as Soccer Wold
cup FIFA 2022. The proposed method is based on the study in [9], but with an
efficient computational approach resulting in tremendous savings in computational
time. It is scalable and lends itself to efficient implementation on parallel computers.
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1 A multiplex model of multi-modal transportation
Transportation networks in big cities are naturally multi-modal, and as such com-
muters use different modes to move around within the city. For example they use
the combination of the bus system and the metro system to go from one location to
another. These different modes of transportation have usually been studied separately
by means of spatial networks to be able to understand aspects of urban planning
systems and their evolution, see e.g. [5]. However, it has been shown that the different
modes of transportation are not independent, and that their coupling can be critical
and can affect the global behavior of the system. It is, therefore, important to study
the properties of the full multimodal, multi-layer transportation network in order to
understand the behavior of the city and to avoid possible negative side-effects of
urban planning decisions. Hence, the study of the coupling between the different
modes will provide a better understanding of the complex system, and the impact of
the introduction of a new mode of transportation. It will also help planners prioritize
which routes to target for adoption, in particular during mega events.

Many physical realities can be modeled as sets of interconnected entities; and
multi-layer networks are used as a representation of these complex systems. We
therefore observe many dynamical processes being studied on top of these networks,
such as diffusion processes [11, 21], synchronization [4, 13], percolation [2, 18],
etc. We use, in particular, multiplex networks to provide the convenient conceptual
framework, see e.g. [6, 7, 8, 9, 10, 12, 15, 16, 17, 19, 20], and random walks to study
the mobility of commuters within a multimodal transportation network in a city. This
will allow the development of optimal navigation strategies.

1.1 Multi-layer networks
Given a set of L layers, each representing a type of relationship and containing N
nodes. The relationship is represented by an edge and can be anything depending
on the complex system, e.g., in Social Computing, it can be “friendship” on one
layer such as Skype and “professional” on another layer, such as LinkedIn. The
nodes represent the components of the complex system, e.g., bus stations in the first
layer, and metro stations in the second layer, etc., for the multimodal transportation
system. Even though the layers are different from each other, but the commuters use
both of them to move in a large city, and therefore it is important to represent their
mobility by taking into account the coupling between layers. The multiplex network
is therefore defined as a finite sequence of intra-layer graphs Gα = (Vα ,Eα) coupled
with the inter-layer supra-graph Gc = (Vc,Ec) where Vc = ∪αV

α and

Ec =
⋃

α, β

{
[i(α), i(β )] | i(α) ∈ Vα , i(β ) ∈ Vβ , α 6= β

}
,

where a node-layer j(α) means that node j participates in layer α . In this study, we
consider node-aligned multiplex networks, i.e., inter-layer connections are “diagonal”
in the sense that each node is connected only to its counterpart in the other layers,
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and the inter-layer edges exist only between consecutive layers. Therefore the supra-
adjacency matrix is block tri-diagonal and has the general form

W =




W(1)+D11 D12 0 · · · 0

D21 W(2)+D22 D23 · · · 0

0 D32 W(3)+D33 · · · 0
...

...
...

. . . D(L−1)L

0 0 0 DL(L−1) W(L)+DLL



,

where W(α) is the adjacency matrix of layer α , Dαβ is a diagonal matrix such
that dαβ

ii is the cost associated with the inter-layer edge [i(α), i(β )], and Dαα is a
diagonal matrix such that dαα

ii represents the cost of staying in the same node and in
the same layer.

1.2 Random walk model of a citizen’s movement
Random walks constitute a fundamental mechanism for many dynamics taking place
on complex networks. To assess the urban mobility in this multiplex transportation
system, we represent the commuters as random walkers and we determine the
coverage of the random walks, defined as the expected value of the number of steps
to reach all nodes in the transportation system, regardless of the layer, on a walk that
started from any node-layer j(α), i.e.,

C j(α)
(t) = E

[
# steps to reach all nodes in the graph on a walk that starts at j(α)

]
,
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i.e., it is the expected value of the number of nodes in the network being visited at
least once in a time less than or equal to t, regardless of the layer, assuming that
walks started from any other node-layer in the network.

A random walk is a Markovian process [22], which means that the transitions
between states are historyless, i.e., the probability of transitioning to the next state
depends only on the current state, not on any of the other previous states. Moreover,
at each time step, the random walker has three options: the first one is to stay at the
same node, the second one is to move to other neighboring nodes on the same layer
and the last one is to switch to one of its counterparts on other layers, as illustrated in
the figure below.

The mathematical model, developed in this paper, is inspired from the study in [9].
Therefore, given a multiplex transportation system of N nodes and L layers, the

discrete-time master equation describing the probability of finding the walker in
node-layer i(α), at time (t +∆ t), can be written as, e.g. see [9, 14]

pi(α)(t +∆ t) =Aαα
ii pi(α)(t)+

N

∑
j 6=i

Aαα
i j p j(α)(t)+

L

∑
β=1

A
αβ

ii pi(β )(t)

+
L

∑
β=1

N

∑
j 6=i

A
αβ

i j p j(β )(t)

(1)

which can be assembled in matrix form as P(t+∆ t) =AP(t), where A∈RNL×NL is
the transition supra-matrix (always assumed to be independent of time), and P∈RNL
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is a supra-vector containing the probability of finding the walker at any node-layer
i(α), such that

P=
[
pT

1 pT
2 · · · pT

L

]T
and pα =

[
p1(α) p2(α) · · · pN(α)

]T
.

For a classical random walk, the transition probability of moving from node-layer
i(α) to node-layer j(α), i.e., within the same layer α , or to switch to the counterpart
of vertex i in layer β , i.e., to node-layer i(β ), is uniformly distributed. Therefore we
have

A
αβ

i j =





dαα

(i)

ki(α)+ ci(α)
if i = j and β = α

wα
i j

ki(α)+ ci(α)
if i 6= j and β = α

dαβ

(i)

ki(α)+ ci(α)
if i = j and β 6= α

0 if i 6= j and β 6= α

(2)

where wα
i j is the weight of the intra-layer edge

[
i(α), j(α)

]
and dαβ

(i) is the weight
of the inter-layer edge

[
i(α), i(β )

]
, i.e., the cost to switch from layer α to layer

β at node i, while dαα

(i) quantifies the cost of staying in the same node and in the

same layer. These are the elements of the matrices W(α), Dαβ , and Dαα in W
respectively.

The intra-layer strength of a node-layer i(α) is ki(α), and ci(α) is the inter-layer
strength of node i with respect to its connections to its counterparts in different layers.
They are defined as

ki(α) = ∑
j∈N(i)

wα
i j and ci(α) = ∑

β

dαβ

(i) ,

so that the total strength of node-layer i(α) is the sum, i.e., κi(α) = ki(α)+ ci(α).

Remark 1.1. Since each node is coupled only with its counterparts in different layers,
then, only the elements of the type Aαβ

ii are different from zero. Jumps to other nodes
in the other layers, as in Lévy random walks, are not allowed, and therefore Aαβ

i j = 0.

2 Mathematical analysis of the model
In matrix form, and assuming that ∆ t = 1, it can be shown that the discrete-time
master equation (1) can be written as the initial value problem,
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



d
dt

[
P(t)

]
=−(I−A)P(t),

P(t = 0) =P(0)
(3)

and without loss of generality, we assume that, at t = 0, the random walker is in the
first layer at node-layer j(1), i.e., P(t = 0) =P j(0) then the initial value problem
admits the following solution

P(t) = exp
[
−t(I−A)

]
P j(0), (4)

where exp
[
−t(I−A)

]
is the usual matrix exponential, i.e.,

exp
[
−t(I−A)

]
=

∞

∑
k=0

(−t)k

k!
(I−A)k.

Remark 2.1. It is easy to see that P j(0) =
[
eT

j 0T · · · 0T
]T

with e j ∈ RN being the

canonical vector, and 0 ∈ RN is the vector of all zeros.

Theorem 2.1. Let K be the diagonal matrix containing the total strength of all nodes,
i.e., K= diag(W1), where 1∈RNL is the vector of all ones, then A=K− 1

2 WK− 1
2 .

Therefore, the matrix (I−A) is the normalized supra-Laplacian of the multiplex
network.

Proof. The supra-Laplacian of the multiplex network is

L=K−W

=K
1
2 (I−K−

1
2 WK−

1
2 )K

1
2 ut

The random walker can be at any layer, so let pi(t) be the probability to find the
walker in node i at time t, regardless of the layer, i.e.,

pi(t) =
L

∑
α=1

pi(α) =ET
i P(t), (5)

where Ei =
[
eT

i · · · eT
i

]T
∈ RNL. Since P(t +1) =AP(t), and using Equations (5)

and (4), we get at time (t +1) the following expression for pi(t +1)

pi(t +1) =ET
i A P(t)

=ET
i A exp

[
−t(I−A)

]
P j(0). (6)

To determine the coverage, defined as in [9], let’s find an expression for the
probability δi, j(t) not to find the walker in vertex i after t time steps, assuming it
started in vertex j, that is
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δi, j(t) =
[
1− p j(0)

] t

∏
τ=1

[
1− pi(τ)

]
. (7)

From (7), we get the recurrence relation δi, j(t +1) = δi, j(t)
[
1− pi(t +1)

]
, thus

leading to the initial value problem




d
dt

[
δi, j(t)

]
=−δi, j(t) ET

i Aexp
[
−t(I−A)

]
P j(0),

δi, j(t = 0) = δi, j(0),
(8)

with δi, j(0) = 0 for j = i since the walker started in vertex j and the probability of
not finding it in the same vertex is 0. In the case of j 6= i, then δi, j(0) = 1.

The solution to the initial value problem (8) is, see [9]

δi, j(t) = δi, j(0) exp
[
−ET

i BP j(0)
]

with B =
t

∑
τ=0

Aτ+1. (9)

Therefore, the coverage is given by double averaging over all vertices the proba-
bility

[
1−δi, j(t)

]
, i.e.,

C(t) = 1− 1
N2

N

∑
i=1

N

∑
j=1

δi, j(0) exp
[
−ET

i BP j(0)
]
. (10)

Theorem 2.2. The matrix B need not be formed explicitly, since only its action on
the vector P j(0) is needed, i.e., a matrix-vector product, therefore

B P j(0) =

[
t

∑
τ=0

Aτ+1

]
P j(0) =

[
A+A2 + · · ·+At+1

]
P j(0)

=AP j(0)+A
(
AP j(0)

)
+ · · ·+A

(
A · · ·

(
AP j(0)

)
· · ·
)

Moreover, since P j(0)=
[
eT

j 0T · · · 0T
]T

, then AP j(0)=
[(
A(1 : N, j)

)T
0T · · · 0T

]T
,

i.e., the jth column of A and we get the following recurrences
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ET
i AP j(0) =A(i, j)

ET
i A2P j(0) =

N

∑
`1=1

A(i, `1)A(`1, j)

ET
i A3P j(0) =

N

∑
`1=1

N

∑
`2=1

A(i, `1)A(`1, `2)A(`2, j)

ET
i A4P j(0) =

N

∑
`1=1

N

∑
`2=1

N

∑
`3=1

A(i, `1)A(`1, `2)A(`2, `3)A(`3, j)

...

ET
i At+1P j(0) = ∑

`1

∑
`2

· · ·∑
`t

A(i, `1)A(`1, `2)A(`2, `3) · · ·A(`t , j)

Proof. These relations can be proven easily the usual way of proving recurrences,
i.e., validate for the initial case, then assume it is correct for τ and prove that it is
still correct for τ +1. The details are skipped. ut

3 Computational approach
3.1 Existing approach
In [9], the general form of the coverage, based on the eigendecomposition of the
normalized supra-Laplacian (I−A) ∈ RNL×NL has the following expression

C(t) = 1− 1
N2

N

∑
i=1

N

∑
j=1

δi, j(0)exp


− ∑

`∈ΛΛΛ
0

Ci, j(`)t− ∑
`∈ΛΛΛ

+

Ci, j(`)
e−λ`t −1
−λ`


 , (11)

where Ci, j(`) =ET
i AV`P j(0) are constants depending on the vertex, the transition

matrix, the eigendecomposition, and the initial conditions. Each supramatrix V` is
obtained from products of the eigenvectors of the normalized supra-Laplacian, and
ΛΛΛ

0 and ΛΛΛ
+ indicate the sets of all null and positive eigenvalues of the normalized

supra-Laplacian, respectively.

Remark 3.1. Any solution approach based on the eigendecomposition is time con-
suming and hard to obtain, especially for large matrices. Therefore it should be
avoided.

3.2 Proposed algorithm
The main kernel in computing the coverage in Equation (10) is how to compute
the exponent ET

i

[
A+A2 + · · ·+At+1

]
P j(0). For this, we propose Algorithm 16.

Therefore, the way the coverage is computed here results in a tremendous saving in
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the computational time, as opposed to the eigendecomposition of the (normalized)
supra-Laplacian matrix (I−A) proposed in [9], see Equation (11).

Algorithm 16 Computing ET
i

[
A+A2 + · · ·+At+1

]
P j(0)

1: procedure COMPUTEEXPONENT(A,N,L, i, j, t)

2: P j(0)←
[
eT

j 0T · · · 0T
]T

3: a←AP j(0) . jth column of A
4: ā← a
5: for τ ← 1, t do
6: a←Aa . 1 matrix-vector product per iteration
7: ā← ā+a . vector update
8: end for
9: exponent← 0

10: for α ← 1,L do
11: exponent← exponent+ ā(i+(α−1)N)
12: end for . exponent =ET

i ā
13: end procedure

4 Experimental evaluation
The main objective of this work is to study urban mobility challenges in modern
cities, as well as the robustness and resilience of the complex transportation systems.
The multilayer nature of the proposed framework requires data from different modes
of transportation. This data is not, in general, readily available. Thus, we first validate
our proposed method using random graphs. Then, we perform an experimental study
on the big city of London.

In this section, we start by describing the process of collecting the data. Then, we
explain how different data sources are merged in order to build a multiplex network.
Finally, we demonstrate and discuss our results on random graphs and real data from
London’s transportation network.

4.1 Coverage on random graphs
We benchmark our framework by creating a multiplex using the following configura-
tion of random graphs:

1. a two-layer Barabási-Albert graph with 100 nodes each, and 196 edges each but
not the same set of edges; and
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2. a two-layer multiplex with a Barabási-Albert random graph in the first layer (100
nodes and 196 edges) and an Erdős-Rényi graph in the second layer (100 nodes
and 1497 edges).

Figure 1 plots the coverage results of our numerical method.

Fig. 1: Coverage over time for a two-layer multiplex Barabási-Albert + Barabási-
Albert, and Barabási-Albert + Erdős-Rényi, with dαα

(i) = dαβ

(i) = 1

4.2 Coverage and resilience on real data
Accessing real transportation data is crutial to this study. However, due to the unavail-
ability of such data, we limited our experiment to the city of London that has several
open data portals available to the research community. Our data comes from two
sources: OpenStreetMap (OSM)1 and the National Public Transport Data (NPTDR)
[1]. OSM provides an updated map of different bus and metro stations in the city,
whereas NPTDR contains a snapshot of every public transport journey in Great
Britain for a selected week in October each year. We represent the transportation
network as a two-layer multiplex: Bus network and Metro network. The nodes of
each layer represent the stations (bus stations in layer one, metro stations in layer
two.) It is worth noticing that these two transportation modes are the most significant
in the urban system of London. The edges are the routes connecting nodes (bus/metro
stations). In order to establish a connection (a link) between a node in one layer
(e.g., bus) and its counter part in the other layer (e.g., metro), we adopted the simple
assumption according to which two nodes in two different layers that are within a
walking distance radius (≤ 100 m) are the same.

While NPTDR database covers Great Britain (England, Scotland, Wales), we
focus only on London city. First, we filter all the stations from NPTDR that are

1 http://www.openstreetmap.org
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inside the bounding box of London city. Second, we extract all the stop points and
trajectories of the two modes of transportation considered. Next, we use these stop
points and trajectories to build the graph of each layer. Finally, we identify the
inter-layer edges that connect all the same nodes residing in both layers.

Fig. 2: Coverage versus time for a two-layer multiplex of London city Bus+Metro

We plot in Fig. 2 the coverage over time observed in the city of London. The
right-hand panel shows a log on the x axis to ease the detection of the phase transition.

To quantify the robustness of the multimodal transportation system, we use
percolation theory [3] to describe the impact of edge failures in the multiplex on
the coverage. We iteratively remove edges from the multiplex and compute the new
coverage of the resulting network. Figure 3 shows the degradation of the coverage
function of the amount of removed edges. The panel to the left reports results of
a random multiplex whereas the panel to the right reports results of the London
network. Because of the stochastic nature of failures, we plot the average scores of 10
different runs. The key observation is that London transportation multiplex is quite
robust as the removal of 70% of its edges leads to less than 20% loss of coverage.
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Fig. 3: Resilience of the (small) multiplex Barabási-Albert + Barabási-Albert, and of
the London multiplex Bus+Metro

5 Conclusion
One of the critical areas is transportation, and the specific focus of the present study
is on multi-modal transportation. The specific goal of this paper is (i) to build a
mathematical model of the multi-modal transportation network as a mathematical
structure called multiplex networks, and (ii) to simulate the commuters mobility in
multiplex networks as a random walker, to study it as a Markovian process.

To better understand and predict mobility patterns in the city, we are working
on a scalable computational framework that will help the city to efficiently manage
the flow of people and intelligently handle capacity through different transportation
modes. The proposed model has been validated and can be used to understand the
underlying structure of urban mobility infrastructure of any city, using public data.
This tool will help Doha to identify early problems, predict failures and design better
transportation infrastructure.
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S., Arenas, A.: Mathematical formulation of multilayer networks. Physical Review X 3(4),
041,022 (2013)
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Abstract While a visual unconstrained tree structure planar layout design is easy to
implement, a visualization of a tree with constraints on node ranks and their order-
ing within ranks leads to a difficult combinatorial problem. A genealogical graph,
such as family tree, can be taken as an example of such a case. Classical ancestor
trees, descendant trees, Hourglass charts, and their visual variants such as node-link
diagrams or fan charts are suitable for assessment of peoples relationships when
one is focused on a particular person and his/her direct ancestors and descendants.
Such tree-based representations miss a broader context of relationships and do not
allow the quick assessment of several interlinked families together. We propose a new
undirected tree-driven layout technique for layered multitree graph visualizations
producing constraints on node layers and ordering of groups of nodes within layers.
The computed constraints can be mapped, at least partially, into the DOT language
property directives used by the Graphviz toolbox. We demonstrate achievements on
several datasets containing up to 39000 people.

1 Introduction and Related Methods
Although it is more than 55 years since Tutte introduced barycentric embedding,
research of graph visualization techniques remains a highly active field attracting
a lot of attention [16, 34, 35]. Graph visualization can help to form an overview of
relational patterns and detect data structure much faster than data in a tabular form.
The form in which the graph is presented has a significant impact on how the graph
is understood and the time that is necessary to achieve this. Nodes placed close to
one another might be interpreted by the user as a true relationship whether or not this
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relationship exists [16, 26]. Working with genealogical graphs is no exception in this
sense.

Tree based drawing methods of genealogical graphs have been among the standard
techniques for centuries. Ancestor trees, descendant trees and Hourglass charts belong
to a set of traditional tools [21] implemented by a majority of freeware, shareware, or
commercial tools, for example Gramps [1] or MyHeritage [3]. These tools provide a
clear description of a situation when the user needs to investigate direct ancestors
and/or descendants of a given person (often referred to as the main or center person)
placed into the root of the tree. Thus, the generation of the main person consists
of only one person and the size of other generations grows exponentially with
a branching factor often over 2. Therefore, the classical node-link tree graphical
representation resulting in a triangular shape wastes about one half of the drawing
area. There are other more space-efficient representations such as fan charts or
H-charts [5, 22, 36, 38]. As any pure tree representation enables any ordering of
node predecessors/successors, it is possible to specify the type of ordering, such
as children ordered by their birth dates. It is also possible to extend any such tree
representation with additional nodes that can be attached as single nodes to any tree
node (in the Gramps tool [1] this type of graph is called a Relationship Graph). In this
way a tree with direct ancestors/descendants can cover, for example, spouses/partners.
Therefore, tree representations can be laid out in such a way that family members
are grouped together. The obvious drawback of the pure tree representations is that
selecting a different main person leads to a different graph that must be rendered
again. Such tree-based representations also miss a broader context of relationships
and do not allow the quick assessment of several interlinked families together.

However, the situation with family member grouping changes significantly if the
assumptions of one main person and direct ancestors/descendants are dropped. In a
number of cases it is highly beneficial if the entire network of families, or at least a
significant part, can be displayed in one layout. Then we face issues with challenges
linked to edge crossing and preferences on node clustering [32, 33, 37]. Therefore,
the standard techniques for planar graph layouts [6, 19, 20, 23, 29, 31] including
planarization techniques [8, 9, 25, 30] are not suitable in all cases. Methods designed
for layered graphs aimed at exact solutions [37] do not scale to large graphs; methods
related to two-layer crossing problems using either averaging heuristics, such as the
barycenter and the median methods [17, 33], or a hybrid approach [13, 15], produce
layouts far from the optimum; and a local node order propagation [24] cannot resolve
more global node order constraints.

The genealogical tools often use methods proposed for a general graph layout,
such as hierarchical layouts, for example, implemented and provided by tools such
as dot.exe (DOT) in Graphviz package [2] or yEd [4]. Unfortunately, these tools,
and others we are aware of, do not support any kind of constraints that would allow
the setting of node cluster preferences.

Assuming that a genealogical graph is layered according to the generation levels
determined by an algorithm, such as the one proposed in the next section, the
main complaint stems from mixing of children/partners from different families.
Based on our own experience and observations made during our cooperation with
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Fig. 1: A family tree component presented using a tree layout which is illustrative of
Vizier Pehenuikas family. The people rectangles contain information such as their
titles and offices.

Egyptologists, the researchers prefer grouping based on families. For example, Fig. 1
depicts Vizier Pehenuikas family reconstructed from the database of the Egyptian
officials [12]. In this case, the layout was produced using the yEd tool.

When several families linked through a partnership relationship are visualized,
one can cluster either children or partners, but generally not both. For example,
Relationship graph visualization implemented in the DOT creates subgraphs of
partners. Unfortunately, directed hierarchical drawing methods such as the very
good one implemented as dot.exe [15] results in layouts mixing generations
and members of several families, see Fig. 2. Children are often ordered in families
randomly, furthermore children might be assigned to different ranks, children from
different families might be interleaved, and a number of edge crossings occur. Such
layouts are difficult to read and comprehend.

Graph specifications do not contain usually any constraints on node layers. Layer
layout implementations rank nodes as proposed by many authors [15, 33]. In many
situations the resulting layout is produced as required. Unfortunately, general criteria
lead to node placement breaking generation layering as is usual and expected in
genealogical graphs, i.e. children of one family at the same level and similarly their
parents, see Fig 2. Some implementations, such as the DOT language, enable a
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Fig. 2: A sample partial snapshot of a private family tree consisting of 2192 people
as rendered using the DOT tool without any further constraints. Colored rectangles
represent people (reddish for women, blueish for men). Ovals capture their marriages.
Although the visualization seems to be correct, there are many cases when people
are moved into different generation layers, many children from different families are
mixed, and a number of edge crossings can be avoided.

specification that a subset of nodes shares the same layer (rank). The majority of
algorithms computing ranks are derived from the topological order computation
(O(n) time complexity) [10] and select one of many possible solutions that satisfy
layer intervals of node placements. Classical algorithms start from a single node, the
only one with no predecessors. Generally, a genealogical graph can consist of several
nodes without predecessors and several nodes without successors.

Formally, a genealogical graph is an acyclic bipartite directed graph G(VP,VM,E)
with two sorts of nodes, people VP and marriages/partnerships VM . The edges E are
directed from parent nodes to marriage nodes and from marriage nodes to children
nodes. If a family tree contains multiple marriages from one family to another,
but it does not contain marriages between any two blood relatives, then it forms a
multitree [14, 27]. A layering of an acyclic digraph G(VP,VM,E) is a partition of
VP∪VM into subsets L1,L2, . . . ,Lh, such that if (u,v) ∈ E, where u ∈ Li and v ∈ L j,
then i < j [7]. Without loss of generality we can assume that the index of the
generation layer of parents (also denoted as ranks) is lower than the index of their
marriage node, and further that the index of the marriage node is lower than the index
of children nodes. In this paper, a (total) node order reflects a linear sequence of
nodes in a given layer.

We are not aware of any method that would enable the definition and use of
the necessary layout constraints. Recently, it was demonstrated using two simple
propagated node order constraints that node layouts of such graphs can be improved
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significantly [24]. The proposed topological layout technique in [24] is based on a
local propagation of children and parent ordering across generations (ranks), but it is
not able to reflect global subtree constraints.

In this paper we propose a new method that allows the determination of such
node order constraints using an undirected tree-driven layout of subtrees and does
not exhibit deficiencies of the local propagation [24]. The new method produces
significantly fewer edge crossings than the methods mentioned above. At least
partially, the proposed constraints can be mapped to additional graph specifications
that result in the DOT algorithm producing the required layout. More specifically,
our method modifies the first two steps of the approach proposed in [15, 33], i.e.
1/ determination of layers (generations, node ranks, levels), and 2/ enforcing node
orders within the layers. In provided visualizations, layers define a horizontal index
while orders are reflected by a vertical index.

The rest of the paper is organized in the following way. In the next section
we present an algorithm that allows setting layers of nodes for an acyclic graph
representing a traditional representation of family tree using marriage nodes. Then
we describe the technical details of the new proposed method calculating node orders
within the layers. Finally, we discuss achieved results and tests on real data datasets
with thousands of nodes.

2 Layering of Genealogical Graph Nodes
In this section we present an algorithm already proposed in [24], using which the
ranks of nodes can be determined for any genealogical graph. In the algorithm we
assume that the processed graph is directed and acyclic. Let us use a convention that
node ranks are identified by numbers λ2(v) and successors have higher levels. Each
node is assigned an interval of rank levels at which the node can appear with regard
to a base level. The algorithm uses two simple passes through a graph. Each node is
assigned the highest possible level with respect to the current highest base level of
successors during the first pass. In fact, this pass assigns node layers conforming to
longest path layering [17].

λ1(v) =

{
max(v,w)∈E λ1(w)−1 if v has successors
0 otherwise

(1)

Thus, the node(s) with the lowest level can be determined. A rank level for each
node is set as the maximum level of the node predecessor levels increased by one
during the second pass. The second pass starts from the nodes with the lowest level.

λ2(v) =





0 if v has the lowest level
λ2(w)−1 if w has predecessors partially processed

(v,w) ∈ E and λ2(v) is not assigned
min(w,v)∈E λ2(w)+1 if v has all predecessors processed

(2)
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Each node is visited twice during each pass using depth first search (DFS) using
an explicit LIFO queue. The first visit ensures that all successors/predecessors
are processed already. When the node is visited again, its level is determined as
minimum/maximum of successors/predecessors levels. As children from a single
marriage have only one common predecessor, the marriage node, they share the same
rank level. However, parent nodes can be assigned to different levels. Nevertheless,
the algorithm guarantees that parents linked to a marriage node always have a lower
layer number than the marriage node and children attached to the marriage node have
higher layer numbers than the marriage node. The algorithm uses two DFS passes
with linear time complexity O(N), where N is the number of graph nodes.

3 Nodes Ordering within Layers
In this section we support an approach that results in siblings of one family being
clustered tightly while partnerships/parents might be mixed. The obvious reason
behind this variant is that the number of children is much higher than 2, often reaching
values over 10. Thus, an injected edge crossing because of mixed parents is much
lower than occurs when children are mixed, and families can be identified easily by a
number of parallel edges leading from marriage nodes to children nodes.

The problem of a layout design might then be reduced to a determination of the
order of people belonging to one generation layer. We propose that children belonging
to a single family are ordered by their birth dates. Subtrees of the child descendants,
including descendant marriage nodes, hold this order. In the opposite direction, i.e.
from a marriage node to its spouses, the order of spouses can be determined according
to birthdates of spouses. There might be cases when two or more people from two
or more different families create partnerships. In such situations we cannot insist
on the order of marriage nodes as the order requirements might be contradictory,
for example, in the case of two families both with two children that creates two
marriages in the opposite order of their birthdates.

As cases when two individuals share two or more distinct subtrees are very rare
in reality (just 5 cases in our database of 2192 individuals), we can transform the
genealogical graph into an undirected tree by removing a few edges. The undirected
tree can be decomposed into subtrees. These subtrees are layered recursively as
strips side by side while following a simple set of rules that minimize edge crossings.
Nodes of processed subtrees are placed into rank arrays during the subtree layering.
Thus, the rank array determines the order of their nodes. The whole method can be
described using four steps:

1. Node rank determination
2. Undirected spanning tree subgraph selection
3. Computation of shape characteristics for all subtrees
4. Node order design by subtrees layering.
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The used node rank determination was already described in Sect. 2. Thus, we
are going to focus on the other three steps. Structures driving node order design are
created in steps 2 and 3. The actual layout is performed in the last step.

3.1 Undirected spanning tree subgraph selection

@F0176@(2029)

@I0569@(2028)

2041

@F0177@(2024)

@I0578@(2026)

2041

@F0182@(2020)

@F0188@(2027)
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2041

20412041
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2041 2041

Fig. 3: A detected block of the sample family tree database. The backedge is red.
One can deduce from the block that descendants of the marriage node @F0188@
share ancestors of two distinct subtrees @F0198@ and @F0197@.

The layout design is controlled by an undirected spanning tree of the original
directed graph. Removing backedges using a DFS scan is a sufficient simple solution.
These removed edges are drawn but not used by the node ordering algorithm. How-
ever, we might select other edges to stress their particular role in the graph because
the removed edges typically cause edge crossings. We select suitable edges using
blocks (biconnected components [11]) in linear time [18, 28] to break cycles (a DFS
scan, cycles determined by backedges), see Fig. 3. Blocks might occur if two or more
individuals share two or more distinct ancestor subtrees. A related analysis of the
blocks is considered beyond the scope of this paper.

3.2 Subtree shape characteristics
As we will see later, the graph is layered starting from a node with the lowest
rank. The layout technique makes decisions based on subtree orders (the number
of nodes) and comparisons of the current node rank with the minimum node ranks
of processed subtrees. Starting from the node with the lowest rank we assign both
pre/post order timestamps τ1,τ2 to each node using the DFS scanning [10]. The
order of any undirected subtree can be calculated as (τr

2− τr
1)/2, where τr

1,τ
r
2 are

the timestamps of the subtree root, because each node of the subtree has just two
timestamps.
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Fig. 4 A symbolical snapshot
of the proposed layout method.
The current node is tagged by
its thick red border. Blue nodes
represent men, orange nodes
represent women, gray nodes
represent their marriages. The
greenish zone is an already
processed part of the graph
with all nodes registered in
the rank arrays that keep their
order of registration. The
blue zone contains just one
subtree with the minimum
rank higher than the rank of
the current node. Two yellow
zones represent another two
subtrees in the order in which
they be layered based on their
number of nodes.

Using the post order we can determine the minimum node rank Λ(vi) of any
subtree determined by its root node vi inside its timestamp interval [τ1(vi),τ2(vi)] in
O(N). The NB(vi) function produces undirected neighbor nodes of vi.

Λ(vi) = min(λ2(vi), min
v j∈NB(vi):τ2(v j)<τ2(vi)

Λ(v j)) (3)

3.3 Design of node order within layers
Again starting from the node with the lowest rank we assign nodes of timestamp
interval subtrees into rank arrays (initially empty for each rank), see Fig. 4. First,
subtrees with a minimum rank higher than the rank of the current node vi are
processed because their edges do not cross any other edges in the rest of the graph.
Then the remaining subtrees are processed according to their increasing size to
minimize edge crossing, because it is expected that an edge linking the current
node to a subtree and crossing other larger graph subtrees produces more edge
crossings. Let us assume we process the current node where some children nodes
link K subtrees with a minimum rank lower than the current node rank. A sequence
[cr1, . . .crK ] is obtained if the subtrees are sorted according to their edge crossing
counts cr` between the children node and its subtree. If these subtrees are layered
side by side and each child is linked with them then the total number of injected
edge crossings is CRvi = ∑

K
j=2 ∑

j−1
k=1 crk = ∑

K−1
`=1 (K− `)cr` that is minimum if the

sequence [cr1, . . .crK ] is not decreasing.
The method can be described as the following sequence of steps:

1. Set an empty array for each node rank.
2. Set an empty LIFO stack of processed nodes.
3. Add the node with the lowest rank to the stack.
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4. Pop a node vi from the stack.
5. Register the node to the appropriate rank array given by λ2(vi).
6. Register all children of vi and their spouses with empty ancestor subtrees in the

required order given by birthdates.
7. Select nodes v j ∈ NB(vi) with Λ(v j)<= λ2(vi) and add them to the stack sorted

by the decreasing size of their subtrees given by τ2(v j)− τ1(v j).
8. Select nodes v j ∈ NB(vi) with Λ(v j)> λ2(vi) and add them to the stack sorted

by birthdates.
9. If the stack is empty, then stop, otherwise continue with step 4.

The algorithm is a kind of DFS scanning with the linear complexity O(N) at the
top level. The selections of nodes in steps 7 and 8 can be performed in linear time,
too. Steps 7 and 8 also performs sorting with complexity O(Nv log(Nv)) where
Nv is a branching factor which is a very low number in genealogical graphs. Nv is
often limited by value 15 (a maximum number of children and two parents) so the
complexity of steps 7 and 8 can be treated as a constant. Thus, the overall complexity
of the layout method is close to O(N).

4 Implementation, Experiments, and Discussion
We implemented the proposed first two steps of an acyclic genealogical graph layout
algorithm. The steps produce the constraints on generation layers and node orders in
each generation.

We selected 20 datasets for an evaluation of the proposed constraints contribution.
The first dataset consists of 2192 people of the authors private family relationship
genealogical graph. The set is created as a merge of several family trees ranging
over 14 generations with the first records dated 1647. The second dataset consists
of 3057 people of the database created by Egyptologists [12]. The database covers
high ranking officials from the 4th, 5th, and 6th dynasties and their families. One can
reconstruct over 160 families with up to 6 generations. The database has been filled
over ten years. Generated graphs covering more families greatly help Egyptologists
to assess quickly investigated social phenomena. Experiments with families of the
Egyptian database did not exhibit any layout deficiencies as the families are quite
simple and not larger than 50 family members. Similar results were obtained for the
rest of the datasets that are GEDCOM files downloaded from the Internet with from
400 to 39,000 individuals.

Layout constraints generated using the method proposed in this paper are depicted
in Fig 5. The layers of nodes were placed uniformly in the horizontal direction while
their ordered nodes were placed uniformly in the vertical direction. The nodes were
linked with straight-lined edges. Family clans are kept well separated. The layout is
created very quickly (below 0.5 second with a Python script on DELL XPS 13 using
an Intel i7 2GHz processor.

The method can be further improved. We have not considered the correct number
of edge crossings, but only its estimate. The layout design adds subtree layers only on
one side. It could utilize both sides of the current node. In fact, a better method could
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Fig. 5: A very low edge crossing visualization of the sample private family tree with
2192 individuals and 765 marriages created by the proposed method. Family clans
with more than 150 people are emphasized with different colors. An ideal layout
would result in edges creating waves only.

utilize a combinatorial assessment of subtree minimum ranks combined with subtree
width at the current node rank. However, the complexity of such a method would be
much higher while the gain in edge crossings would be minimal (considering the
current datasets characteristics).

5 Conclusion
In this work we proposed a new method for a ranked multitree layout with constraints
on node order and its layers. In fact, the constraints result in a fully specified topo-
logical arrangement of the graph nodes in plane. The constraints can be computed
very efficiently. The experiments demonstrate clearly a significant improvement in
graph comprehension because of low edge crossing and compact family grouping
and indicate that the results provided by the present state of the art tools are quite far
from the optimum layout, at least for special sorts of graphs such as genealogical
ones. The smaller number of undirected backedges the better layout results.
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[7] Brandes, U., Köpf, B.: Fast and Simple Horizontal Coordinate Assignment, pp. 31–44.
Springer Berlin Heidelberg, Berlin, Heidelberg (2002). DOI 10.1007/3-540-45848-4 3.
URL http://dx.doi.org/10.1007/3-540-45848-4_3

[8] Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.M.: Upward planarization layout. Journal
of Graph Algorithms and Applications 15(1), 127–155 (2011)

[9] Chimani, M., Junger, M., Schulz, M.: Crossing minimization meets simultaneous drawing. In:
2008 IEEE Pacific Visualization Symposium, pp. 33–40 (2008). DOI 10.1109/PACIFICVIS.
2008.4475456

[10] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Third
Edition, 3rd edn. The MIT Press (2009)

[11] Diestel, R.: Graph Theory. Springer (2005)
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Abstract Analyzing multiplex small world networks (SWNs) using community
detection (CD) is a challenging task. We propose the use of visual analytics to
probe and extract communities in such networks, where one of the layers defines
the network topology and exhibits small-world property. Our novel visual analytics
framework, NodeTrix-Multiplex (NTM), for visual exploration of multiplex SWNs,
integrates focus+context network visualization, and analysis of community detection
results, within the focus. We propose a heterogeneous data model, which composites
multiple layers for the focus and context and thus, enables finding communities
across layers. We perform a case-study on a co-authorship (collaboration) network,
with a functional layer obtained from the author-topic similarity graph. We also
perform an expert user evaluation of the tool, developed using NTM.

1 Introduction
Complex networks are real-world, ubiquitous and important, as networks can simul-
taneously encode objects in a specific context and the pairwise relationships between
those objects. Small world networks (SWNs) are a class of complex networks [1, 31],
which shows small-world property. Social networks, such as collaboration networks,
are SWNs. Owing to the advances in technological capability of gathering, storing,
and analysis of these data sets, such networks are increasingly encoding more infor-
mation. Thus, the rich data is stored as multiplex complex networks, where different
relationships, between the same set of nodes, are stored as separate layers. The layers
of the multiplex network have unique adjacency matrices [3, 16]. Since our focus is
on multiplex SWNs, we assume one of the layers in the network gives the network
topology of a SWN, which in turn determines an initial community formation. We
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call such a layer “structural” layer, and the other layers, such as similarity graphs,
“functional” layers, borrowing terminology from brain networks [20]. Another way
to look at it is that, we use the existential layer (i.e. the layer that has caused the
very existence of the complex network) as the structural network, e.g. collaboration
network. Thus, the other layers are “functional,” which depend on the existenial layer.
In the case of multiplex SWNs, we consider the existential layer, that exhibits the
small-world property, to be the structural one.

Community detection (CD) can reveal several patterns in a complex network.
However, CD across multiple layers is challenging owing to the differences in “per-
colation” of communities in the layers [8]. Here, we focus in selectively exploring the
dynamics of communities within a small subnetwork in the complex network, which
is a community in itself. Thus, for community exploration and detection in multiplex
SWNs, we propose a focus+context paradigm, and a visual analytic framework,
NodeTrix-Multiplex (NTM), that enables the user to see clustering tendencies in
the focus. Visual analytics is an active area of research where visualization plays
a larger role in data analytics, in an interweaved manner, than just summarizing
information or exploring data. Figure 1 summarizes our proposed work, which shows
our proposed heterogeneous data model (HDM), on which visual analytics is used
for drilling down across layers in a subnetwork of interest. Our proposed visual
analytic framework is designed with the visual information seeking mantra: overview
first, zoom and filter, then details on demand [27]. NTM uses the hybrid visual
representation of SWNs, as proposed in NodeTrix [13], which exploits the “locally
dense, globally sparse” structure of a SWN. A preliminary version of our tool1 is
available at http://nmultiplex.au-syd.mybluemix.net/

Notations: We denote a multiplex network with N layers (each defined by a unique
adjacency matrix), as M= {V(M),E0, . . . , EN−1}, where V(M) is the vertex set of
the network, and Ei is the set of edges belonging to the ith layer, and it is represented
by the weighted adjacency matrix of the ith layer. e(u,v) implies an edge exists
between vertices u,v ∈ V and it encodes the edge weight, a real value.

The ith layer of M is defined as Li = {V(M),Ei}. Non-overlapping (or crisp)
communities in any layer Li, are denoted as {Ci

0, . . . ,C
i
Mi−1} for Mi communities,

where Ci
j is the vertex set of the jth community in the ith layer. Thus, 0≤ i < N and

0≤ j,k < Mi where j 6= k, we get V(Ci
j)⊂ V(M) and V(Ci

j)∩V(Ci
k) = /0.

Any subnetwork in Lk is given as N(k), where its vertex set is V(N(k))⊂ V(M),
and its edge set is E(N(k)) = {e(u,v)}|u,v ∈ V(N(k))∧ e(u,v) ∈ Ek}. However, a
subnetwork in Lk can be constructed using the vertex set of community Ci

j, where
i Q k; in which case, the subnetwork is given as: N(k,Ci

j), whose vertex set is V(Ci
j)

and edge set is E(N(k,Ci
j)) = {e(u,v)|u,v ∈ V(Ci

j)∧ (e(u,v) ∈ Ek)}.
Our proposed focus and context exist in Lk and pertain to a subnetwork N(k),

and hence, are denoted as F(N(k)) and U(N(k)). The shorthand notations for vertex
sets of focus and context are VF and VU , respectively; and the edge sets are EF
and EU , respectively. Even though interchangeably used as synonyms, here, we use

1 The tool is best readable on the Chromium browser.

http://nmultiplex.au-syd.mybluemix.net/
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“network”, “multiplex network”,“nodes” and “links” in the context of dataset, and
“graph”, “multigraph”, “vertices”, and “edges” as data structures, respectively.

2 Related Work
In our work, visualizing communities within a SWN and exploring them are key
ideas. Prior to visualizing, we detect communities using state-of-the-art algorithms;
and for exploring the communities, we use matrix seriation. While there is not much
material on visualization of multiplex networks, CD in multiplex networks has been
an active area of research. Notwithstanding, as SWNs is a class of complex networks,
here, we discuss relevant literature in complex networks as well.

Visualization of Communities in Complex Networks: NodeTrix [13], is a visu-
alization of social networks, where the small-world property of “globally sparse
but locally dense” has been exploited to provide the visual representation, which
integrates better readability of node-link and matrix representations of the network in
respective scenarios (i.e. sparse and dense nature of the network which in the global
and local spatial context, respectively) [12]. The locally dense subgraphs are repre-
sented as “aggregated nodes” (ANs), and rendered as matrices. We direct the readers
to the state of the art article on visualizations of groups in graphs [29]. Node-link
diagrams and integrated (linked) views have been widely used for visualizing hierar-
chical structures in networks [25, 26, 30], and for multivariate networks [11, 15, 18].
Bastian et al. [2] have proposed Gephi, a popular network visualization tool, which
shows connected components and communities using node-link diagram.

Community Detection in Complex Networks: Modularity-based Louvain CD [7]
and graph-theoretic based Tarjan’s algorithms [28] are popularly used for extracting
communities and strongly connected components in networks, respectively. Algo-
rithms for hierarchical CD in multiplex networks, for finding crisp communities,
use modularity across layers/slices as a guiding principle [5, 19], to determine the
best community formation. While these algorithms have composited layers in the
multiplex network at the node-level, we propose to perform the same at a coarser
level of granularity, i.e. we composite communities, or subnetworks; to make it more
scalable for interactive visualizations. de Domenico et al. [10] have proposed the use
of modular flows between nodes across layers to identify overlapping communities in
multilayer networks. We use a similar concept, except that de Domenico et al. have
proposed modular flows across several layers in communities, whereas ours pertain to
“modular flows” in aggregated nodes (as used in NodeTrix) across layers in multiplex
networks. There have been several studies on visual analytics of multiplex networks
such as, Renoust et al. [22] and Rossi and Magnani [24], that have discussed the
limitations of extending simplex network visualizations to multiplex ones. They have
worked with each network “slice” or layer having its own independent graph layout.
As opposed to their work which focuses on visual analytics of dynamics across layers
using node-link diagrams predominantly, our work is on CD across layers using a
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hybrid visualization. Our visualization is however biased towards the SWN layer,
owing to which we do not compute layouts for other layers.

Matrix Seriation: Seriation is a process of reordering rows or columns in a matrix
to identify pertinent patterns of clustering. Visual assessment of clustering tendency
(VAT) algorithm [6] computes the minimum spanning tree of the dissimilarity graph
to give ordering of nodes, and upon reordering, the clusters show the pattern of
square blocks along the diagonal of the matrix. Parveen et al. [21] have demonstrated
that similarity matrices, after automatic seriation using VAT algorithm, can provide
effective matrix visualization of SWNs. We direct the readers to surveys of matrix
reordering methods for different domains [17] and for network visualization [4].

3 Focus+Context Approach and Data Model
We propose a focus+context paradigm to probe communities in a subnetwork of
interest within the multiplex network. Since we are interested in studying multiple
layers of the complex network, our paradigm must be integrated with a HDM. Our
rationale is that the focus, which is a subnetwork, will allow us to study localized
trends of the network. At the same time, the focus has to be studied in the presence
of context, for which we use the rest of the network. In our work, we propose to
use a subnetwork (N(k)) in a specific layer (Lk) as the focus (F(N(k))); thus, the
remaining network becomes the context (U(N(k))). The vertex and edge sets for the
focus (VF and EF ) and context (VU and EU ) are:

VF = V(F(N(k))) = V(N(k));
EF = E(F(N(k))) = E(N(k))∪{e(u,v)|(u ∈VF ∧ v ∈VU ∧ e(u,v) ∈ Ek)∨

(u ∈VU ∧ v ∈VF ∧ e(u,v) ∈ Ek)};

VU = V(U(N(k))) = V(M)\VF); EU = E(U(N(k))) = Ek \EF . (1)

In order to find a subnetwork of interest, we propose to perform CD in the con-
cerned layer Lk, thus getting Mk non-overlapping communities Ck

0, . . . ,C
k
Mk−1; and

then, use one of the communities as a subnetwork of interest. Thus, one such commu-
nity is treated as the focus, and the remaining network becomes the context. Thus,
VF ,EF ,VU ,EU in Equation 1 can now be written as: V(F(N(k,Ck

j))), E(F(N(k,Ck
j))),

V(U(N(k,Ck
j))) and E(U(N(k,Ck

j))), respectively.
Using the aforementioned construction of focus, the communities and the fo-

cus+context paradigm lie in the same layer, and hence, this pertains to analysis of a
single-layer network. What if we use the community in one layer to define the focus,
which is further studied across multiple layers in a multiplex network ?

There is a subtle difference between our usage of terms, “community” and
“focus”. The edge set of the former consists of the intra-community edges
exclusively; whereas that of the latter (EF , as used in Equation 1) is the set
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of all edges (both intra-community edges and inter-community), for which at
least one of the vertices belong to the community.

(a) (b)

Fig. 1: (a) Schematic of our HDM for multiplex network with three layers, the
structural layer (Layer 1) and two functional layers (Layers 2 and 3). Of the com-
munities C1, C2, C3 in Layer 1, the intra- and inter-community edges of the focus
(i.e. C2) can be taken from Layer 2 [blue dashed lines]; and those of the context
from Layer 3 [green dashed lines]. (b) GUI layout of NTM shows the main view
[red], widget for expanding the control panel [blue] and the staging area [green]. A
subnetwork of IV dataset (233 nodes, 569 edges, 12 different communities/ANs),
with the co-authorship layer in both ANs and links is displayed in the main view.
Images of the focus/AN [cyan] from the main view are saved in its staging area;
showing (left-to-right) unseriated co-authorship layer, VAT-seriated co-authorship
layer, and VAT-seriated author-topic similarity layer.

Heterogeneous Data Model: For a multiplex network, we propose the construction
of a composited single-layer network Mmod , which is an aggregate of multiple
network layers. Our proposed algorithm, of O(|V(M)|) complexity, aggregates a
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maximum of three layers of M, taken at a time, in a three-step process (Figure 1(a)).
Firstly, we perform CD in layer Li to find subnetwork of interest Ci

j. Secondly, using
the vertex set VF = V(Ci

j) in layer Lk we construct focus, F(N(k,Ci
j)). Thirdly, we

define context, U(N(u,Ci
j)), using vertex set, VU = V(M)\VF , but edge set from a

third layer Lu. Since, we are able to reconstruct a single “composite” layer using
multiple layers, we call this construction a heterogeneous data model. Thus, rewriting
Equation 1 for multiple layers:

EF = E(F(N(k,Ci
j))) = E(N(k))∪{e(u,v)|(u ∈VF ∧ v ∈VU ∧ e(u,v) ∈ Ek)∨

(u ∈VU ∧ v ∈VF ∧ e(u,v) ∈ Ek)};
EU = E(U(N(u,Ci

j))) = Eu \{e(u,v)|(u ∈VF)∨ (v ∈VF)} (2)

Our rationale is that we can switch between different layers in the focus and context
and study localized patterns, such as in CD, persistent across the layers.

Since, in our case, the structural layer exhibits the small-world property and
contains “locally dense” subnetworks, we perform CD in L0. The sparse links
between these communities in L0 also indicate that the communities internally
are well-connected, which implies analysis of each of these communities can be
performed mostly independently. Hence, owing to the better defined community
formation in L0, our analysis and graph layout are more biased to it than to the other
layers. We use one such community in L0 as the focus. We find: VF = V(C0

j); VU =

V(M) \VF ; EF = E(F(N(k,C0
j))); and EU = E(U(N(u,C0

j))). This model can be
generically used for two-layer multiplex network, where one of the two layers can be
treated as Lu, as done in our case-study.

4 NodeTrix-Multiplex: A Visual Analytic Framework
We propose NodeTrix-Multiplex (NTM), which is a visual analytic framework built
on the concepts and visualization layout used in NodeTrix [13]. NTM is a human-
in-the-loop framework, which enables users to visually explore and find strong
communities which percolates across layers of a multiplex SWN. It is integrated
with our HDM, which uses focus+context paradigm and a seriation algorithm. It
enables the user to understand the dynamics of community formation in different
layers by drilling down a subnetwork of interest. The choice of using NodeTrix
over node-link diagrams, e.g. in Gephi [2], is due to clear separability of the matrix
visualization of focus from the context, in the former (Figure 2). This separability
helps in visualization of composited network layer, using different layers for CD, the
focus, and the context (Figure 1(a)).

GUI Layout and User Interactions: The proposed layout of GUI for NTM (Fig-
ure 1(b)) consists of three components: main view, staging area, and control panel.
The hybrid visualization of the focus+context is shown in the main view, where
the user can choose a focus. The user can interact with the focus and context simul-
taneously or exclusively with either. In the staging area the user can save images
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of the focus and view them in different zoom levels. In the control panel, the user
has the controls to choose the layer for focus/ context visualization, threshold for ε-
neighborhood for similarity graph (i.e., if a similarity layer is present in the network),
color scheme for colormapping of matrices, and seriation. These operations are for
the focus and its context, which can be applied simultaneously or exclusively to
either, using locking of focus. Separate choices of layer for the focus and the context
support the HDM (Section 3) and VAT seriation for the focus (Section 2).

Key Differences between NodeTrix and NTM:

1. NodeTrix is exclusively for studying all ANs in a single-layer SWN homo-
geneously; whereas our goal is to study local trends in the the multiplex
SWN heterogeneously. Our heterogeneous study implies studying an AN
in settings different from those of other nodes/ ANs in the network.

2. Owing to the difference in the motivation, NodeTrix uses user-guided
agglomeration to create ANs, whereas we use Louvain CD algorithm [7]
to automatically extract strong communities in the structural layer. The
communities are represented as ANs in NTM.

3. NodeTrix uses user-guided seriation for finding patterns in matrices,
whereas we use automatic seriation algorithm, such as VAT algorithm [6].

4. NodeTrix visualizes unweighted adjacency matrix, whereas NTM uses
weighted adjacency matrices, for CD, and their complements, i.e. distance
matrices, for visualization. The latter is done to comply with the visual-
ization used in VAT algorithm. The difference is that the diagonal cells of
AN have value one in NodeTrix (colored white) and value zero in NTM
(colored black).

5. The visualization tasks are different – the tasks in both NodeTrix and
NTM are to identify communities (T1), central actors (T2), and roles and
positions (T3); and NTM additionally has to analyze CD across layers.
NTM accomplishes T1 without visual interaction. For T2 and T3, VAT
seriation of ANs in NTM highlights the cross, block, and intermediate
pattern, as in [13]. The additional unique tasks for NTM are: (T4) find a
set of nodes in a community which show clustering tendency across differ-
ent layers, using the focus, and (T5) find inter-community relationships
which could be strong in layers different from the one used for CD, using
focus+context.

Figure2 1 shows the layout of the GUI. In the main view, the user can move
matrices of the aggregated nodes, which updates the links between the ANs. The
operations, which are facilitated through the control panel of NTM, are implemented
on both the focus as well as the context. Additionally, depending on the user’s needs,
these operations can be implemented separately, for which we introduce the notion of

2 All images in this paper look best when zoomed in.
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“locking” the focus, to preserve it from the modifications made to the context. Thus,
the user can choose a focus and activate it, and by locking it, the user activates the
context. A blue lock icon in the top left corner of the matrix indicates active or locked
state, respectively. A focus can be activated by clicking in the region of the AN.
When a focus is deactivated, the user can choose another AN as focus. Extending the
layout in NodeTrix to render the focus, we additionally render inter-community links
from the AN representing the focus. These inter-community links exist in the layer,
which is used for visualizing the focus; while we also render (inter-community) links
between ANs in the layer used for visualizing the context.

Software Implementation: NTM has been implemented using Python v2.7 for
data preprocessing, Flask framework, and D3.js [9] for visualization. D3.js enables
us to perform progressive rendering of sparse links when moving the ANs.

5 Case-Study of a Multiplex Collaboration Network
Our case study, Infovis (IV) co-authorship network [14] during (1995-2015) has 1235
nodes, 2705 edges, 150 communities (detected using Louvain CD). The two layers in
IV dataset are co-authorship (structural) and author-topic similarity [23] (functional)
graphs. The co-authorship layer (Figure 2) has links between authors if the authors
have co-authored, and the edge weight is the number of papers they have co-authored
in the topic of Infovis during 1995-2015. The following metadata for each paper
is available in the IV dataset: title, authors, keywords, abstract, and references. We
have used the metadata to compute the author-topic similarity matrix, which is the
adjacency matrix of a similarity graph. Similar to NodeTrix, tasks T2 and T3 can
be accomplished from NTM, where the mostly colored row and column (yellow
highlights in Figure 3) pertaining to Ben Shneiderman and Jeff Heer, show them to
be the central actor in the communities in foci F1 and F2, respectively. Similarly, S.
Carpendale, C. North, P. Hanrahan, J. Wood, J. Fekete, J. Dykes, and H. Hauser are
central actors in their respective communities/ANs.

NTM helps us find clusters along the diagonal, given by VAT, which recur in
multiple layers; e.g. blue, green, and orange highlights in Figure 3 who group together
in both the layers. Thus, the staging area (Figure 1(b)) helps in accomplishing task
T4. The semantics of such a cluster is that, co-authors in it publish in similar topics,
even in papers other than their joint papers. In such clusters in F1 and F2, which also
contain the central actors (blue highlights in Figure 3), we observe that the cluster
in the structural layer are rendered darker than those in the functional layer, which
indicates more accurate similarity scores. On the contrary, the reverse observation
in the orange (in F2) and green (in F1 and F2) highlights, where the cluster in
the functional layer is darker than its counterpart in the structural layer, indicates
erroneous computation of the similarity scores. We have found out that the error
in author-topic similarity arises owing to the authors having only one paper in the
dataset. Author-topic similarity score is computed using a mixture of distributions
associated with the authors in a multi-author paper. A cluster, which is darker in the
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Fig. 2: A subnetwork (233 nodes, 569 edges, and 12 ANs/communities) in the IV co-
authorship network dataset shows the foci, F1 and F2, in the author-topic similarity
graph (functional layer) and context in the co-authorship layer (structural layer).
Yellow highlights show central actors in the community/AN. The inter-community
edges are shown in both functional [dotted lines, showing 22 edges with similarity
score > 0.7] and structural [solid lines] layers.

Fig. 3: An aggregated node showing a community in structural layer of IV dataset,
after VAT seriation shows clusters recurring in both structural and functional layers
[green, blue, orange]. The yellow highlights show central actors.

structural layer than the functional one, implies that the authors have co-authored
multiple papers together, owing to which the author-topic similarity scores are more
accurate. e.g. {Shneiderman, Plaisant} and {Heer, Agrawala} have authored {8, 4}
and {17, 6} independently, and 2 and 5 papers jointly, and thus, have more accurate
author-topic similarity scores, 0.57 and 0.60, respectively. Thus, our visualization
not only identifies clusters that recur across layers, the aforementioned pattern can
help ascertain the accuracy of the results. A corollary to T4 would be to find authors
who have not co-authored but have a high author-topic similarity score, which may
indicate potential collaboration outside of this network, e.g. {Heer, Stone}3. However,
these aforementioned patterns are specific to the current scenario of co-authorship

3 Lin, Sharon, Julie Fortuna, Chinmay Kulkarni, Maureen Stone, and Jeffrey Heer. “Selecting
Semantically]Resonant Colors for Data Visualization.” In Computer Graphics Forum, vol. 32, no.
3pt4, pp. 401-410. Blackwell Publishing Ltd, 2013.
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and author-topic similarity layers, and should not be generalized. Nonetheless, NTM
enables identification of such trends.

NTM is designed to study all aspects of the subnetwork, corresponding to the
focus (which is in structural layer), in all functional layers, for visual analytics;
without assuming that the focus remains a community across all functional layers.
e.g., links in the similarity layer, but between the AN’s in the SWN layer, give more
information about the overlap of topics the authors work with, thus accomplishing
task T5 (Figure 2). Between ANs with Hauser and Shneiderman as central actors,
links {Ledermann, Aris} and {Doleisch, Aris} have been observed to exist due to
common topics of plots and user interactions; and {Hauser, Yalcin}, due to the
topic of set visualizations. Similarly between ANs with Fekete and Shneiderman as
central actors, links {Henry, Woodruff} and {Ghoniem, Sabol} have been observed
to indicate common topics ofmultiple views and graph visualization, respectively.

Work-flow for Community Exploration: Our work-flow for CD and explo-
ration in a multiplex network, using NTM GUI, is a four-step process (Figure 1).
Firstly, we input a multiplex network, M, with N layers, and set the structural
layer E0. In our implementation, we construct the multiplex network using
author-topic similarity graph, which is the adjacency graph of a functional
layer. Similar to NodeTrix [13], NTM becomes slow for interactive response,
when the entire network is loaded. For interactive performance, in our case
study, we have used Louvain CD (O(|V(M)| log(|V(M)|)) complexity) to iden-
tify communities on the structural layer of the entire network, to find logical
subnetworks of size upto 250 nodes, to be loaded on NTM. Here, we have used
the vertex set of three largest communities in the network as our subnetwork of
interest. This step will, however, not be required once NTM is scaled to handle
loading of the entire network. Secondly, Louvain CD is performed on the
structural layer of the subnetwork, which is loaded on NTM, as a preprocessing
step. In our specific case, performing Louvain CD on the entire network and on
the subnetwork yield different results; hence, we repeat running the algorithm
on the subnetwork after it is loaded. Thirdly, the user can interact with the
tool, and pick an AN as a focus. Fourthly, the user can build multiple HDMs,
and perform automatic seriation on the AN, using VAT, to visualize possible
clusters in each of the layers. For further analysis, different images of the focus
are saved and loaded in the staging area.

Expert User Evaluation: We have performed an expert user evaluation of the
tool, which is built using NTM as a framework and is available at http://
nmultiplex.au-syd.mybluemix.net/ . The expert, who is a network sci-
ence researcher, analyzed the usefulness and usability of the tool. The expert men-
tioned that the use of focus+context visualization helps in focused analysis of com-
munities and hence, the HDM is useful. We have presented the visualizations of
the HDM in an existing tool, Gephi (Figure 4), and NTM (Figures 1 and 2), to the

http://nmultiplex.au-syd.mybluemix.net/
http://nmultiplex.au-syd.mybluemix.net/
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expert. The expert mentioned that the visualizations are better readable on NTM
than on Gephi. The expert commented that the HDM and the tool are useful for
finding relevant nested communities, which gives a mesoscopic network analysis.
The ability to switch across different layers allows the user to get an overview of
the dynamics occurring in each layer. While the tool does not automate community
analysis across the layers, the expert was able to study each focus in detail using
the tool. However, the tool is limited in answering specific questions within foci or
communities alone, and in its current state, the tool cannot perform a generic analysis
of all communities. It also cannot give comparisons of the “strength” of communities
across layers. Nevertheless, overall evaluation has been encouraging.

Usability Evaluation: The expert commented that the tool is predominantly easy to
use, with the help of the interactive tutorial. The interactivity is responsive, especially
due to updates using progressive rendering. The expert liked the color combinations
for improving the visual experience. At the same time, the expert pointed out the
limitations in the usability of the current version, such as overloading of features
on the right mouse button and non-intuitive user interaction for panning in the main
view. Currently, the right mouse button is used for selecting focus, popping up the
browser menu, and dragging the focus; the scroll wheel is used for zooming in and
out; and dragging the left and right mouse buttons has been used for panning. The
limitations can be alleviated with UI re-design of the tool.

Fig. 4: An equivalent of graph layout in Gephi of the subnetwork of interest, showing
the communities in the structural layer, detected using Louvain CD in different colors.
Foci F1 and F2 in red and blue, in the structural layer in left, and in similarity layer
in the right. The latter shows the node-link diagram of the HDM.

6 Conclusions
We have proposed and implemented a visual analytic framework, NTM, for probing
a subnetwork of interest, chosen as a focus, in a multiplex SWN. We have used a
focus+context paradigm, our proposed HDM, visual analytic workflow and seriation
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for clustering. We have constructed a multiplex network from a co-authorship network
(structural layer) by computing author-topic similarity graph as the functional layer.
However, there are few limitations in our current approach. In this work, we have
focused on multiplex SWNs, owing to which the network topology of the structural
layer is restrictive. At the same time, in order to extend this work to different
kinds of multiplex networks, without none of the layers exhibiting the small world
property, we need to consider an appropriate visual representation of the concerned
network topology. NTM, being an extension of NodeTrix, is effective as a hybrid
visualization of node-link diagrams and matrix visualization, as the “globally sparse”
property of the SWNs reduces clutter and occlusion in the visualization. If the
intercommunity links were not to be as sparse as seen in the SWN topology, then
the hybrid visualization gets very cluttered. We are currently working on improving
scalability in using multiplex networks with more than two layers. We are also
investigating other graph layouts, without a bias on SWN layer.
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Part VIII
Social and Political Networks



Abstract The Occupy movement protests against social and economic inequality
around the world. It emerged in New York City’s Zuccotti Park in September 2011 and
is organized at a city level. In this paper we study its social organization on Facebook,
by means of a thorough quantitative analysis on users’ content consumption. In
particular, we focus on structural patterns of users interaction with the movement
pages and on the role of local affiliations on the consumption patterns. First, we
characterize users’ activity finding that passive endorsement (liking) is more dominant
than active participation to the debate (commenting). Then, we label users according
to their mobility patterns across pages of the various local communities, finding that
online activities are not locally coordinated by geographically close pages. Indeed,
pages linked to major US cities, such as New York, Los Angeles, Boston, drive the
diffusion of contents online and serve as coordination points for all other pages.

1 Introduction
Social media have been found to foster aggregation of people around shared interests
such as political ideas, narratives, and worldviews [4, 5, 18, 30]. Consequently,
sociologists and political scientists explored the environment of Internet-based social
movements focusing on communication and organization issues [2, 3, 20, 25, 31, 32,
35, 36]. In particular, two of the most studied aspects are a) the collective framing i.e.,
processes that, out of the essential features of the movement’s purpose and struggle,
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establish its narratives, language, and imagery [1, 25]; and b) resources mobilization,
which refers to all those processes exploited by social movements in order to arrange
financial, material, and human resources required to sustain their activities in an
efficient way [28]. In that regard, an interesting scenario to be explored is the case of
online political movements that coordinate and interact through social media [29]. For
instance, Twitter played a prominent role in social movements such as the Egyptian
revolutionary protests of 2011 [13, 22, 23, 27] and the Arab Spring [24, 26]. The most
investigated aspects in this direction concern information flows and the relationship
between news media and information sources [24, 27], analysis of tweets’ contents
[13], impact of media disruption on the dispersion of the protest [23]. Recruitment
patterns on Twitter were investigated in [22], where authors reported evidence of
social influence and complex contagion.

In this paper we aim at characterizing the shape of online public debate around
the Occupy movement on Facebook. The Occupy movement protests against social
and economic inequality and relies on online social media for the diffusion of ideas,
the recruitment of people, as well as the promotion of the protest [10, 12]. Indeed,
social media are responsible for a substantial simplification in the communication
and coordination paradigm of the protest’s activities. The majority of existing studies
about the Occupy movement online was carried on Twitter. For example, in [14]
authors focused on the relationship between the geospatial dimension of the social
movement’s communication network and its resources mobilization, while in [15,
21] researchers analyzed the evolution of the communication activity and of the
topics under discussion. Nevertheless, it has to be considered that the most of the
online activity during the Arab Spring was done on Facebook (the total accesses
to Twitter were just the 1% of the entire population) [34]. Indeed, it has to be
noticed that Facebook user base is much bigger than that of Twitter, making the
potential reach of posted information much larger. Moreover, Facebook interaction
paradigm is particularly appropriate for online social movements, because users
can post information without particular limits and, at the same time, can express
a positive feedback (like), promote information (share), and express their opinion
(comment). Therefore we decide to restrict our attention to Facebook rather than
Twitter. Recently, two other studies presented the dynamics of the Occupy movement
on Facebook [11, 19], showing that Facebook is mainly used for the recruitment of
people and resources to local occupations, the information sharing and story telling,
and across-group exchanges.

Since the Occupy movement online presents a geographical diversification of
groups, in this work we address geographical patterns behind information diffusion,
focusing on the drivers of the inter-pages communication stream. We perform a
thorough quantitative analysis of about 620K users on Facebook, taking into account
both the role of polarization and homophily in the communication and interaction
scheme [6, 7, 16, 37]. We observe a general preference of users towards passive
endorsement (liking) rather than active participation to the debate (commenting,
sharing). Such a result could be observed for the whole Facebook, because liking
requires much less effort than commenting. Nonetheless, in such a context it assumes
a peculiar meaning, denoting the tendency of users to express their support to the
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Movement, without participate actively. Finally, we show that online activities are
not locally coordinated by geographically close pages. Indeed, pages linked to major
US cities drive the diffusion of contents online and serve as coordination points for
all other pages, that perform a minor activity in the system. Moreover, we find that
the pages’ total volume of activity, rather than the geographical proximity, is the
main driver for the information and users exchange. Our results seem to support
those reported in [9], where the author analyzed records of civil unrest of 170
countries during the period 1919–2008 and presented a nonlinear, spatially extended
dynamical model, which reflects the spread of civil disorder between geographic
regions connected through social and communication networks.

2 Methods
2.1 Data Collection
Using the Facebook Graph API [17], we collected data from 179 Facebook public US
pages about the Occupy movement during the time span September 2011-February
2013. For each page we also have a geographical reference located in the US. We
defined the space of our investigation using a published list [8] and categoryzing
Facebook pages according to their contents and their self description. We decided
to stop the data collection on February 2013 because the activity on the monitored
pages was very low after that point. To the best of our knowledge, the final dataset
is the complete set of all Occupy pages active in the US Facebook scenario in the
period immediately following the outbreak of the protest on September 2011 to
February 2013. A total of 617,563 users is active, in terms of liking activity, on a
set of 753,448 posts. The total number of likes (resp. comments and shares) on the
downloaded posts is 5,476,444 (resp., 1,280,771 and 108,559).

2.2 Classification of users activity
We make use of a thresholding technique to divide users into pages-affiliated groups.
Since a like represents a positive feedback, we choose it as a discriminant to identify
the affiliation to one page. In particular, we assume the following classification:
users having 95% or more of their liking activity on a particular page are said to be
polarized on that page, while all other users are classified as not polarized. Such a
thresholding classification detects 97K polarized users and 60K not polarized users
out of 157K users. In order to avoid biases in the procedure, this classification is
applied only to users who left at least 5 likes on the Occupy corpus.
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2.3 Bipartite networks and backbone filter
A bipartite graph is a triple G = (A,B,E) where A =

{
ai | i = 1, . . . ,nA

}
and B ={

b j | j = 1, . . . ,nB
}

are two disjoint sets of vertices, and E ⊆ A×B is the set of edges
– i.e. edges exist only between vertices of the two different sets A and B. The bipartite
graph G is described by the matrix M defined as:

Mi j =

{
1 i f anedgeexistsbetweenai and b j

0 otherwise.

The co-occurrence matrices CA = MMT and CB = MT M count, respectively, the
number of common neighbors between two vertices of A or B. CA is the weighted
adjacency matrix of the co-occurrence graph CA with vertices on A. Each non-zero
element of CA corresponds to an edge between vertices ai and a j with weight PA

i j .
The co-occurrence graph CB is built in the same way from the co-occurrence matrix
CB.

Let A be the set of the 179 Occupy US pages, B1 the set of all posts equivalence
classes’ representatives (representatives posts for short)1, and B2 the set of all polar-
ized users active on A; the pages-posts bipartite network is then defined as the triple
G1 = (A,B1,E1), where an edge e1

i j ∈ E1 exists if representative post b1
j is shared on

page a1
i , while the pages-polarized users bipartite network is defined as the triple

G2 = (A,B2,E2), where an edge e2
i j ∈ E2 exists if polarized user b2

j is active on page
a2

i . For our analysis we used two networks derived as co-occurrence networks of
the pages-posts and the pages-polarized users bipartite networks. Considering the
co-occurrence matrices CA

1 and CA
2 we get two co-occurrence networks on the vertex

set A: the pages-reshares (CA
1 ) and the pages-common users (CA

2 ) networks. In CA
1 an

edge between two pages exists if at least one representative post is shared on both
pages, while in CA

2 there is a link between two pages if they share at least one user
who is polarized in either page.

We apply the Backbone Extraction, presented in [33], to the two aforementioned
real networks. Such a method applies a thresholding filter based on the local iden-
tification of the statistically relevant weight heterogeneities. This kind of approach
is able to filter out the backbone of dominant connections in weighted networks
with strong disorder, preserving the structural properties and hierarchies at all scales.
The discrimination of the right trade-off between the level of network reduction
and the amount of relevant information preserved in the new representation involve
additional issues. In many cases, the probability distribution P(x) that any given link
is carrying a weight x is broadly distributed, spanning several orders of magnitude.
Such a problem is addressed by using the aforementioned method presented in [33].

1 We can consider the equivalence relation of having the same object ID; two posts are equivalent,
and hence belong to the same equivalence class, if they have the same object ID.
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3 Results and Discussion
3.1 Consumption Patterns
Online social platforms such as Facebook may reach a broader and more diverse
audience than traditional media. The Facebook paradigm offers to all users the
chance to take actively part in public debates by commenting or sharing pieces
of information. Here, our aim is to characterize the actual extent to which online
social media foster an open debate around the Occupy movement. We analyze the
information consumption patterns of the US Occupy movement in order to first
describe the way users interact and get engaged with the movement online and hence
understand the effectiveness of the online media in fostering and shaping the debate.
In addition, we characterize the role of polarized users in promoting and bridging
inter-page connections. Since pages recall the geolocation of the community we also
associate each user to that local affiliation.

As a first step we look at the distributions of the different activities, i.e., the number
of posts, likes, comments, and shares, and of the different users’ categories, i.e., the
number of users, polarized users, and not polarized users, on all the city related pages.
Fig. 1 shows the Pearson correlation coefficient for all the distributions pairwise.
Notice that they all exhibit high positive correlations, indicating that pages showing
a strong commitment (number of posts) emerge as hubs connecting like-minded
individuals (number of users) who endorse, debate, and share information.

We then analyze the information consumption patterns in order to characterize
the nature of the online debate around the Occupy movement. It is important to note
that, while a like stands for a passive endorsement of the content, a comment denotes
an active participation of the user in the debate and a share reflects the will to attract
the attention on the post. Left panel of Fig. 2 shows the complementary cumulative
distribution functions (CCDFs) of the number of likes, comments, and shares of all
the posts of the corpus, while right panel shows the CCDFs of liking and commenting
activity of all users. We take into account different fits for the distributions in Fig. 2
(the exponential, the power law, and the lognormal) and we use the Nonlinear least
square estimation (NLS) to fit them. Goodness of fit tests based on the log-likelihood

Fig. 1 Pearson correlation
for number of posts, likes,
comments, shares, total users,
polarized users, and not
polarized ones is high for all
the different combinations.
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proved that while the distribution of the number of likes and comments on all posts
are exponentially distributed, all the other distributions are better fitted by a power
law.

We notice that users have a preference towards likes rather than comments or
shares, denoting the tendency to avoid an active participation in the debate around the
Occupy movement. In the specific, the probability of diffusing a piece of information,
by sharing the relative post more than a given number of times x, shows a drastic
decrease for x > 1. This result points out that the Facebook pages relative to the
Occupy movement mainly serve as a promotional space, while there is no trace of a
public debate on them.

3.2 Activity of Polarized Users
In this section, we analyze the information consumption patterns inside the Occupy
movement by focusing on the users’ activity and comparing the consumption patterns
of polarized and not polarized users. In particular, we focus on the difference between
the liking and commenting activity across both categories of users (Fig. 3). We
observe that polarized users tend to increase the probability of commenting more
than x times (for x∼ 103) rather than just linking, while not polarized users maintain
a higher probability of liking at all scales.

We then looked at the users’ lifetime, where the lifetime of a user is defined as
the temporal distance (counted in days) between her first and last comment on a post
of the Occupy movement pages, and in particular at the liking activity of polarized
users as a function of lifetime. Fig. 4 shows the CCDF of the number of likes of
polarized users for different levels of lifetime.
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Fig. 2: Left Panel: CCDF of the number of likes (violet), comments (orange), and
shares (blue) on all posts from the 179 different Occupy pages. Users tend to avoid
an active participation in the debate and prefer the passive endorsement of the posts
(like). Right Panel: CCDF of liking (violet) and commenting (orange) activity of all
users.
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We notice that there is no significant difference between the CCDFs of the number
of likes left by polarized users of varying lifetimes, a higher lifetime is not a syn-
onymous of a higher activity. We pairwise compared the five distributions, i.e., the
number of likes of polarized users for a lifetime of, respectively, 1, 10, 100, 200, and
500 days, by Kolmogorov-Smirnov test with the null hypothesis of equivalence of the
whole sample distributions and significance level α = 0.05. The estimated maximum
distance, reported in Table 1, is always smaller than the corresponding critical value
and hence we may deduce that there is no significant statistical difference among all
five distributions.

Table 1: Estimated maximum distances, with corresponding critical values in brackets,
from the Kolmogorov-Smirnov test pairwise applied to the five distributions of
number of likes left by polarized users for different levels of lifetime (1 day, 10 days,
100 days, 200 days, and 500 days).

1 day 10 days 100 days 200 days

10 days 0.062 (0.091) - - -
100 days 0.054 (0.129) 0.056 (0.144) - -
200 days 0.108 (0.165) 0.107 (0.177) 0.098 (0.199) -
500 days 0.069 (0.188) 0.053 (0.199) 0.070 (0.219) 0.116 (0.242)

Dividing the users into different categories, we observe a differentiation in the
consumption patterns. Polarized users show an increase in the probability of com-
menting a post with respect to that of just liking it, however this probability is still
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Fig. 3: CCDF of liking (violet) and commenting (orange) activity for polarized (left)
and not polarized users (right). By means of NLS estimation and goodness of fit
tests based of the log-likelihood, we find that all the distributions are exponentially
distributed.
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smaller for not very active users. We also find that the liking activity of polarized
users is not affected by their lifetime.

3.3 Backbone of Interaction Patterns
One of the most peculiar characteristics of the Occupy movement online is its city
level organization. The movement got started in New York and then spread all over
the US. We are interested in analyzing the spreading of the movement online and
identifying the drivers of the information flow. We consider the diffusion of the
information in the system in terms of common shared posts and common polarized
users between two pages and we test the geographical proximity and the total number
of posts as possible drivers of the diffusion.

In order to discriminate if geographical proximity does actually affect the diffusion
of information, we consider two different weighed networks of the 179 geolocated
Occupy pages: the pages-reshares network and the pages-common users network.
In the pages-reshares network a link between two pages exists if they shared at
least once the same post, while in the pages-common users network a link between
two pages exists if they share at least one user that is polarized in either page.
Refer to Section Materials and Methods for further details on the structure of the two
networks. We then apply the Backbone Extraction Algorithm [33] to the two networks
described above, since this method allows us to filter out the backbone of dominant
connections in a weighted network while preserving the structural properties. Fig. 5
illustrates the multi-scale backbone structure for pages-reshares network (top), and
for the pages-common users network (bottom), for the two levels of significance
α = {0.01, 0.05} (respectively in blue and orange). The links correspond to the
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activity of users polarized on one page inside another page. These results provide
a clear image of the absence of geographical correlation in the resharing patterns.
Moreover, pages corresponding to the major US cities2 emerge as leaders in the
information spreading and show an exchange of polarized users’ activity. Hence,
hubs corresponding the US major cities drive the overall activity of the movement
and the diffusion of contents online, serving as coordination points for all other
pages.

While there is no correlation between the number of common shared posts (or
the number of common users) and the geographical proximity of the pages, there
is a positive linear correlation between the number of common shared posts (or
the number of common users) and the number of posts on the pages, ∼ 0.73 (or
∼ 0.89). Fig. 6 shows two chord diagrams where the links in the left one represent
the number of common shared posts between the top 6 pages for number of posts,
i.e., those pages geolocated in Wall Street, Boston, Portland, Chicago, Denver, and
Los Angeles, while the links in the right one represent the number of common users
between the same 6 pages. The thicker the link, the higher the common shared posts
(or the common users) similarity per number of posts between two cities. We found
that the inter-pages communication is driven by the pages’ volume of total activity
rather than by their geographical proximity.

(a) α = 0.01 (b) α = 0.05

(c) α = 0.01 (d) α = 0.05

Fig. 5: Backbone structure for the pages-reshares network (top) and for the pages-
common users network (bottom) for α = {0.01, 0.05} (respectively in blue and
orange).

2 For both levels of significance, the following cities emerge as information spreading leaders: New
York, Los Angeles, Chicago, Boston, Portland, Phoenix, and Denver.
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Fig. 6: Chord diagram representing the number of common reshared posts (left) and
the number of common users (right) between the top 6 pages for number of posts
published, i.e., New York, Los Angeles, Chicago, Boston, Portland, Phoenix, and
Denver. The inter-pages communication stream is driven by the pages’ volume of
total activity.

4 Conclusions
In this paper we explore the case of online political movements that coordinate and
interact through social media always more often with the advent of the World Wide
Web [29]. Our focus is to characterize the shape of online public debate around
the Occupy movement by addressing the information consumption patterns and by
identifying different actors according to their interaction patterns with pages and
posts. Since the Occupy movement online presents a geographical diversification
of groups, we address geographical patterns behind information diffusion and in
particular the drivers of inter-pages communication’s stream. By analyzing users
activity on pages and posts, we find a clear predominance of the likes, with respect
to the comments or shares, and we consider this fact as the first evidence of the
tendency of users to avoid an active engagement in the debates around the Occupy
movement. Also, we notice a differentiation in the consumption patterns of polarized
and not polarized users. Indeed, the first ones show an increase in the probability
of commenting a post rather than just liking it for high activity levels. This result
points out that the Facebook pages relative to the Occupy movement mainly serve as
a promotional space, while there is no trace of a public debate on them. Furthermore,
we characterize polarized users attitude towards the Occupy movement’s online
debate by looking at their liking activity as a function of the lifetime, finding that
the activity intensity is not affected by the user’s lifetime. Moreover, we extract the
multi-scale backbone for two networks, the pages-reshares network and the pages-
common users network, in order to analyze geographical patterns in the information
diffusion and polarized users activity. Our analysis reveals that activities online are
not locally coordinated by geographically close pages. Indeed, pages linked to major
US cities drive the diffusion of contents online and serve as coordination points for
all other pages, which perform a minor activity in the system. We also find a high and
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positive linear correlation between the number of common shared posts (or common
users) and the number of total posts on the page, that leads to the emergence of the
pages’ volume of total activity as the inter-pages communication’s driver.

Summarizing, in this paper we show that few pages exhibiting a strong commit-
ment (number of published posts) emerge as hubs connecting like-minded individuals.
The vast majority of both users and information flows between hubs linked to major
US cities, whereas we find no evidence of significant flows between pages linked to
cities which are geographically close. This, together with the fact that users prefer
passive (likes) over active (comments) endorsements, suggests that Facebook pages
related to the Occupy movement mainly served as virtual plazas used to raise aware-
ness and promote insurgent beliefs rather than to organize local protests and facilitate
the debate around matters of interest. Future works may be devoted to extend the
discussion by analyzing page contents and topics. Indeed, understanding how people
interact and discuss about the Occupy case, taking also into account their emotional
behavior, could provide interesting insights to better define users’ response to protest
movements online.
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Abstract We used survey data and collected data from the Online Social Network
(OSN) Twitter between October the 5th and November the 9th (time window) to
provide an overview related to political participation in Mexico. With the survey
data we provided a qualitative assessment of political participation in Mexico by
examining electoral participation, levels of political participation between regions,
Mexicans’ interest in politics and their sources of political information. With our
collected data, we described the intensity of political participation in this OSN,
we identified locations of high Twitter activity and identified political movements
including agencies behind them. With this information, we compare and contrast
political participation in Mexico to its counterpart through Twitter. We show that
political participation in Mexico seems to be decreasing. However, according to
our preliminary results political participation in Mexico through Twitter seems to
be increasing. In this regard, our research points towards the emergence of Twitter
as a significant platform in terms of political participation in Mexico. Our study
analyses the impact of how different agencies related to social movements can
enhance political participation trough Twitter. We show that emergent topics related
to political participation in Mexico are important because they could help to explore
how politics becomes of public interest. The study also offers some important insights
for studying the type of political content that users are more likely to tweet.

1 Introduction
Academics generally agree that political participation is quintessential for democracy.
Not only does political participation serve as the main conduit with which the public
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expresses their opinion, but it also establishes an important link between the public,
the state and its institutions. In spite of its importance, there is a view amongst
researchers suggesting that political participation has decreased in recent decades.
The lack of participation is visible through the decrease in turnout during election
periods, the growth of negative sentiments towards politicians and their parties, and
the decline in engagement in civic associations [6].

Even if political participation seems to be decreasing, the emergence of new
agencies, such as online social networking sites, pose the possibility that political
participation is shifting away from traditional practices and moving towards online
ones. In fact, as the use of online social networks has become mainstream, their role
as agents for social change has increased [3]. The use of online social networks in
events ranging from the spread of political news, election campaigns and protests
has demonstrated their importance in the context of fomenting social change.

Twitter can be considered the most studied online social network. This social
media platform provides an efficient and effective communication medium for one-
on-one interactions and broadcast calls (e.g., for assistance or dissemination and
access to useful information). In Twitter users post messages that are limited to 140
characters known as tweets and it produces around 500 million tweets per day and
has 271 million regular users [2].

Because Twitter is used to share information, opinions, and online petitions, the
social network provides us with an important source of data useful to analyse online
political participation in Mexico. With this in mind, our aim is to briefly assess
political participation in Mexico and, through the case study of our data in the OSN
Twitter, put forward possible paths for how the emergence of new technologies could
enhance political participation. In our context, we refer to political participation as
any activity through which individual express their own opinion with the goal of
exerting influence regarding political decision-making.

In order to do so, we use survey data to qualitatively assess political participa-
tion, interest in politics and sources of political information in Mexico. We present
descriptive visualizations on electoral turnout and regions with the largest level of
participation. Moreover, we provide trends on the most important sources of political
information in Mexico and forms of political participation other than voting. Next,
we use a corpus of over 150,000 tweets (dataset) related to the president of Mexico,
Enrique Peña Nieto. Additionally, we present graphics that will give us an idea of
how frequently people participate with political content in Twitter, their locations
and what sort of conversations they have on Twitter. Our data visualizations will
allow us to identify different online protests in the Mexican territory.

Our work is related to the research carried out by [1] on political attitudes and
civic culture, [6] on political participation in Mexico, to [11] study on organized civil
society and democracy in Mexico and a recent study led by [10] on the status of
political participation in Mexico.

[1] and [6] provide a starting point for our research through a description of the
state of political participation in Mexico. This is, then, updated by [6] which provides
the first clues towards the state of political participation. We use these authors views
on the state of political participation as a benchmark to what we will find in survey
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and Twitter data. As such, our paper provides an update to the state of political
participation in Mexico and, to the best of our knowledge, adds the first comparison
to online participation through Twitter in Mexico. Moreover, our paper identifies
promoters of online political participation online. This complements [11] view of
civil associations by highlighting the role of Change.org as promoter of political
participation online.

2 Methodology
Given that our aim is to describe political participation in Mexico, we turn to survey
and collect data from Twitter to: firstly, explore and examine trends in traditional
ways of political participation. Secondly, to spot shifts in sources of political infor-
mation. Lastly, to assess and investigate trends in non-traditional ways of political
participation. It is important to recall that we refer to political participation as any
activity through which individual express their own opinion with the goal of exerting
influence regarding political decision-making.

2.1 Survey Data
We use two different surveys to gauge political participation in Mexico. On the
one hand, we use Election Day turnout data first, from the Federal Electoral
Institute, or IFE, and then from the National Electoral Institute or INE [10].
From these sources we obtain turnout for parliamentary and presidential elec-
tions between 1964 and 2015. Moreover, we obtain Election Day turnout for
each of the states in Mexico between 1991 and 2009. On the other hand, we use
data from the National Survey on Political Culture and Citizenship, or ENCUP
http://www.encup.gob.mx/en/Encup/Bases_de_datos. This survey
examines characteristics and practices of political culture in Mexico. This survey
also consists on a National representative sample of the population in Mexico of
ages 18 and older. Data is available for the years 2001, 2003, 2005 2008 and 2012
(http://www.encup.gob.mx/en/Encup/Bases_de_datos). In relation
to ENCUP 2016, we begin by examining traditional measures of political participa-
tion such as attending political meetings, signing letters, calling authorities, participa-
tion in civil associations, contacting representatives and political parties and, where
available the use of Internet and online social media to access political information.
Next, we inquire on the sources of political information of the population. Finally, for
the years where present, we describe political participation in non-traditional ways
such as online activism and social networks. To gauge political participation in Mex-
ico, we use data from the National Survey on Political Culture and Citizenship,
or ENCUP http://www.encup.gob.mx/en/Encup/Bases_de_datos.
This survey examines characteristics and practices of political culture in Mexico. This
survey also consists on a National representative sample of the population in Mexico
of ages 18 and older. Data is available for the years 2001, 2003, 2005 2008 and 2012

http://www.encup.gob.mx/en/Encup/Bases_de_datos
http://www.encup.gob.mx/en/Encup/Bases_de_datos
http://www.encup.gob.mx/en/Encup/Bases_de_datos
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(http://www.encup.gob.mx/en/Encup/Bases_de_datos). In relation
to ENCUP 2016, we begin by examining traditional measures of political participa-
tion such as attending political meetings, signing letters, calling authorities, participa-
tion in civil associations, contacting representatives and political parties and, where
available the use of Internet and online social media to access political information.
Next, we inquire on the sources of political information of the population. Finally,
for the years where present, we describe political participation in non-traditional
ways such as online activism and social networks.

2.2 Twitter Data
Given the nature of this study, it is worth briefly discussing the ethical, legal, and
social implications of using Twitter data to conduct research. The tweets that were
collected through the public Twitter API are subject to the Twitter terms and con-
ditions. Thus, the privacy policy used by Twitter indicates that users consent to the
collection, transfer, manipulation, storage, and disclosure of data are public. This
study analyzed only tweets that were completely public (i.e., no privacy settings were
selected by the user). Thus, there was no expectation of privacy by the user [5].

We collected publicly available tweets related to the president of Mexico, En-
rique Peña Nieto, and his personal Twitter username, also known as Twitter handle,
@EPN. The data was collected from October to November 2015 via the Twitter
streaming API (https://dev.twitter.com/streaming/overview). In
this regard, we decided to build a corpus of tweets based on a personalized list of
thirteen topics where some of them are paired with Peña Nieto’s keyword. This list is
as follows: 1.-Peña Nieto, 2.-crisis, 3.-México, 4.-#Ayotzinapa, 5.-corrupción (cor-
ruption), 6.-sociedad (society), 7.-derechos humanos (human rights), 8.-periodistas
(journalists), 9.-economı́a (economics), 10.-renuncia (renounce), 11.-petróleo (oil)
and 12.-inflación (inflation). This list was identified through empirical consultation
and by experimentally querying the Twitter database to investigate which terms were
most commonly used. We can also argue that our list of 12 keywords is highly related
to our own research interests and we are only interested in tweets posted in Spanish.
Therefore, it is important to bear in mind a possible bias in the chosen topics.

These tweets are openly available to the public on the web which implies that
protected tweets will not be picked up. Consequently, their use for research is
typically thought not to raise any ethical concerns. Twitter provides a continuous
stream of public information. It does so by allowing millions of people to broadcast
short messages known as “tweets”. In this context, people can “follow” others to
receive their messages, forward or “retweet” (“RT” in short) tweets to their own
followers, or mention (“@” in short) others in tweets. People often label tweets
with topical keywords or “hashtags”. A hashtag is a convention among Twitter users
to create and follow a thread of discussion by prefixing a word with a # character.
Thus, Twitter tracks phrases, words, and hashtags that are most often mentioned and
regularly post them under the title of trending topics.

http://www.encup.gob.mx/en/Encup/Bases_de_datos
https://dev.twitter.com/streaming/overview
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Our sample consisted of 150,000 tweets published by 46 399 users that emerged
during the observed time window. This sample was stored for further analysis. This
data collection contains information such as: user ID, date and time that the user
account was created, the screen name or alias, the number of followers, time when a
tweet was posted, the tweet itself, language, device used to post the tweet (source),
and the user-defined location (when tweet location service was on). It is important
to note that approximately 1% of all tweets published on Twitter are geo-located.
This is a very small portion of the tweets, and it is often necessary to use the profile
information to determine the tweets location [4].

Tweets are the basic atomic building block of all things in Twitter. Given that the
text of the status update (the tweet itself) includes embedded data such as: retweet,
hashtags and mentions, we extracted these four features to improve our exploratory
approach.

3 Results
The political community thinks political participation goes beyond the election of
representatives [6]. Activities such as protests, joining civil associations and writing
letters may be also considered forms of participation. Thus, [6] finds that the levels
of this form political participation are, on average, larger in Mexico than in similar
countries of Latin America.

The emergence of new ways of participation such as online social networks
suggests that agencies through which political participation is channelled might be
changing. It is sufficient to notice that, even if the ENCUP http://www.encup.
gob.mx/en/Encup/Bases_de_datos started tracking participation in online
social networks in 2012, the level of participation in online social networks is
comparable to the average level of participation of people calling the radio. In order
to single-out changes in the ways new outlets affect social participation, we plot in
Fig. 1 trends of the participation agencies discussed above.

Notice that, even if channels of participation such as sending letters, writing to
the President and calling the radio appear to lose ground after 2008, participation
levels through different channels seem to follow the same trend. Importantly, there
appears to be a general decrease in political participation between 2005 and 2008,
which is followed by a slight increase between 2008 and 2012.

It is important to note that ENCUP http://www.encup.gob.mx/en/
Encup/Bases_de_datos began reporting Internet as a source of information
only from 2008 and online social networks on 2012. Hence, Fig. 2 shows trends of
the usage of different media as sources of political information.

Even though trends in the usage of different media as sources of political infor-
mation appear to be the same, the decrease in the use of the Internet as a source of
information appears to be less steep than the decrease of other sources of information.
However, the television continues to be the largest source of political information
followed by the radio.

http://www.encup.gob.mx/en/Encup/Bases_de_datos
http://www.encup.gob.mx/en/Encup/Bases_de_datos
http://www.encup.gob.mx/en/Encup/Bases_de_datos
http://www.encup.gob.mx/en/Encup/Bases_de_datos
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Fig. 1: Political Participation Levels in Non-Electoral Activities between 2001 and
2012.

It is interesting to note that by 2012, the same proportion of the population reported
newspapers and the Internet as their main source of political information. Moreover,
it should be noted that the proportion of people that reports online social networks as
their source of political information is close to those that said comments were their
main source of information.

The trends showed above seem to suggest several general patterns. First, that
in Mexico there are low levels of interest in politics which correlate and, maybe,
translate into a decrease in the levels of political participation in the last 20 years.
Second, that even though Mexicans participate politically in activities other than
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Fig. 2: Sources of Political Information between 2001 and 2012.

voting, such activities appear to be limited in their level of social and political
engagement. Third, that in recent years the sources of political information that
Mexicans have access to have been disrupted by the emergence of the Internet and
online social networks. An example of this is the online social protest #YoSoy132.
This protest was mainly organized by university students and began as opposition to
the now president of Mexico, then candidate of the Institutional Revolutionary Party
or PRI for its acronym in Spanish, and the alleged biased coverage the mainstream
media in Mexico had of the 2012 general election.

Following the structure of the analysis above, we begin by looking at the level
of political participation in Twitter. In order to gauge online interest in politics, a
possible approach is to visualize the daily frequency of tweets related to Enrique
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Peña Nieto. As Twitter has become a valuable tool to track and to identify patterns
of mobility and activity, we now turn to examine and capture all locations where
our collected tweets were posted. According to [4], approximately 1% of all tweets
published on Twitter are geo-located i.e., users can optionally choose to provide
location information for the tweets they publish. This is a very small portion of the
Tweets, therefore, we decided to use the profile information with the aim to determine
the location. Fig. 3 provides a geographical heat map mentioning the president of
Mexico Enrique Peña Nieto aimed to identify regions of high density of tweeting
activity. In this case, the colour scheme denotes blue color to indicate low activity,
and red color to indicate high density. Thus, it is possible to see that the central region
of Mexico is the one with the highest level of political engagement.

#YoSoy132 highlights the importance of the OSN Twitter in the diffusion of
political information in Mexico. As such, we now move our attention to the case
presented by our Twitter data. It is important to stress that the analysis that follows is
limited to our sample and by no means intends to generalize our findings to political
participation in Mexico. However, for ease of exposition, we will refer to political
participation levels in Twitter within our sample simply as political participation.

Fig. 3: A geographical heat map showing the distribution of tweets in Mexico. This
map clearly highlights the regions of high density and effectively summarizes the
important regions in our dataset. In this case, blue color denotes low activity, and red
color denotes high activity.

Having described the most active regions in terms of political participation in and
having visualized the way in which political participation developed, we turn to anal-
yse the way in which people participate through Twitter. As in traditional expressions
of political participation, online social activism can take different forms. In Twitter
political participation involves engaging in the online social network through tweets.
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Particularly in [8] is pointed out that Twitter users engage with others by addressing
users in a conversation through the @ sign and by generating conversational tags
through the use of hashtags. In order to identify political participation in Twitter, we
begin by building a mentions network. In Fig. 4, we refer to users through nodes. If
user i mentions user j in her message, we draw a link between node i and node j. The
size of the node represents the number of times the node has been mentioned.

Fig. 4: Network of political participation in Twitter.

Through the visualization of the network it is possible to assess active users
in the Twitter mention network. We see that users @EPN, @DeniseDresserG,
@Change Mex, @SinEmbargoMX and @AristeguiOnline are the most mentioned
in the sample. This first approximation is useful to categorize the important users
within the network. The first category are news agencies, which are represented
by @SinEmbargo and @AristeguiOnline. The second category are online social
activism groups and social activists, represented by @Change Mex. Finally, the third
category is represented by political pundits like @DeniseDresserG.

Users in Twitter typically organize themselves around specific interests, such as
a sports team or hobbies, which facilitates interactions with other users who share
similar preferences. These users classify their tweets using topic-specific hashtags
[7]. Tweets that contain hashtags entities are inherently more valuable in terms of
embedding extra information and bridging knowledge [9]. With this in mind, we
identify the online communities that are related to the president of Mexico, Enrique
Peña Nieto.

According to our dataset it was possible to identify the most prevalent hashtags
appearing in our sample. These topics are as follows: #SinCuotasNiCuates, #Ya-
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CholeConTusQuejas and #LeyFayad. The first one is related to an online petition
that intends to stop Enrique Peña Nieto from nominating people close to him to the
highest court in Mexico: the Suprema Corte de Justicia (Supreme Court of Justice).
The second hashtag is related to a TV spot that intended to communicate to the
viewers that people is tired of complaints against the government. The third hashtag
is related to a law proposal put forward by Omar Fayad. The so called Ley Fayad
(Fayads Law) intended to restrict online freedom of speech.

In Fig. 5 we identify large differences on the way in which people participate
within different online communities. As can be appreciated within #SinCuotasNiCu-
ates there is a user that is being mentioned by most of the other users. This is
Change.org, the online social activism website. In contrast, there are different users
that concentrate mentions but in a smaller scale. These users are political pundits
such as Julio Astillero (@julioastiller) and Camacho (@CartonCamacho), and social
activists such as Enrique D. (@kikesma) and different news agencies just like the
magazine Proceso (@revistaproceso).

Fig. 5: Mentions network for the online community #SinCuotasNiCuates, #YaChole-
ConTusQuejas and #LeyFayad.

Our case study of Twitter data suggests that offline political participation in
Mexico can be enhanced through online political participation in the OSN Twitter.
This is achieved by enabling communities that are usually known in Mexico for
its low levels of political participation to participate through different agencies and
hashtags. However, it is important to stress that our observations are limited to our
sample and, to be generalized, need to be further validated with more data.
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4 Conclusion
This paper examines online and offline political participation in Mexico. Through the
use of survey data, our article underscores the low levels of interest Mexicans have
in politics. This level of interest reflected in the low level of political participation.
In particular, we notice that levels of political participation are dependent on the
election cycle and, at the same time, regions within the country. Moreover, we note
that Mexicans receive political information mainly from television, with other sources
of information such as newspapers, radio, the internet and online social networks
well behind. In terms of political participation, we see that as the level of personal
interaction needed to take part in political action increases, participation seems to
decrease.

On the other end, the emergence of new technologies such as Twitter facilitate
social interaction to levels never seen before. Therefore, we considered important
to examine the way in which political participation in Twitter compared to levels of
political participation offline. In our sample of tweets, we found that the general level
of online political participation seemed to increase. However, political participation
online appears to be different from offline political participation. These differences
should be taken with caution because our Twitter sample may not be representative of
the Mexican population. In this regard, we observed people participated in three on-
line protests: #SinCuotasNiCuates, #YaCholeConTusQuejas and #LeyFayad. These
protests differed in their content, duration and agencies involved. Particularly, we
noticed that the duration of the protests may well depend on the agencies involved as
#SinCuotasNiCuates was organized around @Change Mex which most likely orga-
nized the debate online. This contrasts with #YaCholeConTusQuejas and #LeyFayad,
where the online protests where not organized. This lack of organization might have
well contributed to their demise.

Taken together, this study underscores the potential of using social media analysis
to develop insight into encouraged users to share political views, and opens the possi-
bility to understand and compare public participation on various scales. Moreover,
we show that emergent topics related to politics in Mexico are important because
they could help to explore how political participation becomes of public interest.

As was mentioned before, most of our analysis is merely exploratory and, thus,
poses questions for future research. Such questions include How do the agencies
contribute on the emergence and duration of online protests? and How does online
social activism translate into offline activism?
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Abstract Politicians use social media to engage and communicate with voters, in
particular during election campaigns. This article investigates data collected from
politicians’ Facebook pages during the 2013 Australian Federal election and the
2013 Malaysian General election. We wish to gain insight into whether the likes and
comments of Facebook users reflect actual connections between politicians during an
election campaign. Intuitively, a Facebook user who supports a particular party would
not like the posts published by candidates who are associated with opposing parties.
However, we observe that users often like the posts by candidates belonging to
opposing parties. Our analysis of the data shows that many of the likes and comments
made by Facebook users are statistically insignificant. Deletion of these insignificant
likes and comments clearly reveals the different parties of the political system. In
this paper we consider only the topology of the network representing the datasets,
presenting an alternative to the often cumbersome sentiment analysis.

1 Introduction
In today’s political landscape, social media plays an important role, in particular dur-
ing election campaigning [18, 19]. Over the past decade, Facebook, Twitter, YouTube
and other social networking sites have become a popular means of communication
between political candidates and voters [10]. Politicians commonly use these plat-
forms to make public announcements, in the hope of politically engaging a larger
proportion of the population [7].

Past and current research of online election campaigns commonly focus on
analysing the language used by politicians [9, 11, 14], the number of likes and
comments candidates receive during election periods [3, 9] and the feasibility of us-
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ing online campaigning to predict the election results [20]. A search of the literature
shows that often only basic statistics are used to analyse data from social network
sites [6, 12].

In this paper, we take the analysis of social media data one step further by
representing it as a complex network. The analysis of online campaigning data
as a complex network overcomes some of the limitations of previous studies. For
example, comparing the number of likes that different candidates receive during a
campaign may lead to false conclusions as not every like is significant. Furthermore,
as the authors of [8] point out, a like is not always used as intended and may indeed
represent the opposite, that is, disagreement.

By representing two separate data sets, Facebook posts by Australian candidates
of the 2013 Australian Federal election and Facebook posts by Malaysian candidates
of the 2013 Malaysian General election as bipartite networks, projecting them and
extracting the backbone (see Definition 3.1), we demonstrate that we can identify the
most significant likes and comments made by Facebook users which then leads to
the identification of the different political parties that were well hidden within the
network structure.

The rest of the paper is outlined as follows: Section 2 outlines the data collection
process and gives a description of the data in the form of some basic statistics.
Section 3 provides the necessary background on the identification of significant
connections in complex networks. Sections 4 and 5 analyse the Australian Federal
election and Malaysian General election, respectively. We conclude the paper by
summarising our findings and commenting on future work in Section 6.

2 The data
This paper studies the 2013 Australian Federal election (AFE13) and the 2013
Malaysian General election (MGE13). We extracted posts from the Facebook pages
of selected candidates who were part of one of the two elections. The gathered data
contains information about the number of likes and comments that posts received as
well as the names of candidates who created the posts and the names of users who
liked or commented on these. We chose Facebook, rather than other social media
platforms, as Facebook allows dialogues between politicians and voters. Voters can
send messages directly to politicians and politicians can reach voters through public
announcements on their Facebook pages [4, 7].

2.1 Collection
We used NodeXL, an add-in for Microsoft Excel that is freely available at http:
//nodexl.codeplex.com/, to extract data from the candidates’ Facebook
pages. We restricted the data collection to particular candidates and the respec-
tive campaigning periods: 35 days for the Australian Federal election (4th August
2013 - 7th September 2013) and 33 days for the Malaysian General election (3rd April

http://nodexl.codeplex.com/
http://nodexl.codeplex.com/
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2013 - 5th May 2013). Only candidates with an active Facebook page were included
in this study. The final data sets contain all posts from 55 Australian candidates and
all posts from 51 Malaysian candidates during the respective campaigning periods.
When the data was initially collected our main interest lay in the 2013 Malaysian
General election. As Facebook is not very popular among Malaysian politicians our
sample of candidates from Malaysia’s general election is relatively small. The Aus-
tralian Federal Election served as a comparison and hence, the sample of Australian
candidates was kept approximately the same size, although Facebook is a popular
means of commnication amongst Australian politicians. About 45% of the candidates
were chosen based on the seats they were contesting. We chose candidates who were
contesting marginal seats (seats that are held with less than 56% of the votes) where
the outcome of the election is greatly uncertain. The rest of the candidates were
selected randomly.

2.2 Basic statistics
Extracting every post that was made by each of the chosen candidates during the
campaigning period resulted in two datasets, with 3,608 posts made by the Australian
politicians and 8,348 posts made by the Malaysian politicians.

Table 1 gives further information about the collected posts in the form of some
basic statistics.

Table 1: Basic statistics of the extracted data.

AFE13 MGE13

Number of posts 3,608 8,348
Average number of posts per candidate 66 164
Total number of likes 371,092 2,512,248
Average number of likes per Facebook
page

6,747 49,260

Total number of comments 81,884 387,501
Average number of comments per Face-
book page

1,489 7,598

2.3 Network construction
There are several ways of constructing a network from the data. The structure of
the data is clearly bipartite, with Facebook users forming the primary node set and
political candidates forming the secondary node set. Facebook users actively form
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Fig. 1: User 1 comments on a post by AFE13 candidate Malcolm Turnbull. Therefore,
the user is connected by an edge to Turnbull in the bipartite network representation
of the data.

connections to posts and candidates by liking or commenting on posts. One possible
representation of the data is as a bipartite network of users and candidates, with an
edge existing between a user and a candidate if the user commented on at least one
of the candidate’s posts (see Fig. 1). A different representation could have users and
candidates connected by likes, rather than comments. It is also possible to construct
a network of users and the posts by the candidates, with users being directly linked
to posts, rather than candidates. Table 2 lists the different possible bipartite network
representations of the data that are considered in this study.

Table 2: A list of the different bipartite network representations that are examined in
this study. U denotes the primary node set, V denotes the secondary node set, and E
the set of edges. Note that |E|, ie. the number of likes/comments, does not match the
numbers displayed in Table1, as a user is linked to a candidate if he liked/commented
on at least one of the candidate’s posts that is, the first time he likes/comments, and
not afterwards.

Name U V E |U | |V | |E|

AFEUCL Users Candidates Likes 119,355 55 143,870

AFEUCC Users Candidates Comments 56,495 55 66,240

MGEUCL Users Candidates Likes 541,726 51 939,395

MGEUCC Users Candidates Comments 198,729 51 272,349

(a)

User 1

Turnbull

(b)
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3 Identifying parties and groups of politicians
Election campaigns on Facebook are centred around the individual politicians rather
than their associated parties [7]. Our research shows that despite Facebook cam-
paigns being candidate centred it is possible to identify the different parties of the
political system within the network representation of the data by considering only
the network’s topology.

To identify the parties within the network, we use an approach called backbone
extraction [13, 16]. The backbone of a network is defined as follows:

Definition 3.1. The backbone of a network G(U,E), with node set U and edge set E,
is defined as the sub-graph G′(U,E ′) of G, such that the edge set E ′ of the backbone
G′ contains only the most significant edges in E.

Determining the most significant connections is not trivial, but requires sophis-
ticated statistical analysis [13, 16]. Recently, the first and third author introduced
a very efficient means of extracting the backbone that considerably reduced the
computation time of previous methods [13]. They further demonstrated that the
backbone of a one-mode projection reveals groups of nodes that are well connected.
One-mode projections are simplifications of bipartite networks that only consider
one of the two node sets. For instance, when projecting the bipartite network of
users and candidates onto the set of candidates, the set of users is dropped and two
candidates are connected if at least one user is connected to both candidates in the
bipartite network. As noted in both [13] and [16], extracting the backbone of this
projection should reveal the significant connections between candidates and this in
turn may allow the identification of the different parties contesting the elections using
community detection algorithms. We were interested in checking whether the likes
and comments of Facebook users reflected actual connections between politicians
during an election campaign.

In [13] an edge was defined as significant if its weight was greater than the mean
plus three standard deviations of the approximated weight probability distribution.
It was shown that the weight probability distribution follows a Poisson binomial
distribution and can be approximated by either the Poisson or Normal distributions.

4 The Australian Federal election
To find the significant connections between candidates of the 2013 Australian Federal
election we consider the networks of Facebook users and candidates connected by
likes (AFEUCL) and comments (AFEUCC).

4.1 Analysis of likes
To examine whether the likes of Facebook users reflect existing connections between
candidates of the Australian Federal election, we project the AFEUCL network onto
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the set of candidates. Two candidates are now connected if at least one user liked at
least one post of each of the two candidates. The edge connecting the two candidates
is given a weight that is equal to the number of users who liked posts by both
candidates. This weight is then compared to the expected weight and only included
in the backbone if it is significantly larger as per [13].

Fig. 2: The projection of the AFEUCL network onto the set of candidates (a) and its
backbone (b). The backbone contains 48% of the edges of the projection.

The projection of the AFEUCL network (Fig. 2a) is very dense and a close examina-
tion reveals that candidates from different parties are well connected. In other words,
users often like posts by candidates from opposing parties. Gerlitz and Helmond [8]
state that the like button can express a variety of feelings and may also be used
ironically. Hence, simply considering the likes of users does not reveal the candidates
who belong to the same party.

4.1.1 Parties
Extraction of the backbone removes most of the connections between candidates of
different parties, leading to the conclusion that the connections created by users who
like posts by candidates of opposing parties are statistically insignificant. Approxi-
mately 52% of edges were identified as insignificant. The backbone of the AFEUCL
network (see Figure 2b) clearly reveals the different Australian parties, which were
not visible in the projection. Running a community detection algorithm such as the
one described in [17] on the backbone produces a list of the different candidates and
their associated groups. The community detection algorithm that is introduced in [17]
is based on the leading eigenvector of the adjacency matrix and aims to divide the
input network into groups such that the modularity is maximised. The modularity of a
particular division of a network into groups of nodes can be calculated by subtracting
the number of expected edges within these groups if the network was random, from
the number of observed edges within the groups. The primary reason for choosing
this algorithm is that it has been implemented in the R programming language. Note
that the authors of [13] have shown that the backbone of a projection yields higher
modularities when running a community detection algorithm than the binary and
weighted projections.

(a) (b)
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The algorithm identifies five groups in total, with all members of the Liberal-
National Coalition of Australia being in one group, all Australian Labour candidates
being in another and all Australian Greens being in yet another. Guardiani (Palmer
United Party) and Cummins (Australian Independents) are isolated nodes and hence,
each forms a separate group. Jenkins and Millard (Australian Sex Party) are part
of the group that contains the Australian Greens. Katter (Katter’s Australian Party)
belongs to the same group as the Liberal-National candidates.

The connection between the candidates of the Australian Greens and the Australian
Sex Party may be explained by the similarity of the policies of the two parties. For
instance, both parties support same sex marriage [1, 2]. The community detection
algorithm grouped Bob Katter together with the Liberal-National Coalition. In fact,
in 2013 Bob Katter announced his support for a coalition led by Tony Abbott, the
former leader of Liberal Party of Australia [5].

4.1.2 Smaller groups of politicians
In [13] an edge was included in the backbone if its weight was greater than the
mean plus three standard deviations of the approximated distribution. To identify
smaller, well connected groups of politicians within the different parties, here we
increase the threshold beyond three standard deviations. Increasing the threshold to
five standard deviations separates Katter from the Liberal-National Coalition. An
increase to eleven standard deviations results in seven communities, with Millard and
Jenkins (Australian Sex Party) forming a separate group. Each of the seven groups
now contains politicians from only one party. A further increase of the threshold
to 15 standard deviations results in the same seven groups. This shows how well
candidates of the same party are connected to each other. Instead of increasing the
threshold further to identify groups of politicians within parties, we consider the
networks of candidates of each party and the users who like their posts. We extract
the backbone with the usual threshold of three standard deviations.

The community detection algorithm identified two groups within each of the Aus-
tralian Greens, the Australian Labour Party and the Liberal-National Coalition. Inter-
estingly, when extracting the backbone of the projection onto the Liberal-National
candidates, all connections between Tony Abbott (Prime Minister, 2013 - 2015) and
the other Liberal-National candidates are removed, leaving him isolated and forming
one of the groups with all other candidates forming the second group.

Note that we do not know the reason for the divisions within the parties. This
would form an interesting research question within the area of political and social
sciences.

4.2 Analysis of comments
Projection of the AFEUCC network, where edges represent comments, yields a dense
network with candidates of different parties being well connected as was observed
in the projection of the AFEUCL network. In contrast to likes however, comments
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can usually be categorised into positive and negative. We therefore anticipate that
candidates from different parties will also be well connected in the backbone, as a
user who supports party A may positively comment on its candidates’ posts while
negatively commenting on opposing candidates’ posts.

Fig. 3: The backbone of the AFEUCC projection onto the set of candidates. The
backbone contains 56% of the edges of the projection.

Running the community detection algorithm on the backbone of the AFEUCC
projection reveals the different parties contesting the 2013 Australian Federal election.
However, the groups, with many more connections existing between candidates of
different parties, are less pronounced than in the backbone of the AFEUCL network
(see Fig. 3). Unlike in the backbone of the AFEUCL network, two candidates of
the Australian Greens, Harrison and Kitching, are now grouped with candidates
of the Liberal-National Coalition and candidates of the Australian Labour Party,
respectively. Figure 3 further shows that the Australian Greens are less well connected
than in the backbone of the AFEUCL. The greens are amongst those candidates who
received the least number of comments, explaining why they are less well connected.

The three most significant connections between members of different parties
are the edges between Bradbury (Labour) and Scott (Liberal-National), Albanese
(Labour) and Turnbull (Liberal-National), and Bishop (Liberal-National) and Bowen
(Labour). Looking at the users who commented on these candidates, we find that they
are generally supportive of one of the politicians, responding positively to their posts
and leaving negative comments to posts by candidates of the opposing party. We
also find that there are users who are against both candidates thus strengthening the
connection between opposing candidates. Interestingly, Bradbury and Scott contested
the same seat while Turnbull succeeded Albanese as Communications Minister
(though in different governments).
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5 The Malaysian general election
We repeated our experiments on the Malaysian data. For the 2013 Malaysian General
election we considered the networks of candidates and users, connected by likes
(MGEUCL) and comments (MGEUCC).

5.1 Analysis of likes
To identify significant connections between Malaysian politicians, we project the
MGEUCL network onto the set of candidates. Similar to the projection of the AFEUCL
network, the projection of the MGEUCL network is very dense and many connections
exist between members of opposing parties.

5.1.1 Parties
Extracting the backbone with a threshold of three standard deviations and running
the community detection algorithm reveals two groups of candidates (see Fig. 4).
One contains the members of the National Front and Ibrahim Ali (an independent
candidate), while the other group contains members of the Democratic Action Party,
the Pan-Malaysian Islamic Party and the People’s Justice Party who together form
the opposition coalition. From news articles [15], it turns out that the independent
candidate Ibrahim Ali was endorsed by the former prime minister and Chairman of
the National Front, Dr Mahathir Mohammad, which explains his grouping with the
party.

Fig. 4: The backbone of the MGEUCL projection onto the set of candidates. The
backbone contains 45% of the edges of the projection.

An interesting node is Saifuddin Abdullah (National Front) who has significant
connections to both of the identified groups. As reported in [15], Saifuddin Abdullah
is a known progressive-thinking candidate, which does explain his support base
extending to both sides of politics. He has also made statements that are in conflict
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with the National Front [15]. In addition, two years after the elections, in 2015, he
joined the People’s Justice Party, part of the opposition coalition.

5.1.2 Smaller groups of politicians
Extracting the backbone of the network of candidates of each party and the users
who like their posts uncovered two groups within the National Front, one of them
containing the current Prime Minister, Mohd Najib Tun Abd Razak (assumed office
in 2009), and nine other politicians. Eight of the ten candidates in this group contested
urban seats, whereas half of the candidates in the second group contested rural seats.
No groups could be identified within the other parties.

5.2 Analysis of comments
As was the case with the Australian Federal election, the candidates of the Malaysian
General election who belong to different parties are more connected in the backbone
of the MGEUCC network (see Fig. 5) than in the backbone of the MGEUCL network.

Fig. 5: The backbone of the MGEUCC projection onto the set of candidates. The
backbone contains 39% of the edges of the projection.

The community detection algorithm [17] identified five groups of politicians in
the backbone of the MGEUCC network. Ahmad Fauzi Zahari and Chua Teik Siang
are both isolated nodes and hence each forms a group on his own. The third group
consists of politicians associated with the National Front along with a candidate
from the People’s Justice Party. The fourth group consists of members of the Pan-
Malaysian Islamic Party, three members of the National Front and one member of
the People’s Justice Party. The fifth group consists of members of the Democratic
Action Party, members of the People’s Justice Party, three candidates of the National
Front and three members of the Pan-Malaysian Islamic Party.

The three most significant connections between members of opposing parties are
the edges connecting a particular member of the National Front, Abd Aziz Sheikh
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Fadzir with Mohd Rafizi Ramli, Mohamed Azmin Ali, and Ibrahim Yaacob, three
members of the People’s Justice Party. We found that the users who connected Abd
Aziz with the other 3 candidates were mostly in favour of one of the candidates. In
addition there were users who posted neutral comments to both politicians’ posts.

6 Conclusion and future work
Previous research has shown that the ‘like’ button is not always used as intended
and may be used to express a range of feelings. In certain cases it may be used
ironically, with a user hitting like in protest [8]. Our analysis of Facebook likes
confirmed that users often like political candidates of opposing parties, hence creating
connections between them. By using backbone extraction, we were able to show
that these connections were mostly statistically insignificant. Retaining only the
significant connections clearly revealed the parties that are contesting the election
as well as divisions within some of the parties. Identifying the reasons for divisions
within parties requires further research, probably something more suited to political
scientists.

Users commenting on posts made by candidates of opposing parties was a common
observation. Our analysis revealed that these users were generally supporting one
candidate and leaving negative comments to the opposing candidate’s posts. The
work presented in this paper is a first step towards identifying positive and negative
posts using complex networks tools, presenting an alternative to sentiment analysis.
While the analysis of the content of comments to determine whether someone is
supporting or opposing a candidate is cumbersome, the approach presented here
is fast and efficient. Further research in this direction of identifying positive and
negative posts will be carried out in the future.
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Abstract Social networks are becoming a wide repository of information, some of
which may be of interest for general audiences. In this study we investigate which
features may be extracted from single posts propagated throughout a social network,
and that are indicative of its relevance, from a journalistic perspective. We then
test these features with a set of supervised learning algorithms in order to evaluate
our hypothesis. The main results indicate that if a text fragment is pointed out as
being interesting, meaningful for the majority of people, reliable and with a wide
scope, then it is more likely to be considered as relevant. This approach also presents
promising results when validated with several well-known learning algorithms.

1 Introduction
Nowadays social networks have become popular systems for sharing and exchanging
messages between users. This high rate of information has also turned into a great
source of potential, and interesting knowledge, that could be used for the creation of
valuable information for a wider audience. In fact, much of the available information
scattered among different “discussion groups” in social media, might actually be
used in news, or in news creation, since thriving topics on most social networks many
times reflect important current events which may be of interest for a more generic
audience. On the other hand, we also know that more than usually, information in
social media is not relevant outside a short circle of users. Users tend also to post
private, personal, or just of a very narrow scope information on their “pages”. In this
panorama it is important to have systems capable of aiding in the identification of
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what might be interesting information to a wider audience. The goal of the present
study is, therefore, to develop a classification model that can automatically identify
relevant information in text messages on social networks.

The process of deciding if a particular text has relevant information is neither
easy, nor objective, but it is, by far, the most important concern in handling infor-
mation overload and retrieval [13]: what is relevant for one person, might not be
relevant for another; what is not relevant now, might be in a few days or even in a
few minutes from now; what is not relevant, can gain relevance just by the inclusion
of some context. The combination of possibilities is endless. Moreover, the identifi-
cation of reasons for personal relevancy diverge from person to person, thus consists
on a psychological process by which relevance judgments are made [13] and are
computationally difficult to be imitated.

Our approach to the detection of relevance is based on a generalized consensus
about which information is relevant to be considered a ‘news’ from a journalist
perspective. Although, each journalist may have its own writing style, and personal
opinion about any subject, there are a set of guidelines which can help him within this
process. Different authors ([1, 5, 6]) suggest some criteria to use: negativity, recency,
proximity, consonance, unambiguity, superlativeness, personalization, eliteness, attri-
bution, facticity, continuity, competition, cooption, composition and predictability, to
name a few.

Research related to information spread was also found to be either based on the
structure of the network it is introduced to or generated on, or on the nature of the
content in itself. In fact, while [14] ‘gossip’ analysis is based on the structure of
the network, that propels information spreading, [7] argues that virality is strictly
connected to the nature of the content, and not to the types of edges linking nodes in
specific co-occurrence or social pattern networks.

Moreover, research conducted on text virality [7] indicates that common social
network metrics alone (e.g. #likes, #retweets) are not sufficient for assessing such
a complex phenomenon and, reinforcing the above mentioned criteria, suggest that
several virality components should be considered, such as: appreciation, spreading,
simple buzz, white buzz, black buzz, raising discussion and controversiality.

Similarly, our system builds on a set of filters capable of detecting a set of
unique characteristics that will enable to create a score for each social media post,
allowing to discover “information with potential to be relevant”. Some of these
unique characteristics have commonalities to research presented in [7] and in [13],
namely: ‘controversiality’ and ‘positivess’, with the later having the same common
ground as ‘white buzz’ and ‘reliability’ (or credibility) and ‘recency’, as mentioned
in [13]. Other proposed content features add to research being conducted on the field,
such as ‘interest’, ‘meaningfulness’ and ‘scope length’, which are further detailed in
section 2.3.

In order to build a classification model it is fundamental to have annotated data
with instances to train and test. In a previous study [4] workers from Mechanical Turk
classified social network messages as “relevant” or “irrelevant”. The proposed system
consisted of a social media crawler and respective classification into “relevant” or
“not-relevant” information. However, limitations identified in this preliminary stage
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of research led to the development of a more robust and comprehensive methodology.
Instead of only asking the workers to answer a binary question about relevance, the
workers were asked to give other information that could enlighten the process of
journalistic relevance detection, namely by extending the text classification process,
in order to include the above mentioned relevance cues. The increase of text clas-
sification comprehensives and complexity also allowed us to assure a higher level
of trust on the gathered human classification. In the next section we describe this
method; we present an analysis based on our results, and draw our conclusions about
its efficiency.

The paper is structured as follows: Section 2 defines the methodology that was
followed throughout this study; Section 3 presents the results obtained from the
exploratory analysis; Section 4 explains the transformation of the users answers on
“Crowdflower” into a dataset, as well as the features extracted from each text fragment
to potentially explain its relevance. Section 5 describes the experimentation process
with several supervised learning algorithms and the results obtained; and finally,
Section 6 offers an analysis over the developed work, its viability and envisioned
future steps.

2 Related Work
3 Methodology
In order to detect relevance (or irrelevance) in text fragments, a methodology is pro-
posed and described in this section. The phases of this methodology are summarised
in fig. 1 and include: data crawling from social networks, data pre-processing, human
classification with the use of the “Crowdflower” platform and the development of a
classification model.

Each of the illustrated phases in fig. 1 is detailed in the next subsections.

3.1 Crawling from Social Networks
The first phase of this methodology consisted on data crawling from social networks.
In this case, the text fragments analysed throughout this paper are posts and com-
ments retrieved from two social networks - Twitter and Facebook - using each the
corresponding official API. In order to do so, a Java program was developed to
interface with the APIs and with a database built in PostgreSQL.

The data was collected between 1st and 4th April 2016 and included Facebook
posts and comments and Twitter tweets. Facebook posts may take the form of status,
link, image, video, offer or event. A Facebook post type status (mainly text) may be
as long as 63206 characters. Facebook posts may receive comments, likes, shares
and reactions (love, haha, wow, sad and angry). Post comments and post shares may
also receive likes and replies. A Twitter tweet has a 140 character limit and may
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Fig. 1: Pipeline representing the methodology followed.

be marked as favourite and / or be retweeted (which would be the equivalent to a
Facebook share).

Data retrieval on twitter was conducted by presenting the API with ten keywords
(detailed in section 2.1.1), which were distributed by 100 queries. In what Facebook
is concerned, data retrieval was performed on the pages of fourteen international news
providers (detailed in section 2.1.2). A maximum of 1000 posts and of 20 comments
per post was collected in each news provider page. These difference between the
collection methods among the two networks were enforced by restrictions of their
own API.

The initial retrieved dataset was composed of 11051 posts, 128673 comments and
76280 tweets.

3.1.1 Twitter
Regarding Twitter, tweets were gathered using the search method provided with one
or more keywords from the following list:

• “Refugees” and “Syria”
• “Elections” and “US”
• “Olympic Games”
• “Terrorism”
• “Daesh”
• “Referendum” and “UK” and “EU”

These keywords were chosen based on their popularity in the initial gathering
moment, since the probability of fetching a great quantity of tweets in current trending
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topics is higher. The search was conducted among the tweets from the previous seven
days [3] from the collection moment.

3.1.2 Facebook
In regard to Facebook, the available API did not allow search of posts by keyword.
In order to emulate this collection methodology, several posts and comments were
collected from fourteen of the most popular international news providers’ pages,
namely: “Euronews”, “CNN”, “Washington Post”, “Financial Times”, “New York
Post”, “The New York Times”, “BBC News”, “The Telegraph”, “The Guardian”,
“The Huffington Post”, “Der Spiegel International”, “Deutsche Welle News”, “Pravda”
and “Fox News”. After the posts and comments collection a search by the keywords
was conducted, using the ones specified in section 2.1.1, in order to obtain coherent
subject distribution among both networks.

3.2 Text Fragment Pre-Processing
After the crawling from social networks, a control phase was conducted over the
gathered text fragments. Since the fragments were extracted for inclusion in a “Crowd-
Flower” task, it was important to guarantee that the participants in the task had access
to fragments with several quality standards. Therefore, only the text fragments with
the following conditions were considered in the sample:

• Number of words between 8 and 100, since if the text fragment is too short
in words there may not be enough information to answer the task questions.
However if it is too long, it takes too much time and effort for the CrowdFlower’s
workers to complete the task.
• Written in the English language. A Naive Bayes classifier [10] was used to infer

the text fragment’s language, assuring homogeneity in the sample.
• With no profanity words, in order to avoid compromising the seriousness of the

task.
• Containing all the words from at least one group (from section 3.1.1).
• Not a Twitter “retweet”. This assures that all the text fragments are unique.

Other pre-processing actions taken included the removal of links from the text. The
complete dataset obtained after the control stage was composed of 1913 comments,
132 posts and 14860 tweets.

The text fragments, as specified in section 3.1.2, include official posts from news
channel pages as well as comments in these pages, increasing the probability of
having both relevant and irrelevant information in the collected fragments.

Finally, a sample of 101 text fragments was selected in order to assure a higher
quality control of the fragments and an equal representativity of each keyword,
message type and social network (see Table 2). Some statistics regarding the data
selected include: posts from 10 distinct pages, comments from 28 unique users and
tweets from 48 unique users. On average posts obtained 3247 likes, 741 shares and
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573 comments; an average of 56 likes and 7 replies on comments; and an average of
2 favourites and 4 retweets on tweets. Facebook messages are composed, on average,
by 22 words, while Twitter messages include an average of 17 words.

3.3 Crowdflower Classification
In order to perform the relevance classification of the dataset, the selected social
network messages were incorporated in a classification task in the online platform
“Crowdflower”. This platform was chosen over other ones (e.g. Mechanical Turk)
because it offers more control over the quality of the experiment and the users
working on it.

The “CrowdFlower” task consisted in a list of eight questions that the users
(“workers”) had to answer about the journalistic relevance of a text fragment (see
Table 1). The questions were compiled based on the journalistic criteria to find
relevant information previously presented ([1, 5, 6]).

Table 1: Questions used in the “Crowdflower” experiment.

Relevance Criteria Question

“Interesting” Is the topic of the fragment “not interesting” or
“interesting”?

“Controversial” Is the topic of the fragment “not controversial” or
“controversial”?

“Positive” Is the fragment “negative” or “positive”?

“Meaningful” Is the fragment “private/personal” or “meaningful
for the majority of people”?

“New” Is the information in the fragment “already known”
(for the majority of people) or “new”?

“Reliable” Is the information in the fragment “unreliable” or
“reliable”?

“Wide Scope” Has the information in the fragment a “narrow” or
“wide” scope?

“Relevant” Is the information in the fragment “irrelevant” or
“relevant”?

Each of these questions allowed integer answers in a 5 point Likert scale.
One advantage of the “CrowdFlower” platform, as stated before, is the quality

assurance among the “workers“ in a task. In this study the following conditions were
assured:
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• Each fragment was classified by 7 different users, in order to analyze the consen-
sus and subjectivity in the task.

• Each user classified at most 10% of the total fragments, because it was desirable
to have as much as variability of participants as possible.

• Only Level 3 “CrowdFlower” users could complete this task. This is the best
quality allowed in the platform and relates to the performance of the “workers”
on test questions [2].

• All users were either from the UK or the USA, in order to control cultural
differences.

• It was assured that each user took at least 20 seconds to complete the job, toward
avoiding random and unconsidered answers.

After the experiment in “CrowdFlower” was concluded, a dataset was obtained
with the text fragments and its classifications. A sample summary is presented in the
next subsection.

3.4 Sample Summary
As a result of the previous phases, a total of 707 answers from 82 different users
were collected. Regarding the characterization of this sample, 101 text fragments
from 10 news providers’ pages were included and the distribution of text fragments
by keyword and message type is detailed in Table 2.

Table 2: Number of text fragments from each group of keywords and social network.

Keyword FB Posts FB Comments TW Tweets

“Refugees” and
“Syria”

5 5 8

“Elections” and “US” 5 5 8
“Olympic Games” 2 5 8
“Terrorism” 5 5 8
“Daesh” 2 5 8
“Referendum” and
“UK” and “EU”

4 5 8

4 Exploratory Analysis
In order to better understand the process of relevance classification, an exploratory
analysis was conducted using Pearson Correlation. The results of this analysis are
presented in Table 3.
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Table 3: Correlations between all the questions and the “Relevant” question for the
707 answers.

“Relevant”

“Interesting” r 0.61

p <0.001

“Controversial” r 0.24

p <0.001

“Positive” r 0.12

p <0.001

“Meaningful to the Majority” r 0.60

p <0.001

“New” r 0.15

p <0.001

“Reliable” r 0.60

p <0.001

“Wide scope” r 0.65

p <0.001

The correlations and p values indicate that the more the information is “interest-
ing”, “meaningful for the majority”, “reliable” and with a “wide scope”, the more it
is perceived as being “relevant” by the evaluators.

5 Surrogate Feature Extraction
In the previous section some characteristics of the information were presented as
indicators of relevance in text fragments. However these variables were dependent
on human classification and in order to classify a text fragment as “relevant” or
“irrelevant” these features must be extracted automatically from the text or social
network information. Therefore, several features were added aiming at replacing
each question.
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Table 4: Conversion between questions and automatic features.

Relevance Criteria Goal Surrogate Features Description

Interesting
This group of metrics

is based on the idea
Number of user mentions

Number of “@” used in the text fragment to refer

other users in the same social network

that people will react

and share more
Number of likes

Number of favorites in a tweet or number of likes

in posts or comments from Facebook

information if it

is interesting.
Number of shares

Number of “retweets” of a tweet or the number

of shares of a Facebook post

Comment count
Number of comments of a Facebook post and is

not applicable to Twitter

Personal vs.

Meaningful

Evaluate the

subjectivity in the
Sentiment Analysis [9]

Processed with the “polarity” function from the package

QDAP [11] in R

text fragment. Number of Adjectives Indicator for higher subjectivity [12]

Number of pronouns (in first or

second person)

Referred as an indicator

for relevance [4]

Reliability
Use the credibility

of the owner of
Verification status

Status (verified or not) of the Facebook/Twitter profile that

published the text fragment

the message. Number of followers
Number of followers of the Twitter profile or number of likes

in a page from Facebook

5.1 Relation between relevance criteria and surrogate features
Aiming at evaluating the potential of automatic classification of relevance, a set of
surrogate features matching the pre-established relevance criteria were extracted and
developed, as represented in Table 4. In order to do so, social media metrics and
additional methodologies were incorporated. At this stage, it was possible to correlate
three of the relevance criteria with several automated processes. For instance, a set of
surrogate social media metrics, such as number of user mentions, number of likes,
shares and comments, can be indicative of ‘interesting’ content. Likely, performing
sentiment analysis as well as adjective and pronoun counting can assist on evaluating
the subjectivity of the messages. Finally, the verification status and the number of
followers can be surrogate features for the relevance criteria ‘reliability’.

5.2 Journalistic Relevance Class
Regarding the “Relevance” question, the numeric answer was converted into cate-
gorical. Each answer was transformed into a class according to the following rule: 1
or 2 became “Irrelevant”, 3 became “Neutral” and 4 or 5 became “Relevant”. Since
each text fragment was classified by 7 users several agreement ratios were analysed
(see fig. 3).
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Fig. 2: Accuracy, precision, recall and F measure for each supervised learning
algorithm.

Fig. 3: Number of text fragments in each categorical answer (“Irrelevant”, “Neutral”
or “Relevant”) with different agreement ratios.

In order to balance the number of instances in each class, the chosen agreement
value was 5: a text fragment was considered “Relevant” if at least 5 workers answered
“4” or “5” for the text relevance question. In any other case (“Irrelevant”, “Neutral”
or “Consensus Not Achieved”) the text fragment was considered “Not Relevant”.
Therefore with this criteria the number of text fragments considered as “Relevant”
and “Not Relevant” was 51 and 50 respectively.
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6 Classification Model
In order to understand the importance of each feature, the “Relief F” metric [8] was
computed. The results revealed that the message type (which distinguishes “FB Posts”
from “FB Comments” and “Tweets”), the number of comments (if applicable) and
the verified status of the author of the text fragment are the most influential attributes.
The feature ranking obtained with this metric is presented in Table 5.

Table 5: Relief F attributes with value greater than “0”.

Features Ranking Value

message type 0.15
comment count 0.13
verified 0.06
followers count 0.01
shares 0.01

Several experiments with different models were also conducted, with “Ad-
aboostM1” and “Bayesian Networks” being the algorithms which achieved higher
accuracy (71% v.s. 70%) and F score (71% v.s. 70%). These results are summarised
in fig. 2.

7 Conclusion
In this paper we presented an exploratory study about relevance classification in a
journalistic perspective. The first stage of our methodology consisted of: (1) collecting
posts from social networks (either from Facebook and Twitter) according to a set of
popular, yet controversial, topics; (2) filtering the retrieved posts to gather a dataset
with enhanced quality (e.g. with a reasonable quantity of words, written in English,
etc); (3) submitting this final set for a classification job in “CrowdFlower”.

Our analysis of the results pointed out that interesting, meaningful, reliable and
wide scope information is more likely to be considered as relevant for a majority of
5/7 of workers. This exploratory analysis led us to identify surrogate features, which
could be accessed/extracted, or computed, automatically to predict relevance.

In a second stage we applied five machine learning algorithms to our golden
standard. In almost all metrics (accuracy, precision, recall and F-value) the “Bayesian
Networks” and the “AdaboostM1” have the best performance for the available data.
Regarding the features used, we found out that “message type” and “comment count”
are the most important ones for this analysis. Besides, the significant correlations,
the accuracy and the F-value showed that the quality control validated the proposed
methodology to detect relevance in social network messages.

Finally, for the future work two different goals could be considered. Firstly it
is important to increase the sample size of classified messages with the intent of
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strengthening the confidence in the methods used. Secondly new surrogate features
should be researched (e.g. related with the wide scope of the information in the text
fragments) to complete the automatic classification relevance model.
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Networks in Finance and Economics



Abstract The recent financial crisis has stressed the need to understand financial
systems as networks of stocks, where financial linkages can be represented by Eu-
clidean distances between stocks pair. It has also been emphasized that the relevance
of these networks relies on the representation of changes follow on the occurrence of
stress events. In finance, for instance, market crashes are the consequence of herding
behaviors that increase the correlation between the units of the system lowering the
distances between nodes and therefore the network links. Consequently, predicting
future links between stocks can be a valuable starting point for inferring markets
down-turn. This is the scope of the work. It introduces a multi-way procedure to fore-
cast stock prices by decomposing a distance tensor. This multidimensional method
avoids aggregation processes that could translate into losses of crucial features of
the system. The technique is applied to a basket of stocks composing the S&P500
composite index and to the index itself for demonstrating its ability in predicting
large market shifts that arise in the face of turbulences, such as ongoing financial
crisis.

1 Introduction
The 2008 financial crisis has shown that network theories can enrich the understand-
ing of financial systems and the comprehension of factors causing failures in financial
markets. As a consequence, a growing interest in applying methods from complex
networks in financial research has been recently developed. All these methods (see
[19], for instance) represent stock markets as correlation based networks where the
stocks are the nodes and financial linkages can be represented by Euclidean distances
between stocks pair. Furthermore, it has become clear that the relevance of these
networks relies on the representation of changes follow on the occurrence of stress
events.
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Financial markets experience sudden regime shifts where fluctuations lead to an
increase of the correlation between the units of the system, lowering in this way the
distances between the stocks and therefore the network links by creating upward
and downward trends. Those changes usually take place at critical thresholds - the
so-called tipping points - and are associated with critical transitions between alterna-
tive states of the system. Predicting these changes is a difficult task but fortunately
some theoretical researches [6, 18] suggest the existence of generic indicators for
critical transitions even when the knowledge of the functioning of the systems is
insufficient to build up predictive models. The underlying principle of most of these
indicators is a phenomenon known in dynamical systems theory as critical slowing
down. Beside the growing autocorrelations of the state variables of the system, recent
works [5, 10] have suggested that the critical slowing down phenomenon might, in
theory, generate also spatial signals such as an increasing spatial correlation near
transitions. Such occurrence is due to the fact that the entities composing the system
pass from isolated to coordinated behaviors, where a spontaneous order emerges
[5, 13]. When the intrinsic dynamics of each entity is weakened, the units will be
strongly dependent on that of its neighbors. As a result, units will become more
strongly correlated close to the transition. In finance, for instance, the formation and
collapse of speculative bubbles have been largely considered as the consequence of
herding behaviors emerging from to the broken balance between autonomous con-
ducts and peer influence [17]. When the effect of exchanging influence with the rest
of the environment dominates, large-scale phenomena occur. Indeed, while during
expansion and normal periods financial markets tend toward randomness, in crisis
phases their structures are reinforced due to a generalized increase in the level of cor-
relations that leads to a contraction of the linkages between stocks in the correlation
based networks [1, 14]. Although there exists empirical evidences of connections
between strengthening of links in the stocks networks and crisis episodes in financial
markets, most of the existing studies mainly focus on correlations between stock
prices [15], the resulting distance based networks and on their Minimum Spanning
Trees representations [19], to provide optimal asset allocations and portfolio risk
estimations.

This paper, in turn, explicitly addresses the question of inferring the forthcoming
dynamic of stock prices through the forecast of future distances between stocks
in correlation based networks. This issue technically amounts to a link prediction
problem [12]. Given past links (distances) between stocks, what will be their next
period value? If predictions suggest a contraction of the next period distances for
instance, then we could expect a decrease in stock prices because of a strengthening
in correlations and a higher likelihood of a crisis episode.

The mainstreaming class of link prediction methods, are based on the so-called
similarity-based algorithms, which are further classified into three categories: local,
global and quasi-local depending on the information used [12]. Usually all these
techniques collapse the temporal data into a single matrix by summing (with or
without weights) the records corresponding to the temporal networks. Then similarity-
based measures like the Katz centrality or the singular value decompositions (SVD)
are applied to perform links prediction. This paper instead is the first attempt to use
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tensor decompositions and multi-way analysis [7, 9] to extract complex relationships
from stock prices’ time series and use them in a link prediction application. This
approach prevents the temporal aggregation of the data, avoiding losses of crucial
features of the system that can be observed only by holding the original time-varying
nature of the records.

Starting from N time series of stock prices, a rolling window of length n1 is
applied to compute the correlation Ck,l among each pair (k, l) of stocks. Given these
pairwise correlations, at each time step, a distance based network with elements
dkl =

√
2(1−Ck,l) is created.

Once the rolling window has produced Z distance based networks with adjacency
matrices DDD ∈ RN×N , those matrices are embedded into a 3D-tensor D ∈ RN×N×Z

whose generic element δklz represents the distance between stock k and stock l at
time z.

The tensor is thus approximated as the outer product of three vectors thought the
Canonical Decomposition [4], also known as Parallel Factorization [8], the so-called
CP decomposition, which can be regarded as a generalization of SVD to tensors (see
2).

The decomposition aims at writing the tensor D as the outer product of two
identical vectors vvv, that contains the overall spatial dissimilarity between stocks and
a vector uuu, containing the temporal profile of the dissimilarities D∼= λvvv◦vvv◦uuu where
vvv ∈ RN ,uuu ∈ RZ and λ =‖vvv‖‖vvv‖‖uuu‖.

While a stock with a high (low) overall spatial dissimilarity score has, on average,
a different (similar) behavior compared with the one of the rest of the stocks, a period
in which a high (low) temporal profile score is registered will be a period in which
most of the stock are highly dissimilar (similar).

The next step consists in generating the adjacency matrix of the forecasted distance
based network. Instead of predicting the N2 possible distances using N2 data points,
within this method one has to predict only the next value of the temporal profile uuu
and use it, together with the two fixed overall spatial dissimilarity vectors vvv, to build
up the adjacency matrix of the forecasted distance based network. An exponential
smoothing, applied to the last n2 observations of the temporal profile vector uuu, extracts
a scalar τ representing the guess of the next period value of such vector. Then the
adjacency matrix containing the forecasted distances of all stocks pair is obtained as
a linear combination of the two spatial dissimilarity vectors vvv, the parameter λ and of
the forecast τ of the temporal profile vector. In matrix terms; D̂DD = τλvvvvvvT or, element-
wise d̂kl = τλvvvkvvvl (where the superscript ◦̂ denotes the predicted distance). Finally,
the vector of the forecasted prices is found as the outer product of current price
vector and of the normalized matrix representing the predicted future distances D̃DD.
The normalization is obtained by dividing each entry of the predicted distance matrix
by the number of the stocks in the dataset. In this way the forecast of a stock price
will be equal to the current price multiplied by the average of the predicted distances
that relate it to the rest of the stocks. In matrix terms; P̂PP = P̃PPDDD or, element-wise,
P̂i = Pi

1
N ∑ d̂i,: = Pi ∑ d̃i,:.

In accordance with the empirical evidence suggesting links contract during crisis
period in distance based networks, the predicted price for each stock will be lower
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than the current one if, on average, the distance between that stock and the rest is
decreasing.

When the steps of the moving window exceed the parameter Z, the tensor is
allowed to move in time at each new step, as new data are available. The temporal
shift of the tensor permits to compare the forecasts produced by two consecutive
decompositions1. The difference between the values of the two predictions generates
a signal whose sign indicates the future direction of the price.

To investigate whether this method is able to correctly identify changes in stock
prices a backtest based on a hypothetical investment strategy is implemented [16]. If
the sign of the signal for a given stock i is negative, a short position is taken by selling
the stock and buying back it the next trading day. In this case, the cumulative return

made on that stock Ri changes by Pt
i−Pt+1

i
Pt+1

i
. Otherwise, if the difference is positive,

a long position is taken by buying the stock and then selling it the next trading day.

The cumulative return in this case changes by Pt+1
i −Pt

i
Pt

i
. Notice that profits are only

possible if at least some future changes in stocks prices are correctly anticipated, in
particular around large market movements. Fig. 1 gives a graphical representation of
the technique.

2 Materials and methods
Tensor decompositions and multi-way analysis can be naturally employed to represent
the time-varying distance matrices as a single mathematical object, a three-way tensor,
and approximate this tensor as a product of vectors by extracting the most relevant
spatial and temporal factors [4, 8]. Uncovering the spatial (vvv) and the temporal profile
(uuu) vectors that contains the overall dissimilarities between stocks and the related
activity pattern requires the identification and the extraction of lower-dimensional
features. This can be achieved by means of the so-called canonical CP decomposition
in three dimensions.

The decomposition aims at writing the tensor D as the outer product of two
identical vectors vvv, that contains the overall spatial dissimilarities between stocks’
time series and a vector uuu, containing the temporal profile of the dissimilarities:
D∼= λvvv◦ vvv◦uuu where vvv ∈ RN ,uuu ∈ RZ and λ =‖vvv‖‖vvv‖‖uuu‖.

Such an approximation of the tensor D is equivalent to minimizing the Frobenius
norm of the difference between D and λvvv◦ vvv◦uuu. Solving this problem amounts at
finding the rank-1 tensors that best approximate the D

minvvv,vvv,uuu‖D−λvvv◦ vvv◦uuu‖ (1)

The 3-dimensional problem is divided into 3 sub-problems by unfolding the tensor D.
This means reordering the elements of a tensor into a matrix. The mode-3 unfolding

1 The price forecasts are not compared with their current values due to a bias given by the fact that,
when the correlation is zero, the distance takes a value of

√
2 artificially incrementing the price of

the stocks.
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Fig. 1: Graphical representation of the method. Starting from stock price time series
(A), a rolling window is applied to compute the correlation among each pair of
stocks (B). At each time step a distance based network is created. Once the rolling
window has produced Z distance matrices representing adjacency between stocks
pairs, those matrices are embedded into a 3D-tensor D (C). When the steps of the
moving window exceed Z, the tensor is allowed to move in time at each new step, as
new data are available (C - solid line vs. dashed line). The two consecutive tensors
are approximated as the linear combination of three vectors D ∼= λvvv ◦ vvv ◦ uuu. The
exponential smoothing (D - green lines) applied to uuu extracts a scalar τ representing
the forecast of temporal profile for the next period (E - red lines). The forecast of the
future distance matrix is obtained as D̂DD = τλvvvvvvT (E and F - red squares). Finally, the
prediction of future prices is computed as the outer product of the past price vector
and of the normalized matrix representing the predicted distances P̂t = Pi

1
N ∑ d̂i,: (F

and G). An investment strategy is proposed to assess the efficiency of the method. If
the difference ∆ Forc

i = P̂t
i − P̂t−1

i between two consecutive price forecast for a generic
stock i is negative (G) then a short position is taken. Otherwise a long position is

taken. The returns are calculated as Pt
i−Pt+1

i
Pt+1

i
or as Pt+1

i −Pt
i

Pt
i

depending whether a short

or a long position is taken (H).

of a tensor D is denoted by DDD(q) and arranges the mode-q fibers to be the columns of
the resulting matrix. For the 3-D case, the three resulting matrices have respectively a
size of N×NZ, N×NZ and Z×N2. In this way problem 1 is equivalent to minimizing
the difference between each of the modes and their respective approximation in terms
of factors. Problem 1 is thus converted into three problems

minvvv>000

∥∥∥DDD(1)−λvvv(uuu� vvv)T
∥∥∥

2

F

minvvv>000

∥∥∥DDD(2)−λvvv(uuu� vvv)T
∥∥∥

2

F

minuuu>000

∥∥∥DDD(3)−λvvv(vvv� vvv)T
∥∥∥

2

F

(2)
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where� denotes the Khatri-Rao product, namely the column-wise Kronecker product.
Since distances are always non negative, a non-negative tensor factorization method
is employed to solve (2) because it greatly simplifies the interpretation of the resulting
decomposition. The Block Coordinate Descent Method for Regularized Multiconvex
Optimization [20] and the Matlab Tensor Toolbox [3] are used to solve (2).

Similarly to the TOPHITS algorithm [11], the overall spatial dissimilarity score of
a generic stock i is found as a function of the scores of the rest of the stocks weighted
by the product of the distances connecting them to stock i, and of the temporal
profile score of the period in which the distances are observed. The temporal profile
score attached to a period, on the other hand, is a weighted sum of the distances
recorded in that period. Where each distance is weighted by the product of the spatial
dissimilarity score of the stocks connected by such distance. In this way, the spatial
dissimilarity vectors retain also elements representing the temporal evolution of the
distances and only the ”next step” value of the temporal profile vector has to be
inferred from past data. This is a perspective not available when computing link
predictions using matrix-based approaches. A temporal link prediction, naturally
follows from the decomposition and can be used to infer future distances between
stocks, and, on the basis of these forecasts, to predict future prices.

3 Results
The method is applied to the closure price of a basket of 388 stocks composing
the S&P500 composite index, traded during 3527 working days, from 1999/08/04
to 2013/08/09. Additionally, a modified version of the method is also employed to
forecast the dynamic of the S&P500 composite index for the period ranging from
2004/06/24 to 2013/04/30. Fig. 2 shows the cumulative sum of the returns obtained
for each stock together with the average cumulative performance, namely, the mean
of the stocks returns (solid black line). Beside the fact that the investment strategy
does not produce positive returns for all the stocks, the values of y-axis, biased in
favor of positive quantities, together with the positive average return (black line),
that reaches the value of 230% at the end of the sample, confirm the ability of the
methodology to produce good predictions. Fig. 2(a) displays the cumulative returns
obtained by investing only taking short while the cumulative returns obtained by only
taking long positions are showed in Fig. 2(c). In this way one is able to compare the
performance of the methodology in predicting down-turns or up-turns of stock prices.
From the average performance (black line) reported in Fig. 2(b) clearly emerges
that deep crashes, the burst of the dot-com bubble and the 2008 financial crisis, are
correctly anticipated. This more than compensate the losses of taking long positions
(Fig. 2(c)) during these phases. These simulations are performed using the following
parameters: n1 = 15, Z = 25, n2 = 7 and the exponential smoothing parameter is set
to be equal to 0.2.

While Fig. 2 aims at discording whether the movements of each stock are correctly
anticipated by only looking at the sign of the signal produced by the methodology,
the next step consists in assessing the quality of the signals. In theory, the larger the
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Fig. 2: Cumulative sum of returns obtained for each stock together with the average
cumulative performance (solid black line). Fig. 2(a) shows the performance of
the investment strategy. Panels (b)-(c) display the cumulative returns obtained by
investing only taking short or long positions respectively. This helps in quantifying
how the correct forecast of booms and burst phases affects the overall cumulative
returns. The simulations are obtained using the following parameters: n1 = 15,
Z = 25, n2 = 7 and the exponential smoothing parameter is set to be equal to 0.2.

absolute difference between two consecutive forecasts, i.e. the larger the absolute
value of a signal, the more credible the forecast is. In order to show this feature, at
each time step, the signals are sorted in descending order, based on their absolute
values. Fig. 3(a) displays the average cumulative sum of the returns associated with
different quantiles of the signals distribution. In particular the upper blue line is
associated with the strongest signal, the green line shows the average cumulative
returns produced by the two strongest signals, the red line indicates the average
performance of the first forty-five signals. The other lines illustrate the performance
associated with the cumulative sum of signals of gradually lower quantiles. Finally
the lowest purple line displays the average cumulative return for the whole signals
distribution (and it is equivalent to the black line of Fig. 2). Also in this case the
methodology is able to correctly predict the largest market movements, especially
near deep burst phases as shown in Fig. 3(b). Moreover Fig. 3 points out that stronger
signals produce better forecast, proving that the cumulative returns associate the most
robust signal (436%) doubles the average performance associate to all the signals
(230%).

To further analyze the goodness of the proposed methodology, the method is
also applied to forecast the behavior of the S&P500 index as a whole. Consequently
technique has been slightly modified to produce predictions for the whole composite
index and not for each stock constituting the basket. First, the number of stocks in
the dataset is augmented (455 stocks are employed in this exercise), by restricting
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Fig. 3: Cumulative sum of the returns associated with different quantiles of the signals
distribution. The goodness of each signal depends on the absolute difference between
the two consecutive forecasts that compose the signal. The larger the difference the
better the signal. While Fig. 3(a) shows the performance of the whole investment
strategy. Panels (b)-(c) display the cumulative returns obtained by only taking short
or long positions respectively. The signals are sorted according to their absolute
values and therefore there is no a one-to-one correspondence between each plotted
line and a particular stock. For instance, the best signal can regard different stocks in
different moments in time. The simulations are obtained using the same parameters
of Fig. 2.

the temporal observations to the period 2004-2013. Secondly, only the forecasted
distance based adjacency matrix D̂DD is used and not the forecasted stock prices.

Similarly to [2] a Multidimensional Scaling Technique, the Principal Coordinates
Analysis is applied to D̂DD with the aim of embedding the data in a space of lower
dimensions while retaining the pairwise distances between the points as much as pos-
sible. The dimensionality reduction facilitates the classification of high-dimensional
data, by mitigating the curse of dimensionality and other undesired properties of
high-dimensional spaces. After having found the centering matrix HHH = III−N−1111111T ,
where III is the N×N identity matrix, and 111 is a vector of N ones. The eigenvalue

and eigenvectors of the matrix BBB = HHH
(
− 1

2 D̂DD
2
)

HHH are found. The coordinates in the

lower-dimensional space are recorded in a matrix XXX = AAAsLLL
1/2
s . Where AAAs contains

the eigenvectors corresponding to the s largest eigenvalues of BBB, and LLL1/2
s contains

the square root of the s largest eigenvalues along the diagonal. Following [1] these
points are embedded in a space of 6 dimension (s = 6). The 6th root of the product
of the eigenvalues of XXX ′XXX defines the volume of the geometrical object composed
by the embedded data. The volume is used as a reference for the identification of
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abnormal periods. The volume expands whenever the cloud of points represents a
situation of business as usual and the market space is similar to that of a random
universe. On the other hand, in critical periods, the volume of the geometric object
severely contracts, leading to the emergence of distorted shapes [2].

The investment strategy has been according modified to be applied to the S&P500
composite index. Now, the new signal is given by the difference of two subsequently
predicted volumes ∆ f orc = V̂ t−V̂ t−1. Whenever this difference is negative the index
is sold at price Pt and bought back the next trading day at price Pt+1. Otherwise,
the index is bought at price Pt and sold back in t +1 at price Pt+1. The cumulative
returns are calculated as Pt−Pt+1

Pt+1 in the first case, and as Pt+1−Pt

Pt in the second.
Fig. 4 shows the cumulative sum of the returns obtained by investing in the

S&P500 composite index by following the differences in the predicted volumes. The
simulations are obtained using the following parameters: n1 = 7, Z = 30, n2 = 20.
As for the investment strategy based on stocks price predictions, also in this case, Fig.
4(a) shows that the predicted movements of stocks distances anticipates the market
dynamic. Large down-turns are correctly anticipated as indicated by the cumulative
returns illustrated in Fig. 4(b) near day 1000 (that corresponds to the initial period of
the 2008 financial crisis). Fig.4(c), on the other hand, suggests that market up-turns,
besides providing higher returns, are less severe than bust phases. The sum of the
cumulative returns indeed has a smoother increasing behavior compared with the one
obtained by correctly predicting market down-turns.

Fig. 4: Cumulative sum of returns obtained for the S&P500 composite index. Fig.
4(a) shows the performance of the investment strategy. Panels (b)-(c) display the cu-
mulative returns obtained by investing only taking short or long positions respectively.
This helps in quantifying how the correct forecasts of booms and burst phases affects
the overall cumulative returns. The simulations are obtained using the following
parameters: n1 = 7, Z = 30, n2 = 20.
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Finally, Fig. 5 provides some robustness analysis. Since the parameter space
is huge, the length of the tensor is kept fixed together with the parameter of the
exponential smoothing while n1 and n2 take different values along the simulations.
Each sub plot of Fig. 5 shows the cumulative returns obtained at the end of the
time sample for different parameter values. In particular, the first raw represents the
end-of-sample cumulative returns obtained by averaging the cumulative performance
of the method while forecasting the dynamic of the 388 stocks of the first dataset. In
particular Fig. 5(a) refers to the composite investment strategy, encompassing both
long and short positions. Panels 5(b)-(c), instead, differentiate between short and
long positions respectively. The central row of Fig. 5 shows the returns obtained by
following only the best signal (as emphasized also in Fig. 3), for the whole investment
strategy (d) and for short (e) and long (f) positions respectively. The last row, on the
other hand, provides the same results but looking at the performance obtained by the
application of the modified method to the S&P500 composite index.

4 Discussion
The findings obtained by the application of this methodology have important con-
sequences in the understanding of financial systems. As pointed out by the recent
financial crisis indeed, financial systems are increasingly build on interdependencies
and relationships that are difficult to predict and control. This work proposes a new
dynamical approach to financial system and stresses the systemic importance of
empirical signs that can be used to extend the knowledge of financial markets and
complex systems in general. Predicting abrupt market down-turn, as a matter of
fact, facilitate the design of policies that can reduce the hardness of financial crisis,
plummeting the risk of global collapses of financial services by making economic
networks more robust. The results suggest that tensor decompositions and multi-way
analysis can effectively extract complex relationships from stock prices’ time series
opening new insights into large-scale collective decision making.
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Abstract We developed a model to reconstruct the international trade network by
considering both commodities and industry sectors in order to study the effects of
reduced trade costs. First, we estimated trade costs to reproduce WIOD and NBER-
UN data. Using these costs, we estimated the trade costs of sector specific trade by
types of commodities. We successfully reconstructed sector-specific trade for each
types of commodities by maximizing the configuration entropy with the estimated
costs. In WIOD, trade is actively conducted between the same industry sectors.
On the other hand, in NBER-UN, trade is actively conducted between neighboring
countries. This seems like a contradiction. We conducted community analysis for the
reconstructed sector-specific trade network by type of commodities. The community
analysis showed that products are actively traded among same industry sectors in
neighboring countries. Therefore the observed features of the community structure
for WIOD and NBER-UN are complementary.

1 Introduction
In the era of economic globalization, most national economies are linked by interna-
tional trade, which in turn consequently forms a complex global economic network.
It is believed that greater economic growth can be achieved through free trade based
on the establishment of Free Trade Agreements (FTAs) and Economic Partnership
Agreements (EPAs). In the last years, many researchers have studies international
trade from a perspective of network science [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
However, there is limitation to the resolution of the currently available trade data.
For instance, NBER-UN records trade amounts between bilateral countries without
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industry sector information for each type of commodities [13], and the World Input-
Output Database (WIOD) records sector-specific trade amount without commodities
information [14]. This limited resolution makes it difficult to analyze community
structures in detail and systematically assess the effects of reduced trade tariffs and
trade barriers.

In this paper, we reconstruct the sector-specific trade network for each type of
commodities by maximizing the configuration entropy based on the local information
about the inward and outward flow of trade. The reconstruction of interbank networks
from local information has been studied intensively [15, 16, 17]. But these studies
intend to reproduce the average nearest degree, the average nearest strength, and
the expected weight for various weighted networks. Our goal is to reconstruct an
international trade network by considering both commodities and industry sectors in
order to systematically study the effects of reduced trade costs, such as trade tariffs
and trade barriers.

This paper is organized as follows: Section 2 describes the model of network
reconstruction, and Section 3 explains the existing trade data. Section 4 shows results
of cost estimation, and finally Section 5 explains the identified community structure
for the reconstructed international trade network. Section 6 provides a summary of
the points presented in this paper.

2 Model of Network Reconstruction
We reconstruct the international trade network by considering both commodities and
industry sectors in order to systematically study the effects of reduced trade costs.
For this reason, the estimation of trade costs is indispensable. In this section, we
describe our network reconstruction model.

2.1 Outline of Network Reconstruction Model
We reconstruct the sector-specific trade network for each type of commodities by
maximizing the configuration entropy using existing international trade data: NBER-
UN and WIOD. These two types of existing data will be explained in the following
section.

The outline of our model of network reconstruction is as follows:

1. We estimate trade cost C(G)
AB between country A and B for commodities (G) to

reproduce trade amount data NBER-UN T (G)
AB by maximizing the configuration

entropy with given strengths D(G)
A and O(G)

B .
2. We estimate trade cost CAαBβ to reproduce trade amount data WIOD TAαBβ

between industry sector α in country A and industry sector β in country B by
maximizing the configuration entropy with given strengths DAα and OBβ .
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3. We obtain an analytic formulae to calculate trade cost C(G)
AαBβ

using costs esti-

mated above: C(G)
AB and CAαBβ .

4. We calculate the trade cost C(G)
AαBβ

analytically and estimate the sector-specific

trade for each type of commodities T (G)
AαBβ

by maximizing the configuration

entropy with given strengths T (G)
AB and TAαBβ .

2.2 Maximization of the Configuration Entropy
A model that calculates the amount of traffic flow based on the local information
for total outflow and inflow by maximizing the configuration entropy has been
proposed [18]. We apply this model for our purpose. Suppose that the total amount
of export Oi from country i, total amount of import D j to country j, and trade cost
Ci j from country i to country j are given: Oi = ∑ j Ti j, D j = ∑i Ti j, and C = ∑i j Ti jCi j.
The formulation of export Ti j from country i to j is obtained by maximizing the

configuration entropy S = logW = log
(
(∑i j Ti j)!/∏i j Ti j!

)
with the constraints

using the Lagrange multiplier method. As a result, we obtain the closed relationship
for export Ti j as follows:

Ti j = AiB jOiD j exp
(
−βCi j

)
, (1)

Ai =


∑

j
B jD j exp

(
−βCi j

)


−1

, (2)

B j =


∑

j
AiOi exp

(
−βCi j

)


−1

. (3)

Here β is a multiplier that signifies the constraint for total trade cost Ci j. Coefficients
Ai and B j are calculated iteratively from the appropriate initial values.

2.3 Algorithm of Cost Estimation
Figure 1 shows the algorithm of cost estimation. The trade cost is estimated using
simulated annealing [19] to reproduce the actual trade data. The simulated annealing
takes a long time to compute, but shows a reasonably good convergence of the cost
estimation. The cooling schedule of temperature T is given by Tn = (1− 0.003)n.
Here n is the number of iteration step n. At each temperature, the calculation is
repeated using equilibrium samples. The root mean square error of calculated trade
RMSn =

√
∑i j((T cal

i j −Ti j)/Ti j)2/N is calculated at each iteration step. Here T cal
i j ,

Ti j, and N are calculated trade for a given cost, actual trade, and the number of
combination of countries, respectively. If ∆RMSn = RMSn−RMSn−1 is negative,
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Fig. 1: The algorithm of cost estimation. Trade cost is estimated using simulated
annealing to reproduce the actual trade data.

we accept cost Ci j, but if ∆RMSn is positive, the acceptance of cost is determined
stochastically depending on the temperature.

2.4 Sector-Specific Cost by Commodities
The analytical formula of sector-specific cost C(G)

AαBβ
by type of commodities is

obtained as a weighted average of the trade costs for WIOD and NBER-UN: CAαBβ

and C(G)
AB . We have three identities:

∑
αβ

TAαBβCAαBβ = ∑
G

T (G)
AB C(G)

AB = ∑
αβG

T (G)
AαBβ

C(G)
AαBβ

= TABCAB, (4)

TAαBβCAαBβ = ∑
G

T (G)
AαBβ

C(G)
AαBβ

, (5)

T (G)
AB C(G)

AB = ∑
αβ

T (G)
AαBβ

C(G)
AαBβ

. (6)

Using these identities, we write trade cost C(G)
AαBβ

as a weighted average of CAαBβ

and C(G)
AB .
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C(G)
AαBβ

=
1
2


uG

TAαBβ

T (G)
AαBβ

CAαBβ + vαβ

T (G)
AB

T (G)
AαBβ

C(G)
AB


 , (7)

uG =
C(G)

AB
CAB

, (8)

vαβ =
CAαBβ

CAB
. (9)

We obtain the following analytical formula of the sector-specific cost by type of
commodities as an approximation:

C(G)
AαBβ

∼=
1
2

(
uGGCAαBβ + vαβ S2C(G)

AB

)
. (10)

2.5 Sector-Specific Trade by Type of Commodities
Once C(G)

AαBβ
is obtained, we estimate T (G)

AαBβ
based on the given local information

T (G)
AB and TAαBβ by maximizing entropy iteratively, in the same manner as before.

T (G)
AαBβ

= Ã(G)
AB B̃AαBβ T (G)

AB TAαBβ exp
(
−βC(G)

AαBβ

)
, (11)

Ã(G)
AB =


∑

αβ

B̃AαBβ TAαBβ exp
(
−βC(G)

AαBβ

)


−1

, (12)

B̃AαBβ =

[
∑
G

Ã(G)
AB T (G)

AB exp
(
−βC(G)

AαBβ

)]−1

. (13)

3 Trade Data
We used bilateral trade data between countries for each type of commodities NBER-
UN and sector-specific trade data WIOD at year 2000. Table 1 shows the list of
commodities for NBER-UN. Table 2 shows the list of countries for NBER-UN and
WIOD. Table 3 shows the list of industry sectors for WIOD. Here the number of
commodities G is 10, the number of countries N is 31, and the number of industry
sectors S is 35.

Figure 2 shows that the relationship between NBER-UN and WIOD for the total
amount of exports and imports of 31 countries. We note that WIOD is about 50%
to 60% of NBER-UN for both exports and imports. We assume that the difference
between the two databases comes from the lack of a consumer sector in WIOD.
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4 Cost Estimation
In this section, first we estimated C(G)

AB to reproduce the trade amount data for NBER-
UN. Then, we estimated CAαBβ to reproduce the trade amount data for WIOD. Finally,

Table 1: Commodities for NBER-UN

Symbol Description
g0 FOOD AND LIVE ANIMALS CHIEFLY FOR FOOD
g1 BEVERAGES AND TOBACCO
g2 CRUDE MATERIALS, INEDIBLE, EXCEPT FUELS
g3 MINERAL FUELS, LUBRICANTS AND RELATED MATERIALS
g4 ANIMAL AND VEGETABLE OILS, FATS AND WAXES
g5 CHEMICALS AND RELATED PRODUCTS, N.E.S.
g6 MANUFACTURED GOODS CLASSIFIED CHIEFLY BY MATERIAL
g7 MACHINERY AND TRANSPORT EQUIPMENT
g8 MISCELLANEOUS MANUFACTURED ARTICLES
g9 COMMODITIES & TRANS. NOT CLASSIFIED ELSEWHERE

Table 2: Countries for NBER-UN and WIOD

Symbol Description Symbol Description Symbol Description Symbol Description
c1 Australia c2 Austria c3 Bulgaria c4 Brazil
c5 Canada c6 China c7 CzechRep c8 Germany
c9 Denmark c10 Spain c11 Finland c12 France

c13 UK c14 Greece c15 Hungary c16 Indonesia
c17 Ireland c18 Italy c19 Japan c20 KoreaRep
c21 Mexico c22 Netherlands c23 Poland c24 Portugal
c25 Romania c26 RussianFed c27 Slovakia c28 Slovenia
c29 Sweden c30 Turkey c31 USA
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Fig. 2: The relationship between NBER-UN and WIOD for the total amount of
exports and imports of 31 countries.
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Table 3: Industry Sectors for WIOD

Symbol Description
s1 Agriculture, Hunting, Forestry and Fishing
s2 Mining and Quarrying
s3 Food, Beverages and Tobacco
s4 Textiles and Textile Products
s5 Leather, Leather and Footwear
s6 Wood and Products of Wood and Cork
s7 Pulp, Paper, Paper, Printing and Publishing
s8 Coke, Refined Petroleum and Nuclear Fuel
s9 Chemicals and Chemical Products

s10 Rubber and Plastics
s11 Other Non-Metallic Mineral
s12 Basic Metals and Fabricated Metal
s13 Machinery, Nec
s14 Electrical and Optical Equipment
s15 Transport Equipment
s16 Manufacturing, Nec; Recycling
s17 Electricity, Gas and Water Supply
s18 Construction
s19 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel
s20 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles
s21 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods
s22 Hotels and Restaurants
s23 Inland Transport
s24 Water Transport
s25 Air Transport
s26 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies
s27 Post and Telecommunications
s28 Financial Intermediation
s29 Real Estate Activities
s30 Renting of M&Eq and Other Business Activities
s31 Public Admin and Defence; Compulsory Social Security
s32 Education
s33 Health and Social Work
s34 Other Community, Social and Personal Services
s35 Private Households with Employed Persons

we calculated C(G)
AαBβ

using the analytic formula in Eq. (10) as a weighted average of

CAαBβ and C(G)
AB .
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4.1 Trade Cost of WIOD
The left panel of Fig. 3 shows that the convergence of the RMS errors for g0:FOOD
AND LIVE ANIMALS CHIEFLY FOR FOOD and the right panel shows the RMS
errors at 5000 steps for various type of commodities and WIOD. The error for
each trade cost is 0.5% to 2% for all commodities and WIOD. Figure 4 shows the
comparison of (a) actual trade TAαBβ and (b) calculated trade TAαBβ using estimated
cost CAαBβ . The agreement between two types of trade is quite good.

4.2 Trade Cost of NBER-UN

Figure 5 shows the comparison of (a) actual trade T (G)
AB and (b) calculated trade

T (G)
AB using estimated cost C(G)

AB for commodity g7: MACHINERY AND TRANSPORT

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1000 2000 3000 4000 5000

R
M

S
 E

r
r
o

r

0

0.005

0.01

0.015

0.02

0.025

0.03

g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 WIDO

R
M

S
 E

rr
o

r 
a

t 
5

0
0

0
 s

te
p

s

Goods

fo
r g
0

(a) RMS Error for g0 (b) RMS Error at 5000 steps

Iteration Step

Fig. 3: RMS error for g0: food and live animals chiefly, and RMS errors at 5000 steps
for various commodities and WIOD.

trn
s

c
a
ltrn
s

Country
&

Sector

Country
&

Sector

Country
&

Sector

Country
&

Sector

(a) (b)

Fig. 4: Comparison of actual trade TAαBβ and calculated trade TAαBβ using estimated
cost CAαBβ .



Reconstruction of the international trade flows by commodity and industry 665

EQUIPMENT. The agreement between these two types of trade is once again quite
good.

4.3 Estimated Sector-Specific Cost by Type of Commodities

Sector-specific cost by type of commodities was estimated using Eq. (10). The
estimated cost C(G)

AαBβ
for commodity g5: CHEMICALS AND RELATED PRODUCTS,

N.E.S. and g7: MACHINERY AND TRANSPORT EQUIPMENT are shown in Figs. 6
and 7, respectively. Note that we have common characteristics for both g5 and g7.
For example, import costs in the german transport equipment industry are very high
compared with other industry sectors of various countries. In the US, import costs
are higher than export costs for many industries. On the other hand, in Japan, export
costs are higher than import costs for some industries.

(a) (b)

Country Country

Country Country

trn
s

c
a
ltrn
s

Fig. 5: Comparison of actual trade T (G)
AB and calculated trade T (G)

AB using estimated
cost C(G)

AB for commodity g7.
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5 Reconstructed Sector-Specific Trade Network by Type of
Commodities

T (G)
AαBβ

provides a weight for links of the sector-specific trade network by each type
of commodities. For the reconstructed international trade network, we identify a
community structure that corresponds to economic clusters linked by the trade of
various type of commodities. In past analysis of the sector-specific trade network
(WIOD), we obtained communities consisting of the same industry sector across
countries [20, 21, 22]. In this section, we describe the characteristics of the commu-
nity structure identified for the reconstructed sector-specific trade network by type of
commodities.

5.1 Community Structure in WIOD
The community structure was identified by maximizing the modularity for WIOD.
The identified community shows that the international trade is actively conducted
between the same or similar industry sectors [22], but it is not know which com-
modities are traded. We note that a defect has been pointed out for the null model
used in the definition of the modularity for weighted networks [15]. We conducted
community analysis using map equation [23] for WIOD to confirm the community
structure identified by modularity maximization. We confirmed that international
trade is actively conducted between the same or similar industry sectors. The largest
community consists of industry sector: Renting of M&Eq, Financial Intermediation,
the second is industry sector: Chemical Products, the third is industry sector: Basic
Metals and Fabricated Metal, the fourth is industry sector: Mining and Quarrying,
the fifth is industry sector: Electrical and Optical Equipment, and the sixth is industry
sector: Transport Equipment.
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5.2 Community Structure in NBER-UN
Community analysis for NBER-UN shows that international trade is actively con-
ducted between neighboring countries, but industry sectors in which trade is con-
ducted are not known. For example, we found five communities for g5: CHEMICALS
AND RELATED PRODUCTS, N.E.S.. The largest community is Europe, consisting
of Austria, Bulgaria, the Czech Republic, Germany, Spain, Finland, France, the UK,
Hungary, Italy, the Netherlands, Poland, Portugal, the Russian Federation, Slovakia,
and Slovenia. The second is South & North America, consisting of Brazil, Canada,
Ireland, Mexico, and the USA. The third is Asia, consisting of Australia, China,
Indonesia, Japan, and Korea Republic. The fourth is West Asia & East Europe, con-
sisting of Greece, Romania, and Turkey, The fifth is North Europe, consisting of
Denmark and Sweden.

5.3 Community Structure in Reconstructed Sector-Specific Trade
Network by Commodities

Community analysis of the sector-specific trade network (WIOD) shows that inter-
national trade is actively conducted between the same or similar industry sectors.
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On the other hand, community analysis of the trade network for a specific type
of commodities (NBER-UN) shows that international trade is actively conducted
between neighboring countries. At first glance, these results seem to be contradictory.
What do these results really mean?

We conducted community analysis for the reconstructed sector-specific trade
network by type of commodity g5: CHEMICALS AND RELATED PRODUCTS,
N.E.S.. The identified community structure is shown in Fig. 9. The largest commu-
nity corresponds to Europe, and all nodes in this community are in the Transport
Equipment industry sector. The second largest community corresponds to South &
North America, and all nodes are in the Electrical and Optical Equipment industry
sector. In a similar way, the third largest community corresponds to West Asia &
East Europe, and all nodes are in the Basic Metals and Fabricated Metal industry
sector. Analysis showed that products are actively traded between the same industry
sectors in neighboring countries. Therefore, we can say that the observed features of
the community structure for WIOD and NBER-UN are not contradictory but rather
that they are complementary.
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6 Summary
We developed a model to reconstruct the international trade network by considering
both commodities and industry sectors in order to study the effects of reduction
of various trade costs. First, we estimated the trade cost to reproduce WIOD and
NBER-UN data. Using these costs, we estimated the trade cost of sector specific
trade by type of commodities. We successfully reconstructed sector-specific trade
for each type of commodities by maximizing the configuration entropy with the
estimated cost.

In WIOD, trade is actively conducted between the same industry sectors. On
the other hand, in NBER-UN, trade is actively conducted between neighboring
countries. This seems like a contradiction. We conducted community analysis for the
reconstructed sector-specific trade network by type of commodity g5. The community
analysis showed that products are actively traded between the same industry sectors
in neighboring countries. The observed features of the community structure for
WIOD and NBER-UN are complementary.

In future studies, we intend to analyze the effect of reduced trade tariffs and trade
barriers. For instance, the Trans-Pacific Partnership (TPP) is expected to achieve a
high-level of free trade in the Asia-Pacific region, which accounts for more than 40%
of the world’s GDP. Trade costs are estimated at 170% of the price of commodities.
The breakdown in transportation costs is 21%, and the rest is trade tariffs and trade
barriers [24]. We will discuss the effect of reduced trade tariffs and trade barriers
on the change in the community structure of the international trade network. This
will enable us to arrive at better understanding of international trade after the TPP
agreement goes into effect.
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Abstract We investigate the properties of a calibrated network structure of an agent-
based model for a simulated financial market. A meta-model of a network of networks
is introduced to capture the simulated market structure. The agent-based model
consists of heterogeneous agents characterized by two-dimensional attributes that
are investment behavior and investment strategy. The resulting groups of agents are
viewed as subnetworks giving rise to a network of networks (NoN). The aggregation
of activities of agents in a subnetwork trickles up to shape the aggregate activities of
the NoN. The objective of introducing the NoN is to provide a testbed for complex
models of simulated markets. Furthermore, we investigate the emergence of the
market patterns in terms of prices, moments of returns, market capital, and wealth
distributions. The investigation was performed for fully connected homogeneous
agents. The results show a significant difference in the market emergence behaviors
in terms of prices and returns, however, the market capitalization stays close to the
calibrated financial market. Also, the deviation of wealth distributions was less than
those in the heterogeneous market.

1 Introduction
This paper introduces the concept of a meta-model for a network of networks (NoN)
that appears in the course of creating an agent-based model for a market. The meta-
model categorizes market participants based on their strategies coupled with their
investment behavior. Strategies in real markets can vary greatly among agents but we
restrict them to four possible categories of strategies: zero-intelligence, fundamental
strategy, momentum trend-following strategy, and adaptive trading strategy using
the artificial neural network (ANN) algorithm. Investment behavior as well can have
an infinite spectrum but for our meta-model, we account for agents that can be risk
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averse or loss occupied with overconfidence or conservative biases. The agents may
interact with each other by sharing market sentiments through a structured scale-free
network.

The meta-model introduced in this paper consists of a two-dimensional NoN in
the sense that each category of strategy agents build up a network so that four subnet-
works exist in a natural way in the dimension of strategy. On the other hand, there are
six subnetworks classified by behavior. There is a total of twenty-four subnetworks
when considering the network as a two-dimensional attribute network with strategy
and behavior as the two dimensions. The quantitative rules of interaction among
agents in a subnetwork give rise to quantitative inter-network interactions. Those
interactions summarize the economic values exchanged by the agents individually,
which trickles up to the level of the subnetwork as agent interactions are aggregated.
The aggregation of the subnetworks interactions in the NoN gives rise to indicators
of the state of the entire NoN. Thus giving us a way to model multi-scale structural
change in large financial and economic networks using agent-based modeling. The
granularity of the type of agent in the meta-model takes into consideration why the
model is postulated. Alternatively, the granularity of the available data may dictate
the level of the agent in the design. For example, in our illustrative meta-model, the
basic level of an agent represents a trader while the measured response of interactions
is taken at the market level in terms of a NoN price of the asset. For tractability, the
measured response, in this case, is simply the price of a single asset traded in that
market with an interest rate instrument. The price can be viewed as the aggregation
of a “vote” by various two-dimensional subnetworks, which in this case total to
twenty-four subnetworks. Each subnetwork has its own perception of a value that
should be assigned to the asset due to its two-dimensional subnetwork classification,
i.e. its strategy and behavior. The price at a given time is determined by the aggregate
forces of heterogeneous agents supply and demand represented by the bids and offers
from all subnetworks simultaneously. Once a transaction is consummated, a new
(local) equilibrium price is posted and a new information feedback loop triggers
agents to examine a new position.

Since our meta-model allows for agent change, the subnetworks can undergo
migrations of agents from one subnetwork to another based on their observations of
successful strategies. As a result, the meta-model can provide a cross-sectional view
of NoN evolution in time. The applications of a dynamic structural change in large
networks should be a topic of interest for socio-financial, economic studies but also
for marketing segmentation as well as political decision support systems.

This paper investigates the effect of the network assortativity on a meta-model
that appears in the course of creating an agent-based model for a market

The outline of the paper is as follows, in section 2 we survey the related studies,
in 3 we provide a description of the meta-model for the financial market. Section 4
investigates the properties of the calibrated network in the meta-model. In section 5
we implement a set of four experiments for homogeneous agent living in a complete
network to observe the effect of this kind world on the market dynamic. Finally, in
section 6 we conclude and discuss the future extension of the research.
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2 Literature Reviewer
The advancement of the agent-based computational economic model can be traced
back to Frankel and Froot [11] in 1986. In 1987, Kim and Markowitz [18] built up a
straightforward agent-based model to two sorts of investors to examine the fluctuation
in the asset prices. Gode and Sunder [14] created a zero-intelligence based market
under budget and no budget constraint and they infer that that the market converges
to equilibrium with the inclusion of the budget constraint.

The development of the Santa Fe artificial market [2] propelled the utilization of
the genetic algorithm to mimic the agent ability of adaptation. In addition, Brock and
Hommes [5][6] created an agent-based model with switching mechanism between
the trading strategies upon the agent’s utility functions. Likewise, Chan et al.[7] de-
veloped an agent-based model that that consider informed traders, partially informed
traders, and uninformed traders. Takahashi et al.[28] developed an agent-based
model that incorporate loss aversion bias and fundamental and technical investment
strategies.

The majority of the studies assumed that the agents interact indirectly through the
posted asset prices. In any case, Panchenko et al. [27] expanded Brock and Hommes
[5][6] by by looking at the impact of various types of network topologies on the
dynamic of asset prices. The network topologies include complete network lattice
network, small world network and random network. Nevertheless, in this paper, we
rather concentrate on the effect of network strutter with the domain of scale-free
network topology. For in-depth survey, scholar may explore [1][15][22]

3 Description of Meta-model for the Financial Market
The investigation of market dynamics in this paper was performed based on the
model that developed by Khashanah and Alsulaiman [17]. In their model, Khashanah
and Alsulaiman have divided the market into macro and micro levels.

The agents in the developed market live in an environment that is represented
in term of scale-free network topology. They may interact through this network
according to the parameter H where H represents the initial number of hubs in the
network according to the preferential attachment algorithm [3].

In the macro level, there is one type of agents representing the market regulator.
The market regulator may control the market through various tools such as risk-free
rate, tax on transactions, restriction rules on holding and short selling of the equities.

In the micro level, there is one type of agents that represents various traders and
investors in the stock market. These traders and investors are divided into 24 types
distinguished in terms of their investment strategies and their investment behaviors.
four investment strategies are involved in the developed market. These strategies
represent the zero-intelligence investors, fundamental investors, momentum investors
and adaptive investors. on the other hand, four behaviors are developed in the market
that includes risk averse investors, loss averse investors, overconfidence investors
and conservative investors.
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Zero intelligence traders (also may be called noise traders) speculate on the stock
price randomly on a range of specified prices. They may be viewed as the random
walkers of the market. In contracts, the fundamental investors observe the prices
around the fundamental value of the stock where the fundamental stock prices follow
a geometric Brownian motion. The momentum traders follow the trend of the stock,
i. e. if the price trends up in the last trading session they expect that it will continue
to rise and vice versa. The adoptive investors utilize an artificial neural network to
speculate on future prices using accumulated learning abilities. They adapt to the
new conditions of the market by optimizing the weights in the neural network. In
our model, we equip the optimization of the weights with probability parameter K
indicating the propensity to change and adapt.

For tractability, the market is limited to trading one risk-free asset and one risky
stock. Their holdings of the stock is constructed based on the following equation:

x∗i, j,t =
Ei, j,t (pt+1 +dt+1)−

(
1+ r f

)
pt ± cpt

λi, jvi, jβi, jσ
2
i,t,pt+1+dt+1

where Ei, j,t (pt+1 +dt+1) is the expected price and dividend for the next time step,
which is crucial for the determination of the optimal holding. The expectations
of heterogeneous agents are by necessity diverse and they are determined based
on the investment strategies explained in the next section. Here σ2

i,t,pt+1+dt+1
is the

conditional standard deviation of price and dividend at time t + 1. For simplicity,
σ2

i,t,pt+1+dt+1
is assumed to be fixed and constant at a value of 1. The change in

the sign in the above equation opposite the state of Ei, j,t (pt+1 +dt+1)−
(
1+ r f

)
pt

makes x∗i, j,t = 0. By the change in the sign, we mean that the negative sign follows
the positive state of Ei, j,t (pt+1 +dt+1)−

(
1+ r f

)
pt and the positive sign follows the

negative state of Ei, j,t (pt+1 +dt+1)−
(
1+ r f

)
pt .

The traditional assumption in economic models is that agents are risk averse and,
based on that assumption, economic models establish the objective function. Risk
aversion implies that the agent would value certain outcomes over uncertain ones.
The risk aversion coefficient λi may affect the agent decision to hold the stock.

The risk averse assumption has been opposed by the prospect theory. In prospect
theory, Tversky and Kahneman [16] experimentally demonstrated that individuals
have a bias to stress misfortunes more than benefits and consequently they are more
loss disinclined than risk averse. The loss averse investors have different utility
functions to a pre-determined reference point. In our model, the change of investor’s
wealth is set to be the reference point where the value of parameter β increases once
the investor’s wealth is exposed to a negative change.

Overconfidence investors tend to hold higher positions of the risky asset as they
have more prominent trust in their decisions. On the other hand, conservative investors
tend to hold lower positions in risky assets. The parameter vi is less than one if the
trader is overconfident and greater than one if the trader is conservative.

Agents may change their initial decisions of stock holding x∗i as a consequence
of the interaction with other agents. Whenever agents have a direct interaction with
each other with a chance to share their sentiment on the market, agents may be
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influenced to change their outlook on the market. The final holding decision X∗i is
then constructed as the weighted average of the agent initial decision and the initial
decisions of the connected agents.

X∗i, j,t =





αi, jx∗i, j,t +
(1+αi, j)

∑
N
j=1, j 6=i Ik

x∗i, j,t if connections > 0

x∗i, j,t otherwise
(1)

where X∗i, j,t is the final decision for agent i and α is a given weight for the initial
decision of holding shares of stock x∗i, j,t for agent i. N is the total number of agents
and Ik is:

Ik =





1 if agent k is connected to agent i

0 otherwise
(2)

In addition, agents may adapt different investment strategies and behaviors
throughout the period of the simulation. They may imitate the investment strategy
and behavior of the wealthier agent that is the subnetwork.

The price formation will follow the price adjustment method [4][26][8][23]. The
price adjustment method set up the market price based on the aggregate bids and
offers.

pt = pt−1
[
1+η (Bt −Ot)

]
(3)

Where pt is the market price at time t, η is the price adjustment speed relative to the
spread, i.e., a simplified form of market efficiency. Further, Bt represents the total
number of bids among all agents and Ot is the total number of offers.

4 Properties of the Calibrated Network
Understanding the complex systems required an appropriate comprehension of its
structured network. The complex system contains distinctive kind of agents that
may communicate in different ways. These agents and their communication may be
represented as nodes and edges in the network terminologies. We consider certain
interactions and agents as a subsystem of the whole system. Consequently, the net-
work structures of these agents and interactions can be displayed as subnetworks
of the entire network (or what is called the network of networks). The networks
of networks can be defined as multiple networks that are interconnected with each
other [9][13][29]. Mikko Kivelä et al. [19] provided a comprehensive discussion,
history, similitude and contrasts of different notations of complex networks. The dis-
cussion includes the terminologies and frameworks of multilayer networks, multiplex
network, multivariate networks, networks of networks and many others.

The meta-model was fitted to the S&P500 from 2010 to 2014 by calibrating
the various model parameters. These parameters include population size of agents
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as they are classified by two-dimensional attributes according to their investment
behaviors and investment strategies. Six investment behaviors are incorporated in
the model which they are risk aversion (R), risk aversion with overconfidence and
conservative biased (RO) and (RC), loss aversion (L) and loss aversion occupied with
overconfidence and conservative biased (LO) and (LC). The investment strategies
are zero-intelligence (Z), fundamental strategy (F), trend followers (T), artificial
neural network (N). Table 1 shows the calibrated population size of the agents.
The calibration was performed using scatter search meatheuristic algorithm through
OptQuest machine [20][21].

Table 1: Calibrated population size of agents types

Population size

Z F T N
R 7 8 10 8
RO 10 7 10 10
RC 7 8 10 9
L 8 9 10 9
LO 7 7 7 10
LC 11 14 7 8

The average moments of stock returns of 1000 Monte Carlo simulation runs
were 0.00052, 0.00912, 0.957 and 5.94 for the mean, standard deviation , skewness,
kurtosis, respectively.

However, the stock prices are not driven by the population sizes only but rather
by the structure of the network. In this paper, we examine the properties of the
calibrated network. The calibrated network contains 211 nodes (agents) and 1157
edges (connections). The structure of the network is presented in figure 1 where the
nodes represent the agents who participate in the market and the edges demonstrate
the connection between them. The nodes were colored according to our classification
of the two-dimensional subnetworks upon the behavior and strategy.

We define a subnetwork as the subset of agents (nodes) with similar two-
dimensional attributes of behavior and strategy. Let a be an agent with attribute
vector (b,s) with b, s referring to behavior and strategy, respectively. Let a1, a2 be
two agents with coordinates (b1,s1),(b2,s2) and define the relationship of a1 ∼ a2 if
and only if b1 = b2 and s1 = s2. Then clearly this relation creates equivalence classes
and a partition of the set of agents (nodes). A subnetwork is defined as an equivalence
class under the relation ∼.

The centrality of a node describes the importance of that node in the network. The
centrality of nodes is computed using the normalized degree centrality, normalized
closeness centrality, and normalized betweenness centrality.

There are 23 agents representing the 90 percentile of the most connected agents
in terms of the degree measure and 22 agents in terms of closeness and betweenness.
The majority of most connected agents are from risk averse fundamental agents
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Fig. 1: Calibrate network

and risk averse momentum agents types where the agents from RF1 to RF8 are
characterized among the most connected agents in all of the three measures. Also,
the agents from RM1 to RM10 are classified as the most connected agents for all of
the centrality measures except agent RM7 for the betweenness measure. In addition,
agent RN1, RN2, RN7, and RN8 are from the 90 percentile of the most connected
agents for all of the three centrality measures except for RN7 for closeness centrality.
Agent RON1 is among the 90 percentile of the most connected agents for the degree
and betweenness measures and agent ROZ5 is in the top of the most connected agents
according to closeness centrality measure.

We need a network measure for expressing the proverb “birds of feather flock
together” and the contrary saying “opposites attract”. The first idea is measured
by assortativity and the second one is measured by disassortativity. The degree
assortativity coefficient (ac) measures the level of the homophily of the network, for
example, the hubs have the tendency to connect with the hubs [24][25]. The value
of ac in the calibrated network, was -0.0839237 which indicates that the network
is non-assortative. We have computed the assortativity of the network in terms of
degree connectivity (DC), two-dimensional attributes based on behavior and strategy
(TD), one-dimensional attribute based on behavior (B) and one-dimensional attribute
based on strategy (S). The results were -0.0839237, -0.02338304, 0.004135164 and
-0.02775979 for DC, TD, B, and S respectively which indicates that the network is
non-assortive for all criteria.

In addition, the centralization score is measured in terms of the degree, between-
ness, closeness, and eigenvector. The centralization is a measure of network centrality
that depends on the centrality of the nodes. The most centralized network in terms
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of degree, betweenness and closeness is a network that resembles a star-network.
However, the most centralized eigenvector network is a network with few edges that
connect few nodes [12] [30]. The centralization scores for the calibrated network
were 0.195, 0.0785, 0.284 and 0.785 in term of degree, betweenness, closeness, and
eigenvector respectively which indicate a low level of centrality in terms of degree,
betweenness and closeness and a high level of centrality in term eigenvector.

Furthermore, we investigated the cliques in the network. The clique is a subset of
the network where all the nodes are connected to each other. The maximal clique is
the clique that can’t be extended to a larger clique and the maximum clique is the
largest clique in the network[10]. The size of the largest cliques in the network was 6.
These largest cliques are (RF5, RF7, RM1, RM2, RM3 and RM7), (RF5 RF7, RF3,
RM1, RM3 and RM7),(RM7, RM3, RF5, RF7, RF1 and RM2), (RF1, RF5, RF6,
RM3, RM2 and RM7), (RF1, RF5, RM7, RF7, RM0 and RM2), (RF5, RF7, RM2,
RM0, RM4 and RM6), (RF2, RF5, RF7, RM1, RM2 and RM4), (RF2, RF5, RF7,
RM0, RM2 and RM4), (RF0, RF5, RF7, RM0, RM4 and RM6), (RF2, RF5, RF7,
RM1, RM2 and RM3) and (RF1, RF5, RF7, RM0, RM2 and RM6).

5 Market Emergence Under Homogeneous Complete Network
In this section, we observe the patterns of stock prices, returns, market capitalization
and wealth distributions under a homogeneous environment with a complete network
structure. Four experiments were implemented for this purpose by which each
experiment contains 211 agents that all are risk averse. In the first experiment,
agents are zero-intelligence while agents in the second and third experiments utilized
fundamental and trend following investment strategies, respectively. In the fourth
experiment, agents are adaptive agents who use ANN.

The mean of the daily returns, standard deviation, skewness, kurtosis and the
market capital at time T = 1000 are shown in table 2. In addition, the patterns of
the prices, returns and market capital for all experiments are shown in Appendix A.
These results are significantly different than the results of calibrated heterogeneous
market which indicate that both the network structure and agents heterogeneity
significantly impact the emergence of patterns in the financial market. The market
with zero-intelligence agents tends to have higher volatility and lower kurtosis than
the calibrated market. On the other hand, the market volatility is much less than
the calibrated market when it is bind with fundamental, trend followers or adaptive
agents.

In terms of wealth distributions, the average wealth of the 211 agents at T = 1000
in the first experiment was 110,197.83 and the standard deviation was 1142.8. In the
second experiment the average wealth was 111,241.42 and the standard deviation
328.82 and in the third experiment, the average wealth was 110,516.54 and the
standard deviation zero because the no transactions were ever executed. The average
of wealth in the fourth experiment was 110,516.9 and the standard deviation is 3.97.
These results in comparison to the calibrated heterogeneous market results show
that the wealth distribution among agents is less concentrated when markets contain
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Table 2: Statistics of the emergence market patterns

Zero-intellgence Fundemental Trend followers Adapitaive
Mean return s -1.65E-05 1.27E-04 -2.13E-04 -1.10E-04

Volatility 0.013 0.003 0 8.41E-05
Skwness 0.069 0.743 -0.192 3.542
Kurtosis 0.138 3.73 -0.094 16.569

Market capital 23,251,741.45 23,471,940.22 23,318,989.73 23,316,658.12

more homogeneous agents. Figure 2 shows the wealth distributions for the four
experiments.

Fig. 2: Wealth distributions

6 Conclusion and Future Research
The paper is designed to examine the effect of network structure and agents attributes
on the emergent behaviors of a simulated financial market. Two main objectives were
in the aim of the study. The first objective is to introduce the concept of a network
of networks for simulated markets. The goal was accomplished by investigating
the properties of a calibrated network of the financial market of a pre-developed
agent-based model and compare these properties to a simplified network of multiple
subnetworks.
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The second objective is to investigate the evolution of stock prices, returns, market
capital and wealth distribution under a population of a homogeneous agent that are
connected in a complete network structure. Four experiments were implemented. In
all experiments, we assumed that the agents are risk averse. In the first experiment, all
agents are zero-intelligence while in the second experiment agents are fundamental.
In the third the fourth experiments, agents are adaptive. In general, the moments
of the market in all of the were significantly different than the calibrated moments,
especially in the standard deviation and kurtosis. However, the standard deviation
is higher when the market is occupied with zero-intelligence agents and lower with
fundamental agents trend followers agents, and adaptive agents. The kurtosis was
lower than the calibrated kurtosis in all four cases. However, the market capital
does not exhibit a significant difference from the calibrated market. Furthermore,
the variation of wealth when the agents are homogeneous are much less than the
variation of heterogeneous market environment.

In an extension of this research, we would examine the market under different
network structures. Also, we would elaborate more on the concept of a network of
networks by implementing multiple comparisons of newly developed networks and
their aggregations.
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7 Appendix A

Fig. 3: Market emergence behaviors (zero-intelligence agents(left) and fundamental
agents (right)

Fig. 4: Market emergence behaviors (trend followers (left) and adaptive agents (right)
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Abstract Network science has widely studied the properties of brain networks.
Recent work has observed a global back-to-front pattern of information flow for
higher frequency bands in magnetoencephalography data. However, the effective
connectivity at a local level remains yet to be analyzed. On a local level, the building
blocks of all networks are motifs. In this study, we exploit the measure of dPTE to
analyze motifs of the estimated effective connectivity networks. We find that some 3-
and 4-motifs, the bidirectional two-hop path and its extended 4-node versions, are
significantly overexpressed in the analyzed networks in comparison with random
networks. With a recently developed motif-based clustering algorithm we separate
the effective connectivity network in two main clusters which reveal its higher-order
organization with a strong information flow between posterior hubs and anterior
regions.
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1 Introduction
Analyzing the brain as a network has lead to new insights in neuroscience both in un-
derstanding healthy and abnormal brain function [22]. Recent studies in neuroscience
applied the measure of Phase Transfer Entropy (PTE) to construct the effective
connectivity network between brain regions and observed a global posterior-anterior
pattern in higher frequency bands [10]. However, the effective connectivity at a local
level remains yet to be analyzed. In this study, we analyze with PTE the directionality
at a local level in the form of network motifs.

Effective connectivity describes the causal effect of one brain region on another
region [1, 7]. To calculate this pairwise value between brain regions, the measure of
Transfer Entropy (TE) is often applied [19]. The TE from a region X to a region Y
quantifies the improvement in predicting the future of time series X if the present
value of Y is also included. Recent work has extended this measure to the analysis
of phase time series (Phase Transfer Entropy (PTE); [15]). The advantage of phase
time series instead of the original time series is the lower computational cost for
analyzing their pairwise interactions [18]. When representing brain regions as nodes
and assigning PTE values as link weights, one can build the effective connectivity
network. A previous study used PTE for magnetoencephalography (MEG) data from
healthy controls and discovered a posterior-anterior directionality in the effective
connectivity network of all frequency bands except for the theta band (where the
pattern was opposite) [10]. The emergence of this pattern is still not completely
understood. The hypothesis was that this global directionality is caused by different
local properties in the effective connectivity network [10].

On a local scale, network motifs are the building blocks of all networks [17]. On
top of the micro-structure of nodes and links, network motifs are small subgraphs
that form a higher-order organization of the network [4]. Most commonly, network
motifs of 3 or 4 nodes are analyzed. Friedman et al. [6] were recently able to identify
Alzheimer patients with directed motif analysis in a so-called progression network.
Previous work reported that the motif with ID 78 was overexpressed with respect to
random networks in the structural brain networks of the cat and the macaque [21]
(see Fig. 2 for motif IDs). The same motif has also been perceived as a good identifier
for structural hubs [11]. Recently, Battiston et al. analyzed the interdependency
between structure and function in the human brain applying a multilayer motif
approach [3]. With computational models of neuronal activity, Battaglia and co-
authors [2] linked effective connectivity motifs based on TE to underlying structural
motifs and suggested that changes in the effective connectivity lead to different
global directions of information flow. With similar motivation of linking frequencies
of single motifs to global outcomes, Benson et al. [4] exploited this higher-order
organization of the network to define a new motif-based clustering algorithm.
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The aim of this study is to investigate effective connectivity motifs in empirical
data with the measure of PTE. Therefore, we first explain the construction of the
effective connectivity network based on the sending and receiving properties of a
node. Then, we analyze the significant motifs in this network. Furthermore, we apply
the recently developed motif-based clustering algorithm by Benson et al. [4] on the
effective connectivity brain network.

2 Methods
This section explains the measure of directed Phase Transfer Entropy (dPTE), the
construction of the directed networks, the motif search and our application of the
motif-based clustering.

2.1 Directed Phase Transfer Entropy
The effective connectivity network is based on MEG measurements1 of 67 healthy
controls from a preceding study [10]. We focus our analysis on the alpha2 frequency
band (10-13 Hz) because the previous study observed a significant pattern of posterior-
anterior information flow for this frequency band. For every region of interest (ROI)
X we compute a time series in the form of a phase time series [18]. We denote a
possible value of the signal of region X at time t by xt and abbreviate the probability
that the signal of X equals xt at an arbitrary time point t to Pr[Xt = xt ] = Pr[xt ]. The
information flow between two ROIs or nodes, X and Y , is then quantified by the
Phase Transfer Entropy [15]

PT EXY (h) = ∑ Pr [xt+h,xt ,yt ] × log

(
Pr
[
xt+h|xt ,yt

]

Pr
[
xt+h|xt

]
)
, (1)

for a certain time delay h, where the sum runs over all possible values xt , xt+h and
yt of the signals. The (joint) probabilities are determined over histograms of their
occurrences in an epoch [15]. Following Hillebrand et al. [10] we fix h at

h =
Ns ·NROI

N±
, (2)

where Ns = 4096 and NROI = 78 are the number of samples and the number of ROIs,
respectively, and N± counts the number of sign changes for the phase across time
and ROIs.

1 The MEG data were recorded using a 306-channel whole-head MEG system (ElektaNeuromag,
Oy, Helsinki, Finland) during a no-task, eyes-closed condition for five consecutive minutes. A
beamformer approach was adopted to project MEG data from sensor space to source space [9] and
the automated anatomical labelling (AAL) atlas was applied to obtain time series for 78 cortical
regions of interest (ROIs) [8, 24]. For each subject, we extracted the first 20 artefact-free epochs of
4096 samples (3.2768 s).
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Motivated by Hillebrand et al. [10], we define the dPTE for nodes X and Y as

dPT EXY =
PT EXY

PT EXY +PT EY X
, (3)

which is a measure of the preferred direction of information flow between nodes
X and Y . Since the PTE can only take positive values, this definition of dPTE is
well-defined and its value ranges from 0 and 1. If the predominant flow of information
is from node X to node Y , then 0.5 < dPT EXY < 1, else 0 < dPT EXY < 0.5.

2.2 Constructing the Directed Network
The pairwise dPTEs over all ROIs can be interpreted as a weight matrix of a fully
connected network. Since the data is from 67 subjects each over k = 20 epochs,
we have 1340 weighted networks to begin our construction. We apply a procedure
to thin out links and induce a directionality per link instead of a weight. After
this transformation, which we call “sparsificiation”, we obtain a sparse directed
(unweighted) network for each subject, which is amenable for motif search and
analysis.

The sparsification (see Fig. 1) contains two steps. First, we discard all links whose
weights are in close proximity to 0.5. More precisely, every link whose average
weight (over all epochs) is within the closed interval [0.5−ασ ,0.5+ασ ] will not
be considered, where σ is the standard sample deviation taken over all epochs over
all pairs of nodes and α is a positive real control parameter. Under the assumption
of a normal distribution with mean 0.5, the 3σ -rule states that this procedure will
remove approximately 68% for α = 1.0 and 95% for α = 2.0 of all links.

Fig. 1 Schematic overview of
the two steps for constructing
the directed network (sparsifi-
cation): (1) discard links close
to 0.5 (2) induce directionality
for remaining links.
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In a second step, we determine for each remaining link whether it should be
bi- or uni-directional, and in case of the latter, in which direction the links should
be oriented. Clearly, all remaining link weights are now bounded away from 0.5,
though it is possible, that for different epochs a single link weight might be lower or
higher than 0.5, which makes it ambiguous which member of the node pair is the
dominant sender and which the dominant receiver. Let k+ (k−) be the number of
epochs that the dPT EXY is above (below) 0.5 where k = k++ k− is the total number
of epochs for a subject. If k+/k ≥ 0.75, we assume X to be a dominant sender and
thus we induce a uni-directional link from X to Y . Contrary, we assume X to be a
dominant receiver if k+/k ≤ 0.25 and point the link from Y to X . If neither applies
(0.25 < k+/k < 0.75), we assume that X and Y frequently change roles between
dominant sender and dominant receiver. Thus, we induce a bidirectional link between
them.

2.3 Motif Search
We are using the excellent mfinder software [13], provided by the Uri Alon Lab2,
to search for motifs. We also adopted the motif IDs of mfinder for this work, to be
consistent. With sparsification, we generate one directed network for each of the
67 subjects as input for mfinder. Additionally, we construct an averaged effective
connectivity network (short: averaged network) by considering all epochs of all
subjects together. This construction results in a “virtual” subject with k = 1340
instead of k = 20 epochs. We set α to 1.0 and 2.0 to compare on different levels of
sparsity.

Since the complexity of motif search increases dramatically with the size of the
motif, we restrict mfinder to search only for subgraphs of 3 and 4 nodes (further
called 3-motifs and 4-motifs). The mfinder program executes two tasks: first, it
counts the frequency of all motifs in the original input network. Second, it generates
a number of random networks (null model) and determines the motif frequencies in
each of them as well. In total, mfinder generates 1000 random networks using the
switching algorithm described by Milo et al. [16] for each single input network. We
use the default parameters for mfinder, which preserve the degree sequence of the
original network and the number of bidirectional links.

A motif is called overexpressed if it occurs significantly more often in the original
network than in the random networks. It is essential to keep in mind that a motif
which is not overexpressed may still occur quite frequently in the original network,
though it arises in a similar frequency by a random link rewiring process. Thus, it
can be argued that overexpressed motifs must carry some functional importance for
the underlying system since they do not arise merely by chance. We report the motifs
that mfinder determines to be overexpressed with z-score > 2.

2 https://www.weizmann.ac.il/mcb/UriAlon/download/
network-motif-software

https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software
https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software
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2.4 Motif-Based Clustering Algorithm
Benson et al. [4] developed a clustering algorithm that partitions a network based on
one specific overexpressed motif M. The algorithm constructs clusters by ’cutting’
through the minimal possible number of those motifs. Formally, the clustering
minimizes the motif conductance defined as

φM(S) =
cutM(S,Sc)

min[volM(S),volM(Sc)]
, (4)

where S is the set of nodes in the cluster and Sc its complement. Here, cutM(S,Sc) is
the number of M motifs that is cut through and volM(S) the number of M motifs that is
completely in S. The algorithm can be regarded as an extension of the classic spectral
clustering algorithm [25]. The obtained clusters reveal a higher-order organization of
the network based on the specific motif M. An implementation of the motif-based
clustering algorithm was released as part of the open SNAP framework [14], which
we applied to the averaged network using default parameters.

3 Results
We present results for the motif search on 3 and 4 nodes for the individual subjects
and for the averaged network, respectively. In addition, we show the results of the
motif-based clustering algorithm on the averaged network.

3.1 Significant 3-Motifs
For both variants of the sparsification method (α = 1 and α = 2), we find the same
significant 3-motifs over all subjects meaning that those motifs are more frequent in
our analyzed networks than in the null model (see Fig. 2). Those five motifs are not
triangular but include all 3-motifs with two links (except for the 2-hop path motif)
(Fig. 2b- 2f). The absolute frequency of those motifs is displayed as a histogram
in Fig. 2a for the ±σ and the ±2σ sparsification, respectively. The analysis on the
averaged effective connectivity network confirms the over-representation of the motif
with ID 78, the bidirectional 2-hop path(Fig. 2d), which is the only significant motif
that has been found for different sparsification methods (z-scores: 88.25 for ±σ

sparsification and 82.7 for ±2σ sparsification).

3.2 Significant 4-Motifs
In Fig. 3a we present a histogram of all significantly overexpressed 4-motifs with the
two different sparsification levels. Twelve 4-motifs were found overexpressed in all
67 subject networks (Fig. 3a, for a visualization see Figs. 3b-3m).
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Analyzing the averaged network we find 3 significant motifs with the ±σ spar-
sification method (see Figs. 3l - 3n, z-scores: 203.74 for ID 13260, 111.89 for ID
4382 and 14.85 for ID 4698) and none with the ±2σ method. The two 4-motifs with
number 13260 and 4382, the bidirectional ring and the bidirectional star, respectively,
have the highest z-scores in the averaged effective connectivity network and are a
subset of the significant 4-motifs found for every individual subject (Figs. 3l and 3m).
The overexpression of those two motifs cannot be explained by the higher number of
bidirectional links in the effective connectivity network since the null model contains
the same number of bidirectional links.

3.3 Motif-Based Clusters
Following the approach of [4], we apply the motif-based clustering algorithm on
the averaged effective connectivity network. Since for both sparsification methods,
the 3-motif with ID 78 was significantly overexpressed in the averaged effective
connectivity network and in every subject network, we cluster according to this motif.
We find two clusters with the sparsified network for ±σ (Fig. 4). The frontal brain
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Fig. 2: (a) Frequency of significantly overexpressed 3-motifs over all regarded
subjects after the ±σ and ±2σ sparsification, respectively. (b)-(f) All significant
3-motifs over all subjects together with their motif ID. The yellow motif with ID 78
is also overexpressed in the averaged network.
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Fig. 3: (a) Histogram of the 20 most commonly overexpressed 4-motifs over all
subjects after the ±σ and ±2σ sparsification, respectively. An asterisk marks the
motifs that are also overexpressed in the averaged network. (b)-(m) The twelve
4-motifs that are overexpressed after the ±σ sparsification in every subject with their
motif ID. The yellow motifs are also overexpressed in the averaged network. (n)
Third overexpressed 4-motif in the averaged network, ID 4698.

regions seem to be consistently part of the red cluster and the distribution of the
clusters across the two brain hemispheres shows a strong symmetry (Fig. 4). The
sparser network resulting from the ±2σ sparsification method was disconnected.
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Fig. 4 The two clusters (in red
and yellow) on the template
brain obtained via the motif-
based clustering algorithm
after the ±σ sparsification
based on the motif 78.

Consequently, we could only obtain a motif-based clustering of the largest connected
component (see Appendix Fig. 5).

4 Discussion and Conclusions
Evaluating the overexpressed motifs for individual human subjects, it is interest-
ing that the 3-motif with ID 78 and its extended 4-node versions have also been
overexpressed in other cortical networks of the cat and the macaque brain [21]. In
these motifs some nodes seem highly integrated with their neighbors while others
are more segregated. Sporns et al. [21] associated these motifs and the absence of
triangular shapes with the general principles of integration and segregation in the
functional organization of brain networks. This principle originates from studies of
neuronal dynamics where signals from many different spatially segregated groups of
neurons are integrated with each other forming one coherent signal [20, 23, 26]. In
addition, motif 78 can help to identify hubs in structural brain networks by counting
the number of times a node participates in that motif [11]. A possible explanation
for this identification is that a hub often connects two otherwise disconnected brain
regions reciprocally with each other functioning as a ’bridge’ for the information
flow [11]. Thus, the pre-dominance of motif 78 in the analyzed effective connectivity
network suggests that hubs are ’bridges’ for the information flow. The impact on the
global network could be further investigated by the new metric of ’bridgeness’ [12] in
future research. Also the other significant 3-motifs are present in brain networks from
the literature. For example, motif 6 has been identified in a previous modeling study
with Granger causality as the driving structure behind many neuronal dynamics [5].

The fact that the motif-based clustering reveals a strong symmetry between the
brain hemispheres is remarkable and supports the idea of a higher-order organization
of the effective connectivity brain network. In comparison, the results of a stan-
dard spectral clustering algorithm (edge-based conductance) show a much weaker
symmetry and a more disconnected spatial distribution of the two clusters (see Ap-
pendix Fig. 6). However, a rather dense network (±σ ) seems to be necessary for the
emergence of a higher-order structure since the clustering for the sparser averaged
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network (±2σ ) appears to be frail (see Appendix Fig. 5). Thus, finding an optimal
link density for motif-based clustering requires further investigation.

Looking into the obtained clusters, we find that the red cluster in Fig. 4 consists
of all frontal brain regions and some posterior regions which are known to be the
strongest structural hubs [10]. The fact that the motif-based clustering algorithm
does not separate posterior hubs and frontal regions suggests that there might be
an increased information flow between them. This result strengthens the hypothesis
from [10] that the posterior hubs play a crucial role in the global information flow
of the effective connectivity. More specifically, posterior hubs in the brain seem
to play the role of a ’bridge’ for not only the local but also the global information
flow. However, this ’bridge’ seems to be active in varying pre-dominant directions
for different frequency bands [10]. To conclude, our study shows a promising way
of integrating local structures to explain the emergence of global patterns in brain
networks. This approach might be a first stepping stone towards understanding the
information flow in the healthy brain which could, in the future, support the diagnosis
of brain disorders.
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Appendix

Fig. 5 The two main clusters
(in red and yellow) of the
largest connected component
on the template brain obtained
via the motif-based clustering
algorithm after the ±2σ

sparsification based on the
motif 78. The blue colored
regions were not in the largest
connected component.

Fig. 6 The two main clusters
(in red and yellow) on the
template brain obtained via the
spectral clustering algorithm
with the ±σ sparsification. In
comparison with the motif-
based clustering in Fig. 4,
the red cluster looks more
disconnected and does not
include all anterior regions
anymore.
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Abstract Neural networks reconstructed from measurement data are known to ex-
hibit various forms of nonrandom structures, including subgraph motifs and small-
worldedness. It has been suggested such nonrandom structures are critical for neural
information-processing; however, it is unclear how the topological structure of
anatomical networks influences the reconstruction of functional networks. To better
understand the importance of such nonrandom structures, we study how dyadic
and triadic subgraphs are preserved during the reconstruction. We use a model-free
information-theoretic measure, transfer entropy, to quantify the directional associ-
ations of pairwise neuronal activity. We employ multiplex networks to compare
how dyadic and triadic subgraphs differ from structural to functional networks, with
particular attention to recurrent connections. We find that certain structural subgraphs
have more influence on the topology of the functional network than others.

1 Introduction
In neuroscience, abstract complex networks have been used to model the structure of
neural tissue at both the macroscopic and microscopic scale [3, 10, 12]. Neuronal
networks are typically classified as either structural or functional networks. The
former type represents anatomical or synaptic connections between brain regions
(macro) or individual neurons (micro). We focus on the microscopic level as much of
the brain’s information-processing and storage capacity is thought to arise from its
synaptic connections and the structure they determine [12]. As such, it is necessary
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to identify important features of this structure and the roles they play in information-
processing and storage. For this reason, it is of interest to study directed subgraphs
and in particular motifs within a network.

Motifs are directed subgraphs of the network that occur more often than would be
seen in a random network. Motifs are classified by the number of nodes they contain.
We investigate dyadic (2-node) and triadic (3-node) motifs in particular for their
biological relevance. Recurrent (reciprocal) connections have been hypothesized to
allow for the storage of large amounts of information in neural circuits [2]. Such
connections can be represented by the bidirectional dyadic directed subgraph within
a structural network. At present, it is not clear what percentage of connections in
structural neural networks are recurrent. Anatomical studies have suggested that
they could be locally 100% connected thus having high recurrence whereas elec-
trophysiological studies approximate reciprocal connections in only 10% of neuron
pairs. Recurrent edges have also been found to be overrepresented in higher-order
network motifs [9, 11, 12], particularly in triadic motifs which have been studied in
biological neural networks [8, 10, 11]. Certain triadic motifs have also been found to
have interesting functional roles and influence over local communication through
clustering effects in neuronal networks [4, 7]. Fig. 3 in section 5.2 shows all possible
three-node subgraphs.

By contrast, functional networks are built from statistical dependencies of activity
in brain regions or individual neurons as measured by subjecting fMRI, EEG, and
microelectrode array (MEA) data to dependence measures including mutual informa-
tion, coherence, and transfer entropy. Depending on the method, functional networks
can be undirected or directed. Functional networks have been shown to exhibit many
nonrandom features such as small-worldedness [3, 14], well-defined community
structure [10], hubs [10, 13], and motifs [8, 11]. These functional networks derive
their structure from the underlying anatomic or synaptic configuration; however, the
nature of this influence is unclear.

At the microscopic scale, information is transferred from presynaptic to postsynap-
tic neurons via action potentials, also called spikes. Therefore functional networks,
being built from spike time dependencies, represent information flow and processing
by structural neural networks. Given this fact along with the hypothesized impor-
tance of recurrent connections in information-processing and storage, it is of interest
to study how well these subgraph connections are captured in functional network
studies. By modifying the percentage of recurrent connections in a simulated struc-
tural network, we can find how well they are captured compared to single-direction
connections and whether a bias exists favoring recurrent connections in functional
reconstruction. To study the change in topology from the structural to the functional
network, we use a multilayer network [1]. Single layer networks, known as monoplex
networks, are limited in that their edges represent single types of interaction. In con-
trast, multilayer networks have been increasingly used to allow for multiple aspects of
node interaction where each layer uses a different type of edge. Multilayer networks
have found extensive application in areas of study such as epidemiology, social,
economic and biological interactions. Here, we apply multilayer network analysis to
study the relationship between structural and functional networks and in particular to
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determine how the former influences the development of the latter. Specifically, we
focus on the reconstruction of dyadic and triadic subgraphs in general to provide a
foundation for future work distinguishing motifs.

2 Network Model
We set up networks of 100 neurons, 20 inhibitory and 80 excitatory, based on the
Izhikevich spiking model. We start with a regular, fully recurrent (i.e. undirected)
network, then we randomly select edges and remove one direction to study how the
proportion of non-recurrent edges affects functional reconstruction. We reduce the
percentage of recurrent edges from 100% to 20%, creating a pseudo-regular network.
Alternatively, we create a pseudo-small-world network by rewiring some edges in
the original regular, fully recurrent network before implementing the aforementioned
recurrent edge-reduction process.

2.1 Neuron Models
We use the Izhikevich neuron model as it allows for a wide variety of spiking options
while maintaining computational simplicity. The Izhikevich model is a resetting
spiking model of the neuron voltage. When the potential hits a peak, it resets to a
level below threshold. We choose two basic neuronal parameter sets for our network:
regular-spiking excitatory pyramidal cells and fast-spiking inhibitory interneurons
[6]. The pyramidal cells are given by

100v̇ = 0.7(v+60)(v+40)−u+ IE

u̇ = 0.03(−2(v+60))−u

When the voltage is greater than or equal to 35mV, v is reset to -50mV and u is set to
u+100. IE is the summation of the synaptic inputs into the excitatory cells and an
external random Poisson excitatory input. For inhibitory interneurons, we use the
fast-spiking model given by

20v̇ = (v+55)(v+40)−u+ II

u̇ = 0.2(U(v)−u)

For this particular model, when v≥ 25mV, v resets to -45mV. The adaptation variable
u depends on a function U(v). This function U(v) is dependent on a threshold value
of vb, which we set to -55mV. If v ≥ vb then U(v) = 0.025(v− vb)

3, otherwise
U(v) = 0. II is the summation of the synaptic inputs into the inhibitory cells and a
random Poisson excitatory input which has a frequency of 10Hz. We use a simple
exponential decay model for both excitatory and inhibitory synapses given by

SX = vX e
t−tX−tk

τ
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where X ∈ {E, I}. vX is the maximum voltage increase delivered by the synapse to
the postsynaptic cell. For all synapses, the decay constant τ was set to 3ms. The delay
time, tX was set to 5ms for excitatory synapses and 1ms for inhibitory synapses. The
tk variable represents the time that a spike occurs in the presynaptic cells.

2.2 Network Construction
We arrange 100 neurons, 80 excitatory and 20 inhibitory, at random on a 10× 10
grid initially with undirected connections between any pair of neurons separated by
distance

√
2 or less. This gives a total of 342 undirected edges among interior neurons

(eight incident edges), boundary neurons (five incident edges), and corner neurons
(three incident edges). This regular lattice network structure does not have periodic
boundaries and thus does not allow for propagation of looping activity through the
network.

To test how recurrent edges affect the functional reconstruction of the underlying
structural network, we randomly eliminate one direction of some undirected edges.
To do this, we set a probability pr which determines the proportion of undirected
edges in the network which are selected to become directed. Another probability
pd determines which direction is deleted from each chosen undirected edge. When
pr = 0, the network remains completely undirected and when pr = 1 the network
has no recurrent edges. We study a variety of cases for pr and set pd = 0.5 so that
the direction of deletion has no preference. It is interesting to note that the network is
acyclic when pr = 1 and pd = 0 or 1.

We also construct small-world networks using the algorithm proposed by Watts
and Strogatz [14] since biological neural networks exhibit this structure [3, 14].
We step the rewiring probability, prw from 0 to 1 using steps of 0.2. For prw = 0,
the network retains its lattice structure and for prw = 1 the network is completely
random. In each case of small-world rewiring, we subsequently apply our recurrent
edge reduction algorithm just as before.

3 Spike Train Analysis
We simulate a spiking network of Izhikevich neurons to obtain spike time-series.
We then use the model free, high order transfer entropy method introduced in [5]
to obtain dependencies between neuron pairs using the spike time-series. These
measures are then thresholded at multiple values to produce functional network
reconstructions. We use other model-free methods including coherence to discover
dependencies between neurons for comparison, but focus on transfer entropy in the
current paper due to page limitations.
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3.1 Higher Order Transfer Entropy
Transfer entropy (TE), a standard tool for functional network reconstruction, identifies
directed functional connections by comparing the spike-trains in 1ms time bins
among a group of recorded neurons. For a given pair (i, j) of neurons, TE is a
measure between zero and one which is greater in magnitude when including the
spiking history of neuron j better allows for an accurate prediction of the spiking
behavior of neuron i. We adopt a version of higher-order transfer entropy (HOTE)
introduced in [5], which accommodates TE computation over a range of delays
between two spike trains as well as over a range of orders; that is, the lengths of the
spiking histories observed for neurons i and j. The HOTE formula is given by

T E j→i = ∑ p(it+1, i
(k)
t , j(l)t+1−d) log2

p(it+1|i(k)t , j(l)t+1−d)

p(it+1|i(k)t )
(1)

where it , jt give the states of neurons i and j (1 for the presence and 0 for the absence
of a spike) at time bin t. k and l are the fixed orders of neurons i and j, respectively,
and d represents the time delay between the observed states of the two neurons,
ranging from 0 to 30ms. We set k = 5 and l = 5, and we compute HOTE using the
MATLAB toolbox developed by Ito’s group [5].

3.2 Thresholding
To evaluate the significance of the reported TE result, each neuron in the network
takes its turn serving as the “center” of the network, and we compute the mean µ and
standard deviation σ of all TE values corresponding to connections which involve the
chosen neuron. Since our networks are all directed, this requires separate statistical
calculations for the center neuron’s incoming and outgoing TE values. For a choice
of parameter κ , we compute the outward ( j→) and inward ( j←) thresholds, γ

(κ)
j→

and γ
(κ)
j← , respectively, by

γ
(κ)
j→ = µ j→+κσ j→, γ

(κ)
j← = µ j←+κσ j←,

and an edge exists in the functional network from neuron j to neuron i if and only
if

T E j→i ≥max
{

γ
(κ)
j→ ,γ

(κ)
i←

}
.

None of the functional networks produced are expected to be exact reconstructions
of the structural network. In particular, a false-positive is reported when the inferred
edge exists but the actual synapse does not, while an existing synapse not detected
by TE is a false-negative.
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4 Multiplex Networks
Multiplex networks are a special type of multilayer network in which each layer
contains an identical set of vertices and the only interlayer edges connect corre-
sponding vertices between layers [1]. The intralayer edges represent different types
of connections, in our case structural versus functional, between the vertices. For
each structural network, we build multiple multiplex networks whose functional
layers are determined by various threshold values κ . We treat all nodes as identical
ignoring whether they are inhibitory or excitatory. We will further explore the effects
of inhibitory and excitatory neurons on network reconstruction in a later paper.

Fig. 1: The ten dyadic transformation subgraphs observed within multiplex networks
containing functional (blue) and structural (red) layers. Note that numbers 1, 4, and
10 represent preservation of the structural connections.

We study how single-layer dyadic and triadic subgraphs transform from the
structural to the functional layer, using multilayer subgraphs within these multiplex
networks, see Fig. 1 and Fig. 6. For dyadic subgraph transformations, we choose
two vertices in the structural layer and the corresponding vertices in the functional
layer. The resulting four-vertex subgraph defines a dyadic transformation. Triadic
transformations are defined by the six-vertex multilayer subgraphs of the multiplex
network. There are 10 dyadic transformations (Fig. 1 ) and 4096 triadic transfor-
mations. Several examples of the triadic transformation graphs are shown in Fig. 6
in section 5.2. The rate at which these transformations are observed indicates the
influence of the structural networks on their functional reconstruction.

5 Results
We study functional subgraph reconstruction of a simulated small-world structural
neural network of Izhikevich neurons with prw = 0.40 and recurrent connection
percentages of 100%, 80%, 60%, 40% and 20%. We produce ten-minute spike-
trains as shorter data yields poor TE results [5]. The average firing rate decreases
from 10Hz at 100% recurrent to 4Hz at 20% recurrent due in part to the reduced
number of edges. We then use TE to determine pairwise dependencies which we
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threshold at values of κ ranging from 0.1 to 2 with a step of 0.1. For each recurrent
percentage, this results in 20 functional networks each of which we pair with the
corresponding structural network. The resulting two-layer multiplex networks allow
us to study transformations as defined in section 4 for dyadic and triadic subgraphs.
We then determine which structural subgraphs have high influence over the functional
reconstruction. As there are too many false-positives when κ < 0.2 and too many
false-negatives when κ > 0.8, we focus our attention on examining the multiplex
networks containing functional layers thresholded at κ ∈ {0.2,0.5,0.8}. We only
present results for the networks with recurrent percentages of 60% and 20% due to
space limitations. All simulations and network analysis are done using Cython and
Python except that TE is done using Ito’s MATLAB Toolbox [5].

5.1 Dyadic Subgraphs
The transformation counts for dyadic subgraphs in these multiplex networks are
presented in Fig. 2. Note we eliminate transformation 1 as it is trivial.

The sum of all the counts of transformations 4 through 7 is the total number
of unidirectional dyadic subgraphs in the structural network. Subgraphs 6 and 7
involve the creation of a false-positive, functional edge in the opposite direction of
the structural edge and both have negligible counts in our multiplex networks. This is
expected as the influence of the structural edge dominates any residual dependence
in the opposite direction. Transformations 2 and 3 give the majority of false-positives
in the functional network. We will discuss further details about false-positives in the
next section.

The sum of transformations 8 to 10 is the number of recurrent dyadic connections.
The scarcity of transformation 9 implies that at least one direction of recurrent
structural edges tend to be preserved in the functional reconstruction. Transformation
8 indicates that many recurrent connections lose one direction in the functional
network, which implies that one neuron in the pair has greater influence over the
transfer of information.

Fig. 2 Counts for each of the
dyadic transformations from
Fig. 1 in functional networks
with three threshold values.
Note that we ignore the trivial
transformation 1. All nodes
are treated as identical.
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The complete disappearance of a recurrent connection, transformation 9, is less
frequent than that of a unidirectional connection, transformation 5, due to reciprocal
information flow in the recurrent connections. We think that unidirectional connec-
tions are more prone to information loss, therefore recurrent connections may be
more biologically suitable for maintaining information flow throughout the network.

5.2 Triadic Subgraphs
For triadic subgraphs (shown in Fig. 3), we first study the count comparison, shown
in Fig. 4, between the structural and functional networks as it guides what warrants
investigation in the subgraph transformation analysis. Triad 11 decreases dramati-
cally as the percentage of recurrent connections is reduced from 60% to 20%, as
demonstrated by the yellow bars shown in Fig. 4. We also notice, at both recurrent
percentages, that the count of triad 11 in the functional network, regardless of thresh-
old, is around half or less than that of the structural. This is due to the same tendency
of recurrent connections to transform to unidirectional connections seen in the dyadic
analysis. This indicates transformations of triad 11 are important in shaping the
functional topology. Triads 7 and 8 have similar topological structure and exhibit
comparable counts in the structural network; however, they present very different
counts in the functional network. We observe that, in both 60% and 20% recurrent
networks, the counts of triads 4 and 5 increase dramatically for low thresholds due to
the reduction of higher indexed triads through false-negatives to lower indexed triads.
This also occurs for higher thresholds in the 60% recurrent case.

Fig. 3 This figure shows
all possible 3-vertex triadic
subgraphs of a directed net-
work. Subgraphs that occur
at statistically high rates are
called motifs. It is common
in literature to ignore sub-
graphs 1,2 and 3; however,
we include them as possible
transformation results.

Due to the extremely small number of occurrences, we could not glean much
information about transformations of triads 9, 10, and 12 through 16. They are not of
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interest of the current study; however, triad 9 shows a higher count in the functional
network in general and plays an important role in “triangle completion” due to
false-positive edges. We will discuss “triangle completion” in detail later. We ignore
counts of triads 1, 2, and 3 as they are relevant only to transformations.

Fig. 4 Counts of the triadic
subgraphs in small-world
structural networks (shown by
yellow bar) and the derived
functional networks using
three different threshold
values. Subgraph number
corresponds to those in Fig.
3. Triads 1 through 3 are
ignored. All nodes are treated
as identical.

Fig. 5 Preservation rates of
triads 4-8 and 11 in multiplex
networks constructed from
three threshold values. Due to
limited number of triads 9, 10,
and 12-16, these are ignored.

Subgraph preservation serves as an indicator of functional importance. The per-
centage of structural triads preserved in the functional network is given in Fig. 5.
We notice that triad 4 is preserved at a higher rate than 5 and 6. These are the triads
containing exactly two unidirectional and no recurrent edges. Triads 7 and 8 both
contain a recurrent connection and exactly one unidirectional connection; however,
triad 8 is preserved at a higher rate than 7. The high preservation of triads 8 and
4, both of which exhibit two outward edges emanating from the “middle” vertex,
suggests that this structure allows for more robust local communication.

Triad 11 is prominent in the 60% recurrent structural network and transforms to
triads 1-8, 9, 13 and 15, but with strong preference to triads 8 and 5. For κ = 0.2, triad
11 transforms 51% of the time to triad 8 and 27% to triad 5. All other transformations
contributed less than 5% each, in particular, 2% by triad 7. Triad 11’s tendency to
become triad 8 and the high preservation of triad 8 indicate the latter’s importance in
shaping the functional network and local communication. As the threshold increases,
transformations to triads 5 and 8 continue to dominate, though to a lesser extreme.
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Fig. 6: Examples of triadic transformations. (a) and (b) show triad-preserving trans-
formations for triads 8 and 4, respectively. (c) shows the transformation from triad
11 to triad 8 and (d) is the transformation from triad 11 to triad 5. (e) transforms
triad 4 to 9 and (f) transforms triad 8 to 13. Both (e) and (f) demonstrate triangle
completions (red edges are false-positives). All nodes are treated as identical.

These results manifest in the 20% recurrent network as well, though to a lesser extent
in light of the reduction in recurrent connections. We also note the importance of
transformations involving structural triads 7 and 8, but we leave this for the extended
paper.

We now focus on the role of false-positives which can have profound influence
on the topology of the functional network. We define “triangle completions” to be
transformations that take a triad with exactly two pairs of connected nodes in the
structural network to a triad in which all three nodes are connected in the functional
network, regardless of direction. See Fig. 6 (e) and (f) for examples. We find that
nearly all false-positives arise through triangle completion. In the 60% recurrent
network, we observe that triangle completions mainly involve the transformation of
triad 8 to triads 9, 13 and 14 as well as that of triad 11 to triads 13, 14 and 15. In the
20% recurrent case, the majority of triangle completions concerns the transformation
of triad 4 to triad 9 and that of triad 8 to triad 13. This again implies the important
role of certain structural subgraphs in shaping the topology of the functional network.
We explore this phenomenon in depth in the extended paper.

6 Discussion
In this paper, we study how dyadic and triadic subgraphs in spiking neural networks
are reconstructed in functional networks using higher order transfer entropy. We
showed that recurrent connections in general preserved at least one direction of
connection in the inferred functional network. This indicates that one neuron in a
pair shows greater influence over the spiking activity of the other.

We found that certain triadic subgraphs display tendencies towards preservation
or transformation. These dispositions significantly influence the structure of the func-
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tional network and consequently its information-processing capacity. The prevalence
of structural subgraphs may impact the classification of functional triads as motifs. A
discussion of motifs is left to the extended paper.

To evaluate any statistical significance of the transformation counts, we will have
to establish a null model consisting of two phases. We will first demonstrate that
the functional reconstruction depends nonrandomly upon the structural network.
This will require a comparison of our observed transformation counts to a statistical
average of those across many trial multiplex networks with randomized structural
layers. By keeping the functional layer fixed across these trials, we will detect
overrepresented and underrepresented transformations in our multiplex network
which implicate nonrandom effects from our initial structural network.

Having established the statistical significance of our reconstruction, we turn to
the second null model phase in which we evaluate the significance of the particu-
lar false-positive/negative features of the transformations. To this end, we average
across a number of trials where the structural layer is fixed in its original form but
the functional layers each contain randomized false-positive/negative edges. The
proportion of false-positives/negatives is fixed across trials, so again detection of
overrepresented or underrepresented transformations with these features implies
significant influence from the underlying structure.

It has been shown in [7] that the position of inhibitory neurons within a triadic
subgraph affects spiking behavior and consequently dependence within the triad.
In this paper, we did not consider the position of inhibitory neurons in dyadic or
triadic subgraphs. As such, further investigation into its effects on the functional
reconstruction of these subgraphs will be required.

In our study, we used a fairly narrow Gaussian distribution of synaptic strengths
which may not be realistic. To further our study, we can use either a wider Gaus-
sian distribution or use spike-timing dependent plasticity (STDP) to learn synaptic
strengths in order to obtain a less narrow distribution of synaptic strengths. This in
turn will influence reconstruction of the structural network through an increase or
decrease in dependence. It would also be of further interest to use STDP to study
whether there is a learned preference for recurrent connections and certain triadic
subgraphs.
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Abstract Complex network analysis is being applied on topological models of
ecological networks, to extrapolate their advanced properties and as part of the
activity of land management. Commonly employed methods tend to focus on single
target species. This is satisfactory for cognitive analysis, but the limited view provided
by these models results in a lack of general information needed for land planning.
Similarity scores computed for pairs of nature protection areas are proposed as a
building block of a general model to address this shortcoming.

1 Introduction
Nature protection areas are established to protect endangered habitats and species
from possible destruction due to the effects of increasing urbanization. Over the
decades, policies have shifted toward the creation of ecological networks with a focus
on the preservation of biodiversity. In the European Union, the establishment of a
wide ecological network is the main goal of the Natura 2000 project.

Current methods to build graph models for ecological networks keep the focus on
a species of interest. The resulting graphs are useful to perform quantitative analysis
with respect to the target species, but the analysis of a large number of graphs is
necessary to assess general properties of the network. In this paper, similarity scores
between nature protection areas are proposed as a building block for graph models
with a higher degree of generality, and different approaches are evaluated according
to their aptness to the process of proposing network modifications.

The paper is organized as follows: in Section 2, basic information is provided
concerning ecological networks, their graph representations, and goals of analysis.
In Section 3, the aptness of available data on Natura 2000 sites to this study is
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discussed. In Section 4, the sites located in Sardinia are presented as a case study, and
similarity-based graph models are introduced; three approaches to their construction
are provided. In Section 5, correlations are sought between graph models, in order
to determine which is most useful for land management and planning. Lastly, in
Section 6, conclusions are drawn and possibilities for future work are discussed.

2 Ecological Networks and Graph Models
The expansion of human activities in every sector has caused radical modifications
in land use, with a destruction of portions of habitats, and a fragmentation of those
still in place. To protect habitats and species at risk of extinction, nature protection
areas have been created. As the effectiveness of these areas is strongly reduced if
habitat patches are too small or too distant from similar ones, policies have converged
toward the creation of ecological networks, with each area contributing to large-scale
preservation goals, and more endeavors to preserve the possibility of migration of
species, in order to protect biodiversity [12]. Where necessary, migration can be
encouraged by the establishment of man-made ‘habitat corridors’, either contiguous
or in the form of ‘stepping stones’, i.e. sets of disconnected patches.

In the European Union, an ecological network is maintained as part of the project
denominated “Natura 2000”. Its elements are sites designated as Special Protection
Areas (SPA), as defined in the EU Birds Directive (2009/147/EC), and Special
Areas of Conservation (SAC), as defined in the EU Habitats Directive (92/43/EEC);
the latter are preliminarily designated as Sites of Community Interest (SCI). The
boundaries of a SPA can overlap with those of SACs or SCIs, and vice versa; sites of
the same category can be adjacent to one another.

The maintenance of ecological networks is becoming an essential aspect of land
management and planning: local administrations are directly involved when Natura
2000 sites are in their jurisdiction, and can be affected by the presence of neighboring
sites as well, due to their involvement in the possible creation of habitat corridors.
Administrations are involved with the identification of threats and the proposal of a
course of action to address standing issues with proper land management planning,
which requires the consideration of several technical, regulatory, and political aspects.
Tools to perform quantitative analysis on models representing an ecological network
could make for an important contribution to the solution of these problems.

In analogy with many other kinds of networks and complex systems, a math-
ematical model for ecological networks is generally based on a graph, consisting
of a set of nodes and a set of edges. A node may represent a site or habitat patch,
depending on the desired scale, while edges represent connections. Graph models
are built to represent functional connectivity with respect to a target species [11],
while structural connectivity is analyzed with Geographic Information System tools.
Quantitative analysis can uncover advanced properties of a network, which are not
easily devised from its geographical map. Moreover, it enables comparison of graph
models built for different target species in the same area, for a single target species
in different areas, or representing different proposals for network modification.
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Complex network analysis involves the study of statistical properties of graphs,
related to node degree, shortest path length, and other features. Among the most com-
monly used indices are the clustering coefficient, related to the degree of redundancy
of links; and the betweenness centrality index, often used to rank nodes by impor-
tance, according to their occurrence in shortest paths. The meaning of indices ought
to be investigated according to each kind of real-world network being represented [3];
interpretations of several complex network indices have been proposed for ecological
networks [4]. Global indices can be used as a measure of ‘health’ of the network,
and local indices may assist in identifying vulnerabilities in topological networks [6],
often associated to resiliency to node removal [5]. In general, the comparison of
indices of a given network with those of modified versions is useful to predict the
effect of modifications.

3 Similarity of Natura 2000 Sites
In order to collect data on the habitats and species found within the area, and to
evaluate the impact of changes over time, reports are filed periodically for each
Natura 2000 site. Information is gathered on-site and written to a data base conform-
ing to a Standard Data Form, released with Commission Implementing Decision
2011/484/EU. Each Natura 2000 site is made up of patches of different habitat types,
and each patch may host a different set of species. However, habitats and species
found within a Natura 2000 site are reported to be present in the site, but no explicit
relationship is established between each species and the habitat patch where it is
found. This is sensible for the purposes of the Natura 2000 project, but it has a draw-
back in the fact that the knowledge of which habitat type is ideal for each species is
not stored; rather, it is assumed to be part of expert knowledge or found in external
documents. As a consequence, it is not straightforward to represent constraints that
apply when proposing modifications.

To address these problems at least partially, it is possible to represent each site as
a vector and compute similarity scores of these vectors, thus estimating a similarity
score for pairs of sites. A minimum score between a pair of sites can be a prerequisite
for the proposal to add an edge to the network. Adopting a similarity score taking
values from 0 to 1 (where 1 is associated with pairs of identical vectors), such as the
Jaccard coefficient or cosine distance, makes it easy to choose a threshold value.

The reported presence of species and that of habitats are two viable choices to
build vectors representing Natura 2000 sites, using only data collected for the Natura
2000 project. A third viable approach is given by computing the intersection of sites
with land use data from the CORINE program (Coordination of Information on the
Environment). For this study, this was done using the open source QGIS [8] software
suite. It is notable that CORINE land use data is available for areas outside of
Natura 2000 sites; this is important to be able to combine graph-theoretic approaches
and GIS functions [7], to determine whether it is possible to establish contiguous
corridors. Land use types are categorized in a hierarchical manner with five levels
of increasing detail. Only the first three levels of detail were used, as the fourth and
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fifth were not available consistently; thus, a vector for each site was built by counting
land patches intersecting the site, corresponding to each 3-digit code.

4 Case Study
In this work, the subset of Natura 2000 sites found in Sardinia is presented as a case
study. At the time of writing, there is a total of 124 sites counting those designated
as SPA and SCI; however, seven sites where excluded from this study because of
unavailable land use data. If the boundaries of a SPA and a SCI overlap, two nodes
are created, but they are considered to be at zero distance from each other. In all graph
instances, an edge is not drawn between a pair of nodes if their approximate distance
(calculated between borders on a map projection, using SQLite with the Spatialite
extension) is greater than a set threshold (30 Km). The resulting network has 117
nodes, each corresponding to a Natura 2000 site. When all pairs of nodes where the
geographical distance is up to 30 Km are linked, there is a total of 850 edges in the
graph model. This shall be referred to as the raw-distance graph (Figure 1a).

A single-species graph is a model built to represent the state of the network with
respect to a single species. In order to build a single-species graph, node pairs are
linked with an edge if their distance is below the threshold and the presence of
the species has been reported in both sites. Single-species graphs were built for all
species listed in Annex II to Directive 92/43/EEC, plus others for which a species
code consistent across site reports was given; an example is in Figure 1b. The open
source Cytoscape suite (version 3.4.0) was used for graph visualization [9] and
analysis, through the native NetworkAnalyzer plugin [2].

To represent the state of the network from a more general point of view, it is
possible to build a graph instance based on site similarity, which shall be generally
referred to as a similarity-based graph. This corresponds to a modification of the
raw-distance graph, with the removal of edges that link node pairs with a similarity
score below a set threshold. Clearly, different ways to compute similarity scores
result in different graphs. In this study, three graphs are built for analysis, each based
on Jaccard coefficients calculated on different vector representation of sites: the set
of species reported to be in a site (species-set graph), the set of habitats found in the
site according to Natura 2000 project data (habitat graph), and the set of level 3 land
use codes according to the CORINE program (land-use graph). A similarity score of
0.5 shall be used as a threshold for all similarity-based graphs. In fact, recalling that
the raw-distance network has 850 edges, similarity scores of 0.6 and above turn out
to be strong requirements, removing over 85% of edges in all cases (Table 1).

5 Analysis of Edge Hit Rates and Complex Network Indices
The analysis of a single-species graph, with the extraction of its indices, is meant
to give insight on the state of the network for the purpose of conservation of that
species. As land management proposals may be reflected by modifications on the
graph model, the improvement of indices according to set goals can act as a criterion
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Table 1: Number of edges in similarity-based graphs of Natura 2000 sites in Sardinia

Minimum similarity Land use-based Habitat-based Species-based

0.0 (raw-distance) 850 850 850
0.4 360 295 198
0.5 232 205 117
0.6 104 120 53

(a) (b)

Fig. 1: Graph models of Natura 2000 sites in Sardinia. (a) Raw-distance graph. Edges
link pairs of nodes with a geographical distance up to 30 Km between boundaries.
The position of each node roughly corresponds to the coordinates of the site cen-
troid. (b) Single-species graph for Cervus elaphus corsicanus (species code 1367).
For comparison purposes, all nodes from the raw-distance graph are represented;
technically, only linked nodes are part of this graph.

to identify favorable modifications. In many complex network applications, the set of
nodes is to be kept unmodified; assuming the network is initially connected, proposed
modifications can fall into one of three categories [1]:

• Addition of edges (also referred to as ‘updating’; proposed edges are referred to
as ‘virtual edges’). Assuming that adding links in the real-world network has a
cost, this problem is related to that of finding a set of new links which brings as
great a benefit as possible, while respecting budget constraints.

• Removal of edges (‘downdating’). Assuming that the network has some degree
of redundancy, this problem is related to that of finding a set of edges that can
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be removed to decrease maintenance costs, while affecting the efficiency of the
network as little as possible. The network as a whole should not be disconnected.
• Rewiring, i.e. removing and subsequently adding one or more edges. This prob-

lem is related to that of improving the efficiency of a network, while avoiding an
increase in maintenance costs.

In land management for ecological networks, an interesting problem may be to
find a site to relocate part of the population of a species, among those where it has not
been reported, while preserving or enhancing the emerging network effect; this can
be done to improve network indices or to merge components which are not initially
connected. In the graph model, this is reflected as an addition of nodes; this poses
a few problems, most notably the identification of suitable candidate sites for node
addition.

As previously mentioned, the Natura 2000 dataset was not designed with this
problem in mind, hence it is not straightforward to suggest good candidate nodes to
extend any given single-species graph. Newly connected sites should be within a set
geographical distance from an already connected node, and should host the preferred
habitat for the target species, or a suitable set of habitats for a temporary settlement
of the species, if the node is to act as a ‘bridge’.

One of the methods to calculate site similarity scores may qualify as a way to
formalize this criterion when data on habitat suitability is missing or incomplete.
Then, similarity-based graphs become a useful tool to express this notion. In formal
terms, a good candidate has the property that, in a similarity-based graph, it is
adjacent to a node that is part of a connected component in the single-species graph.
In symbols, let V be the full set of nodes representing Natura 2000 sites in the region
of interest, and let Gs = (V,Es) be a similarity-based graph built on node set V with a
suitable geographical distance threshold. Let G′ = (V ′,E ′) be a connected component
in the single-species graph built on V for the target species (V ′ ⊆V ), with the same
geographical distance threshold used for Gs. Then, if

i ∈V ′, j ∈V , j /∈V ′, (i, j) ∈ Es, (1)

then j ∈V is a good candidate node, and (i, j) is a candidate edge to link j to G′.
Since there are more ways to build Gs, an interesting question is which similarity-

based graph is best for the purpose of determining good node candidates. Intuitively,
if edges in single-species graphs often appear as edges in Gs, then Gs should provide
better candidates for graph updating. To measure the aptness of the similarity-based
graphs built on Jaccard coefficients of species sets, habitats and land use codes, the
three graphs were compared with 351 single-species graphs, using the same 30 Km
distance threshold. Results for a few sample species are reported in Table 2, together
with average rates. The three similarity-based graphs rank about the same way at a
34% average hit rate, with a slight disadvantage for the species-set graph at 31%.

These low hit rates do not show a clear winner among the three criteria under
consideration for building similarity-based graph; not only that, but they suggest that
there may be remarkable differences among the three graphs, which is confirmed by
comparing them visually (Figure 2).
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Table 2: Excerpt of the table of hit rates. For each species, the number of edges
in the single-species graph is reported. Then, for each similarity-based graph, it is
shown how many of those edges are present in the similarity-based graph (hits),
and the corresponding rate. The last row reports the average of all hit rates for each
similarity-based graph.

Land use-based Habitat-based Species-based
Species code Edges Hits Rate Hits Rate Hits Rate

...
6137 186 93 0.5 55 0.29570 24 0.12903
1367 15 9 0.6 8 0.53333 6 0.4
1373 8 6 0.75 2 0.25 2 0.25
...

Average hit rate 0.33650 0.34341 0.31308

(a) (b) (c)

Fig. 2: Similarity-based graph models of Sardinian Natura 2000 sites, with a 0.5
similarity score threshold and a 30 Km distance threshold. (a) Based on CORINE
land use codes. (b) Based on Natura 2000 habitat codes. (c) Based on species sets.

To establish whether these differences are significant, it is interesting to assess
whether any pair of similarity-based graphs behave similarly with respect to hit rates;
essentially, if the hit rate for a similarity graph Gs were high for the same species
as that of another similarity graph Gt , it could be argued that Gs and Gt express a
similar concept. To do so, Spearman correlation indices are calculated between pairs
of columns reporting hit rates in Table 2. It is notable that, while no correlation is
detected between the land use graph and the others, the species-set and habitat graphs
appear to have a strong correlation, above 0.8 (Table 3). This is not only consistent
with the fact that land use data originates from a different project; it confirms that



716 Gianni Fenu, Pier Luigi Pau and Danilo Dessı̀

nearby sites with similar habitat sets also host similar sets of species, thus reinforcing
the notion that the classification of habitats within the Natura 2000 project is more
suitable to describe sites than land use codes are.

Table 3: Spearman correlation between sets of hit rates.

Habitat-based Species-based

Land use-based 0.08446 0.03489
Habitat-based 0.80397

To corroborate this notion, it is possible to extend the comparison to complex
network indices calculated for nodes on the three similarity-based graph instances.
Indices are calculated for nodes representing Natura 2000 sites on the three graph
instances (see an excerpt in Table 4). The question is, for each index, whether a
higher value calculated on a graph corresponds to a higher value calculated on another.
Considered indices are node degree, closeness and betweenness centrality indices,
clustering coefficient, and topological coefficient [10].

Table 4: Excerpt of the table of normalized betweenness centrality indices calculated
for each node (site) on each similarity-based graph.

Betweenness centrality index
Site Land-use Habitats Species-set

...
ITB030034 0.01671 0.11557 0.04915
ITB030035 0.00014 0.04341 0.09402
ITB030036 0.01046 0 0.00641
...

Then, correlation are sought between sets of values for the same index on the
three possible pairs of graph instances, once again by calculating their Spearman
correlation coefficients (see Table 5 and a visual representation in Figure 3). Contrary
to hit rates, there is no value suggesting a strong correlation; however, a moderate
degree of correlation can be identified between the species-set and the habitats graph
for three measures (degree, topological coefficient and clustering coefficient), thus
reinforcing the previous observations that these two graphs are more similar to one
another, than the land-use graph is to either.
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Table 5: Spearman correlation of various complex network indices, between pairs of
similarity-based graphs.

Index Land-
use/Species

Land-
use/Habitats

Species/Habitats

Betweenness centrality +0.09309 +0.17446 −0.01905
Closeness centrality +0.01001 −0.02426 +0.12268
Degree +0.09172 +0.09961 +0.41257
Topological coefficient +0.11214 +0.04271 +0.25071
Clustering coefficient −0.02396 −0.10644 +0.28248

Fig. 3: Histogram representation of Spearman correlation of various complex network
indices, between pairs of similarity-based graphs.

6 Conclusions and Future Work
Current methods to apply complex network analysis on ecological networks tend to
focus on single species of interest, making it hard to evaluate and represent high-level
properties of the network. The analysis of single-species graphs proves to be useful
to assess the state of the network, but in the context of the Natura 2000 project in
the European Union, methods for data collection and storage were not designed to
assist researchers in proposing network modifications for its improvement. In this
paper, the construction of graph models based on site similarity is proposed as a
way to address this shortcoming. Multiple ways to build similarity-based graphs
are discussed and compared; results suggest that land use data expresses different
concepts than the species sets and habitat sets associated to each site. This represents
a challenge for land managers seeking to detect or establish habitat corridors, since
only land use data is available for land outside of Natura 2000 sites.

Future work will focus on an extension and application of the network updating
problem on single-species models. The linking of nodes that are not initially con-



718 Gianni Fenu, Pier Luigi Pau and Danilo Dessı̀

nected will be considered, subject to constraints based on site similarity and on the
degree of contiguity of land use outside of Natura 2000 sites.
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Abstract Global card fraud losses amounted to 16.31 Billion US dollars in 2014 [18].
To recover this huge amount, automated Fraud Detection Systems (FDS) are used to
deny a transaction before it is granted. In this paper, we start from a graph-based FDS
named APATE [28]: this algorithm uses a collective inference algorithm to spread
fraudulent influence through a network by using a limited set of confirmed fraudulent
transactions. We propose several improvements from the network data analysis
literature [16] and semi-supervised learning [9] to this approach. Furthermore, we re-
designed APATE to fit to e-commerce field reality. Those improvements have a high
impact on performance, multiplying Precision@100 by three, both on fraudulent card
and transaction prediction. This new method is assessed on a three-months real-life
e-commerce credit card transactions data set obtained from a large credit card issuer.

1 Introduction
Nowadays, e-commerce becomes more and more important for global trade: sales
of goods and services represented more or less 2,000 billion dollars in 2014 and
it was estimated that on 7,223 millions peoples on earth, 20 % were e-shoppers
[14]. Part of the reasons of this success is easy online credit card transactions and
cross-border purchases. Furthermore, most organizations, companies and government
agencies have adopted e-commerce to increase their productivity or efficiency in
trading products or services [4].
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Of course, e-commerce is used by both legitimate users and fraudsters. The
Association of Certified Fraud Examiners (ACFE) defines fraud as: ”the use of one’s
occupation for personal enrichment through the deliberate misuse or misapplication
of the employing organization’s resources or assets ”[8].

Global card fraud losses amounted to 16.31 Billion US dollar in 2014 and is
forecast to continue to increase [18]. This huge number of losses has increased the
importance of fraud fighting: in a competitive environment, fraud have a serious
business impact if not managed, and prevention (and repression) procedures must be
undertaken.

For those reasons e-commerce and credit card issuers need automated systems
that identify incoming fraudulent transactions or transactions that do not correspond
to a normal behavior. Data mining and machine learning offer various techniques to
find patterns in data; here, the goal is to discriminate between genuine and fraudulent
transactions. Such Fraud Detection Systems (FDS) exist and are similar to detection
approaches in Intrusion Detection System (IDS). FDS use misuse and anomaly based
approaches to detect fraud [15].

However, there are issues and challenges that hinder the development of an ideal
FDS for e-commerce system [11]; such as,

• Concept drift: fraudsters conceive new fraudulent ways/methods over time. Fur-
thermore, normal behavior also varies with time (peak consumption at Christmas
for instance).

• Six-seconds rule [28]: acceptance check must be processed quickly as the algo-
rithm must decide within six seconds if a transaction can be pursued.

• Large amount of data: millions of transactions occur per day whereas have to be
analyzed and acceptance must be granted in seconds.

• Unbalanced data: frauds represents hopefully only less than 1% of transactions
but predicting a pattern is harder with unbalanced dataset.

The presence of those challenges leads to high false alert rate, low detection accuracy
or slow detection (see [1] for more details).

This work focuses on automatically detecting e-commerce fraudulent transactions
using network (or graph) related features. Our work is based on a recent paper [28]
which introduced an automated and field-oriented approach to detect fraudulent
patterns in credit card transactions by applying supervised data mining techniques.
More precisely, this algorithm uses a collective inference algorithm to spread fraud-
ulent influence through a network by using a limited set of confirmed fraudulent
transactions and take a decision based on risk scores of suspiciousness of transactions,
card holder and merchants.

In this paper, several improvements from graph literature and semi-supervised
learning are proposed. The resulting fraud detection method is tested on a three-
months real-life e-commerce credit card transaction data set obtained from a large
credit card issuer in Belgium.

The following questions are addressed:

1. Can we enhance graph-based existing FDS in terms of performance?
2. How can we make FDS as suitable for real application as possible?



A graph-based, semi-supervised, credit card fraud detection system 723

3. Is semi-supervised learning [9] or feedback [11] useful for this Graph-based
FDS?

Our approach takes into account various field/ground realities such as the six-
second rule, concept drift, dealing with large datasets and unbalanced data. It also
has been conceived in accordance with field experts to guarantee its applicability.

The rest of this paper is divided as follows: Section 2 introduces background and
notation. Section 3 reviews related work. Section 4 details the proposed contributions.
Experimental comparisons are presented and analyzed in Section 5. Finally, Section
6 concludes this paper.

2 Background and Notation
This section will first introduce some basic facts about fraud detection, since behavior
of fraudsters has to be taken into account in the development of algorithms designed
to counter them. Then some useful graph notation is reviewed.

2.1 Frauds
There are many fraud detection domains but internet e-commerce presents a chal-
lenging data mining task (see Section 1) because it blurs the boundaries between
fraud detection systems and network intrusion detection systems.

As in many domains, profit-motivated fraudsters interact with the affected business.
[2, 24] describes comprehensively this interaction: the fraudster can be internal or
external to the business, can either commit fraud as a customer (consumer) or as a
supplier (provider), and has different basic profiles. From this description, it comes
out that professional fraudsters (as opposed to occasional ones) modus operandi
changes over time. Therefore, fraud detection system algorithms should also adapt
themselve to new behaviors. This is refered as ”Concept drift”: the constant change
in fraudsters behavior.

2.2 Graphs
Consider a weighted directed graph or network, G, assumed strongly connected with
a set of n nodes V (or vertices) and a set of edges E (or arcs, links) [6, 22]. The
adjacency matrix of the graph, containing non-negative affinities between nodes, is
denoted as A, with elements [A]i j (also written ai j) ≥ 0. The natural random walk
on G is defined in a standard way. In node i, the random walker chooses the next
edge to follow according to reference transition probabilities

pi j =
ai j

n

∑
j′=1

ai j′

(1)
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representing the probability of jumping from node i to node j ∈ Succ(i), the set of
successor nodes of i. The corresponding transition probability matrix will be denoted
as P. In other words, the random walker chooses to follow an edge with a probability
proportional to the affinity (apart from the sum-to-one normalization), therefore
favoring edges associated to a large affinity. The matrix P, containing the pi j, is
stochastic and is called the reference transition matrix.

3 Related Work
Credit-card Fraud detection received a lot of attention, but the number of publica-
tions available is limited. Indeed, credit card issuers protect data sources and most
algorithms are produced in-house concealing the model’s details [28].

As for any machine learning modeling process, two main approaches can be used:
a supervised and an unsupervised scheme. Supervised learning uses labels (the ob-
served prediction of an instance, here the fraud tag) to build the classification model,
where unsupervised simply extracts clusters of similar data that are then processed.
Common unsupervised techniques are peer group analysis [29] and self-organizing
maps [30] while common supervised techniques are artificial logistic regression,
neural networks (ANN) and random forests, meta-learning, case-based reasoning,
Bayesian belief networks, decision trees, logistic regression, hidden Markov models,
association rules, support vector machines, Bayes minimum risk and genetic algo-
rithms. The reader is advised to consult [12] for more detail about credit card fraud
detection, and [24] for a wider review on fraud detection.

According to [28], APATE was the only one to include network knowledge in
the prediction models for fraud detection: This model first builts a tripartite graph
(see below) and then extracts relevant risk scores for each node. [28] shows that this
information, added to more conventional ones, increases the performances of the
fraud detection system.

In this work, we follows the methodology of APATE [28] (which is described in
this section, to make this paper self-contained), and propose several improvements in
the next section. Other types of graph were also investigated (bipartite,...) but they
did not provide better results and are therefore not presented here.

In particular, APATE starts with a set of time stamped, labeled, transactions. The
goal is, of course, to fit a model to infer future fraudulent/genuine transactions.
Furthermore, for each transaction of this dataset, the card holder (or user) and
merchant (or retailer) is known. APATE thus create a tripartite adjacency matrix Atri

(there are three type of node: transactions, card users and merchants) as follows:

Atri =




0t×t At×c At×m

Ac×t 0c×c 0c×m

Am×t 0m×c 0m×m


 (2)

where At×c = (Ac×t)
T is an adjacency matrix where transactions are linked with

their corresponding card holders , At×m = (Am×t)
T is an adjacency matrix where
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transaction are linked with corresponding merchants and 0···×··· is a correctly sized
matrix full of zeros. From Atri, transition matrix P is derived (see Section 2.2).

A column vector r0 = [rTrx
0 ,rCH

0 ,rMer
0 ]T of length equal to the total number of

transactions (hence the superscript Trx), card holders (CH) and merchants (Mer) is
also created. The vector is full of zeros, except for known fraudulent transactions
where it is equal to one (and therefore is always zero for merchants and card holders).
Finally, element k of a vector r0 is noted [r0]k.

Then, in a convergence procedure similar to the PageRank algorithm [23], r0 is
updated to spread the fraud label through the tripartite graph. This is known as a
random walk with restart procedure (RWWR) [19]:

rk = α ·PTrk−1 +(1−α) · r0 (3)

where α is the probability to continue the walk and (1−α) is the probability to
restart the walk from a fraudulent transaction. This parameter could be tuned, but
was fixed to 0.85 in the experimental comparisons (see [23]). The procedure diffuses
the information about the transactions through the network.

Eq. 3 is iterated until convergence. Then, from rkc (where kc stands for k at
convergence) rTrx

kc , rCH
kc and rMer

kc can be extracted and considered as a risk measure
for each transaction, card holder and merchant respectively.

As fraud detection models should adapt dynamically to a changing environment,
this procedure is repeated several times, introducing a time decay factor. Each non-
zero entry of Atri and r0 is modified to characterize transactions based on current and
normal customers past behavior (see [28] for more details):

{
[Atri]i j ← e−γ·t([Atri]i j) or 0 if no relation
[r0]k ← e−γ·t([r0]k) or 0 if no fraud

(4)

where t(·) is the (scalar) time where transaction between i and j in matrix Atri

occurred (or k for vector r0), and γ is a scalar set in such a way that the half-life of
the exponential is: one day, one week and one month (i.e. elements are equal to 0.5
at half-life). For instance, if a transaction occured two weeks ago, the corresponding
element of Atri with week decay is equal to 0.25 and is 1/(214) with day decay.

Therefore, for each transaction of our starting dataset, we have 12 new features:
Transaction risk for transaction, card holder and merchant, each for four (no decay,
day decay, week decay and month decay) time windows.

However, this procedure cannot be computed in less than a few minutes, which
is not suitable with the six-seconds rule. Convergence on a graph with millions of
nodes is expensive and is therefore daily re-estimated over night. Transactions made
during the testing day are evaluated using the model trained on previous night. For
card holders and merchants, the graph-based feature values are extracted (looked up)
from the trained model, since they are likely to be part of the previous data.

Naturally, for the new transaction not part of the model, transaction-based features
have to be estimated, which is done through the formula:
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score(Trxi,k) =
1

n

∑
j=1

p ji +1
score(Meri)+

1
m

∑
j=1

p jk +1
score(CHk) (5)

where score(Trxi,k) stands for the new transaction score between merchant i and card
holder k, score(Meri) stands for the score of merchant i and score(CHk) stands for
the score of card holder k. It represents the score of a new transaction l after one new
iteration of Eq. 3 when this transaction is added to P (with pli = 1 and plk = 1). If
a new transaction involves a new merchant and/or card holder, score(Meri) and/or
score(CHk) are set to zero accordingly.

Finally, those 12 new features (plus transaction-related features, see Table 1) are
fed to a random forest classification model, as this model proved to perform well for
the problem at hand, predicting fraudulent transaction [3, 12].

Table 1: Features used by the random forest classifier. First group are demographical
features and second group are graph-based features. Notice that each transaction is
linked with a card holder and with a merchant at a certain date: those information are
only used to build the tripartite graph.

Variable name Description
inBEL/EURO/OTH Issuing region: Belgium/Europa/World
TX AMOUNT Amount of transaction
TX 3D SECURE Transaction used 3D secure
AGE Age of card holder
langNED/FRE/OTH Card holder language: Dutch/French/Other
isMAL/FEM Card holder is Male/Female
isFoM Card holder gender unknown
BROKER Code of card provider
cardMCD/VIS/OTH Card is a Mastercard/Visa/Other
01 Mer score Merchant risk score (boolean, no time damping)
ST/MT/LT Mer score Day/week/month decay merchant risk score (3 features)
01 CH score Card Holder risk score (boolean, no time damping)
ST/MT/LT CH score Day/week/month decay Card Holder risk score (3 features)
01 Trx score Transaction risk score (boolean, no time damping)
ST/MT/LT Trx score Day/week/month decay Transaction risk score (3 features)
TX FRAUD Target variable: Fraud/Guenuine

4 The Proposed Model
While showing good performance, APATE can be improved in various ways.
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4.1 Dealing with hubs
From the literature, it is known that presence of hubs in a network can harm the clas-
sifier [17, 25, 26]: hubs are nodes having a high degree and are therefore neighbors
of a large number of nodes. In our dataset, it corresponds to popular nodes such as
popular online shops like Amazon (as an example, the dataset is anonymised). Those
nodes tend to accumulate a high value of risk score since they are connected to a
lot of transactions. A simple way to counterbalance this accumulation is to divide
the risk score by the node degree after convergence. In general, it is possible to
divide by any power of the node degree and/or by different powers for the three
types of nodes of the tripartite graph (transactions, card holders and merchants). In
practice however, we did not find any combination that significantly beats the simple
divide-by-node-degree option (results are not reported here).

Furthermore, it allows us to make a link with the regularized commute time kernel
which is K = (D−αA)−1 (where D is the degree matrix) : element i, j of this kernel
can be interpreted as the discounted cumulated probability of visiting node j when
starting from node i (see [16, 21, 31] for details). The (scalar) parameter α ∈ ]0,1]
corresponds to an evaporating or killed random walk where the random walker has a
(1−α) probability of disappearing at each step (therefore it has the same interpreta-
tion as for the RWWR used in APATE, see Section 3). This method provided the best
results in a recent comparative study on semi-supervised classification [16] and the
second best results in another one [20]. In practice, the efficient implementation pro-
posed in [21], Equation (22), for semi-supervised classification with the Regularized
Commute Time Kernel is used and referred as RCTK.

4.2 Introducing a time gap
On the other hand, unlike in [28], the model cannot be based on past few days.
Indeed, fraudulent transaction tags (the variable we want to predict) cannot be known
with certainty without human investigators feedback. Moreover, since the fraudsters’
modus operandi is known to change over time (see 2.1), it is not acceptable to built
our model on old, less reliable (but fully inspected) data. However, it takes several
days to inspect all transactions, mainly because it is sometime card holders that report
undetected frauds. Of course, this makes our fraud detection problem harder [10].

In arrangement with field experts, we designed a real-life scenario containing
three sets of data:

1. Training set: data where the transaction fraud labels can be taken as reliable.
2. Gap set: data where the transaction fraud labels are unknown.
3. Test set: data of the day on which the algorithm is currently tested.

It corresponds therefore to a semi-supervised learning scheme (SSL), as training data
are partially labeled. If the Gap set is totally left aside, this is an usual supervised
learning (SL) problem again. Both cases (SL and SSL) were investigated:

• For the SL scheme, only the Training set is used to build the graph, and only the
Training set is used to train the random forest.
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• For the SSL scheme, the Training set and the Gap set are used to build the graph,
and only the Training is used to train the random forest.

Once again, in arrangement with field experts, 15 days of training data and seven
days for the gap set were chosen [5, 11]. This scenario is depicted on Fig. 1. Notice
that on this figure, τ controls the testing day and that models are systematically built
(overnight) on the 22 previous days. By changing τ , we get different testing days.

τ−22 τ−7 τ

1 day

TRAINING SET
GAP SET

TEST SET

TIME

Fig. 1: Real-life FDS scenario with three sets of data. It takes several days to inspect
all transactions, mainly because it is sometime the card holder who reports undetected
frauds. Hence, in practice, the fraud tags of the Gap set are unknown. This scenario
is repeated each day, as the parameter τ is incremented.

4.3 Including investigators feedback
Finally, even if in this last scenario it is not possible to know all fraud tags for the
gap set, it is still conceivable that a fraction of previous alerts have been confirmed
or overturned by human investigators (typically when a fraud alert occurs, the card is
blocked and the card holder is contacted by phone). In our case, we put this number
of feedbacks per day to 100, in arrangement with field experts.It is a realistic average
number of cards than a human investigator can check per day, usually by contacting
the card holder. So each day, the 100 most probable fraudulent card (according to the
model) are checked and then used as feedback. So in each of our gap set (except in
starting condition) 700 cards have been checked by human investigators. We will take
advantage of these investigated cases in order to try to predict more accurately the
fraudulent transactions. On average, it means that roughly 1400 transaction feedbacks
(two transactions per card) from previous testing day (previous τ’s of our model) are
available. This option will be referred as +FB and only make sense in a SSL scheme.

4.4 Removing merchant scores
Finally, we observed that removing merchant scores rises the performance. This is
surprising at first glance but, after investigation, it turns out that new transactions
involving new merchants cause issues (with our set-up, it corresponds to roughly
20% of merchants). In this case, the risk score is set to zero, causing the method to
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under-evaluate the risk. This should clearly be tackled but we choose to let this for
further work. This last option will be refers as noM.

5 Experimental comparisons
In this section, the possible variation of considered algorithms will be compared on
a real-life e-commerce credit card transaction data set obtained from a large credit
card issuer in Belgium. Those graph-based algorithms compute additional features
and were presented in Section 3 and 4. For practical purposes, considered algorithms
are recalled in Table 2 and the classifier is always a random forest with 400 trees.

The database is composed of 25,445,744 transactions divided in 139 days and
fraud ratio is 0.31%. The features list can be found in Table 1. From this table, the
first group contains socio-demographic features which are taken as-is. The second
group contains the graph-based features described in Section 3 and 4. Notice that
each transaction is linked with a card holder and with a merchant at a certain date:
those three pieces of information (card holder, merchant and date) are used to build
the tripartite graph. Finally, this database does not focus on a certain type of card
fraud (stolen, card-not-present,...) but contains all reported fraudulent transactions in
this time period.

Table 2: The nine compared models, see Sections 3 and 4 for acronyms. Considered
variations of the APATE Algorithm according to four dimensions: merchant score
status, hubs status, learning scheme and utilisation of feedback. Precision@100
(see Section 5) both for fraudulent card and transaction prediction is also reported
(formatted mean ± std)

Classifier name Mer Score Damp hubs Learning Feedback Card Pr@100 Trx Pr@100
RWWR SL = APATE used no Supervised no 18.64 ± 4.66 27.78 ± 11.61
RWWR SSL used no Semi-supervised no 16.95 ± 4.46 20.85 ± 10.14
RWWR SSL +FB used no Semi-supervised yes 14.19 ± 4.43 13.89 ± 8.49
RCTK SL used yes Supervised no 23.78 ± 9.52 40.50 ± 18.00
RCTK SSL used yes Semi-supervised no 44.55 ± 9.55 50.58 ± 13.99
RCTK SSL +FB used yes Semi-supervised yes 37.15 ± 10.14 49.06 ± 14.70
RCTK noM SL discarded yes Supervised no 45.35 ± 9.06 62.25 ± 11.97
RCTK noM SSL discarded yes Semi-supervised no 56.08 ± 8.06 81.61 ± 9.00
RCTK noM SSL +FB discarded yes Semi-supervised yes 56.65 ± 8.69 84.13 ± 8.42

As a performance indicator, Precision@100 [27] was chosen, in accordance with
field experts. It means that the 100 most probable (according to models) fraudulent
transactions are checked by human investigators each day (and added as feedback
in RWWR SSL +FB, RCTK w/ SSL +FB and RCTK noM w/ SSL +FB). Similarly
all most probable fraudulent transactions are considered until 100 cards have been
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0 1 2 3 4 5 6 7 8 9

RCTK noM SSL +FB

RCTK noM SSL

RCTK noM SL

RCTK SSL +FB

RCTK SSL

RCTK SL

RWWR SSL +FB

RWWR SSL

RWWR SL

Friedman/Nemenyi test for Cards Prec@100

Fig. 2: Mean rank (circles and crosses) and critical difference (plain line) of the
Friedman/Nemenyi test, obtained on a three-months real-life e-commerce credit card
transaction data set. The blue (bottom circle) method has the best mean rank and
is significantly better than red (crosses) methods. The Critical difference is 1.14.
Performance metric is Pr@100 (Precision@100) on fraudulent card prediction.

checked as usually human investigators verify all transactions of a card when they
investigate. Precision@100 reports the number of true fraudulent transaction or card
among 100 investigated cards. Notice that this last metric is more realistic as it is
somehow the normal work charge for a human investigators team.

Figure 2 compares methods from Table 2 through a Friedman/Nemenyi test [13].
To do so, we adopt a sliding window approach: each day (different τ from Fig 1)
is considered as a different (train-gap-test) dataset. This test compares the ranking
provided by Table 2 methods. Friedman null hypothesis is rejected with α = 0.05 and
Nemenyi critical difference is equal to 1.14. A method is considered as significantly
better than another if its mean rank is larger by more than this amount.

Firstly, RCTK always beats RWWR, RWWR noM was therefore discarded. This
superiority indicates that tackling the hubs problem is actually important.

Secondly, SSL leads to a huge improvement, but only if hubs have been damped.
SSL predicted frauds tend to contain more frauds with a fraudulent activity during
gap days, compared to SL ones. As the fraud tag is hidden for the gap set, it means
that this information is obtained by network analysis (train+gap).

Thirdly, even if +FB bring some kind of information, it only increases performance
when hubs are tackled (RCTK) and merchant scores are removed (noM). By the
way, results are not significantly better on our three-months dataset. Further analysis
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(not reported here) shows that with more data days and more checked cards, this
improvement becomes significant (with α = 0.05).

Lastly, removing merchant scores rises performance as explained in Section 4.
Overall, the best combination is RCTK noM SSL +FB, but it is not significantly

better than RCTK noM SSL.
Finally, Figure 3 indicates the frequency of selected features by the random forest

classifier. The method is RCTK SSL +FB and selects Mer scores most often. Sadly,
new transactions involving new merchants cause issues. In this case, the risk score
is set to zero, causing the method to under-evaluate the risk, resulting in a biased
prediction. Discarding those four features (Mer scores) does increase the overall
performance and selected variables of random forests stay similarly distributed.
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Fig. 3: Selected variables of random forests for the RCTK SSL +FB model for all
days. Mer scores tend to bias the prediction. Discarding those four features does
increase the overall performance (see Figure 2) and selected variables of random
forests stay similarly distributed.

6 Conclusion
In this paper, we start from an existing Fraud Detection Systems (FDS) APATE and
bring several improvements: which have a huge impact on performances damping
hub nodes (RCTK), introduce restrictions due to real application (SSL, Gap set,
Pr@100 as a metric) and introduce feedback information from human investigators
(+FB). Those improvements multiply the Pr@100 by three, both on fraudulent card
or transaction prediction (for acronyms, see Section 4).

However, introducing feedback does not lead to a significant improvement: feed-
back impact can be increased if more cards are checked, but this is non-realistic
for investigators. New transactions involving new merchants are still an issue (see
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noM in Section 4) which is let for further work: a possible way would be to mimic
the learning procedure from [7]. Another envisaged further work is to introduce
semi-supervised learning not only on graph analysis but also in main classifier.
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Abstract Analyzing data collected from location-based social networks can reveal
complex structure in human social relations. It can also lead to deep understandings
of human mobility and help characterize city locations and their connectivity. In this
paper, we construct location networks for six cities using a large-scale Instagram
dataset. We find that these location networks share many topological features as in
other different types of networks, along with properties specific to their cities. By
mapping locations to their geographical coordinates, we further show that (1) our
construction method can effectively reveal popular city locations, and (2) for two lo-
cations there is no clear correlation between their network distance and geographical
distance. Moreover, all six location networks contain three or four large communities
covering almost all locations in a city and the large communities in each city often
exhibit clear spatial differences in geographical space.

1 Introduction
With the advancement of urbanization process, more and more people live in cities.
The United Nation published a report in 2014 stating that 6 billion people will live in
cities by 2050 (double the current amount). On one hand, city life brings people a lot
of convenience. For instance, people can taste different cuisines and buy products
from all over the world. On the other hand, it also results in many problems such
as traffic jam and heat island effect. Many efforts have been taken to tackle these
problems and improve people’s life quality, such as the techniques of smart city.
In particular, one fundamental component of cities, i.e., location, attracts a number
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of attentions in academic research. Existing work exploited location information
to infer users’ friendship [16], recommend new locations [7] and measure urban
deprivation [18]. However, most of these work treat locations separated from each
other, while the interactions among locations are often not studied.

Online social networks have been the most successful application during the past
decade, major companies including Facebook and Instagram have attracted a large
number of users. With the development of mobile devices, social networks have been
extended to geographical space. Nowadays, more and more social network users are
sharing their photos or statues labeled with geographic information, namely check-in.
The large-scale check-in data can be naturally used to describe human mobility, and
provide us means to study location relations.

Network is one of the most common perspectives to study interactions in complex
systems, it has attracted academia a particular interest in recent years, e.g., social
networks, biological networks, transportation and computational history [17]. Loca-
tions can also be organized into networks, and such networks can be used to study
connectivity among locations. Most of existing studies construct location networks
based on user transitions among the locations [10, 13]. Namely, a location network is
built as a directed weighted graph, whose nodes are locations and each edge is formed
between two locations if a user directly moved between such two locations during a
pre-defined time period. However, all these networks only reflect users’ movement
from one location directly to another in a short time, but they cannot describe the
overall connections between locations. In our work, we present a different approach
to construct location networks for six cities, including New York, Los Angeles,
London, Paris, San Francisco and Tokyo, with more than 15 million check-in data
collected from Instagram, and conduct empirical analyses on these networks to reveal
their network features and properties related to location geographical coordinates.
Our contributions can be summarized as follows:

• We propose a new method for constructing location networks (Section 2). In our
construction, we treat each location as a node (similar to [10, 13]) and define a
weighted edge between two nodes, which describes users’ check-in behaviors
and measures the strength of the connectivity between these two nodes.

• We adopt four measurements to describe the constructed location networks,
including mean degree, degree distribution exponent, weighted clustering co-
efficient and average shortest path length. We find that location networks have
similar topological features as in other complex networks. In addition, location
networks also exhibit differences specific to their city (Section 3).

• We rank location popularity based on the PageRank algorithm [15], and show
that our construction method leads to more effective rankings of locations when
compared to rankings, e.g., based on location entropy [10] (Section 4).

• We reveal the relation between geographical distances and network distances
between any two nodes (Section 4). To our surprise, we discover that there is no
clear linear correlation between these distances.

• We detect network communities in our location networks, and discover that there
only exist three or four large communities containing almost all the locations
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Table 1: Summary of the original dataset

City Users Locations Check-ins

New York 95,624 21,646 2,566,328
London 56,663 10,423 1,199,500
Paris 22,409 6,916 458,291
Los Angeles 85,788 19,412 2,055,290
Tokyo 35,487 19,610 835,896
San Francisco 25,374 7,302 585,727

in each city. Such communities also exhibit differences in geographical space
(Section 5).

2 Network Construction
2.1 Dataset
Instagram is a photo-sharing social network service, with a fast growing user number.
Instagram allows users to label locations when publishing photos. It is worth noticing
that the location information on Instagram is imported from Foursquare, a social
network that concentrates on location sharing. In addition, the authors of [11] have
shown that Instagram users are much more willing to share locations than other social
network users (e.g., 31 times more than Twitter users), which makes Instagram a
suitable source for collecting check-in data.

To find users in the six cities, we start from querying Foursquare’s API to collect
the location IDs in each city, together with each location’s rating. Then we use
Instagram’s API to collect users’ check-ins in Instagram at the corresponding location
IDs. In our experiment, we focus on users’ check-ins in year 2015. To resolve the
data sparseness issue, for each city, we concentrate its users with at least 10 check-ins.
Moreover, locations that are visited only by one user are filtered out. In the end, we
use more than 7M check-ins in total to construct six location networks (one for each
city). Table 1 summarizes our dataset.

2.2 Nodes, Edges and Weights
Our general goal is to study city locations from the network perspective, for instance,
to understand why locations are connected to each other and how strongly the
locations are connected. Along with a (complex) topological structure, many real
networks display a large heterogeneity in the capacity and intensity of connections.
Thus, it is important to have a measurement which reflects the relevancy between
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any two locations in a city. Our intuition is to take city locations as nodes in the
location network, locations are connected through users’ check-in behaviors. In
order to measure the strength of the connections, we need a measure to estimate and
summarize how different users behave on the connections.

First, if two locations have been visited by one user, we consider that these
two locations are associated with each other and there exists an edge between
them. Let L(u) denote the set of all locations that user u has visited. We define
E(u)= {(`i, ` j) |`i, ` j ∈ L(u)∧`i 6= ` j} as the set of edges constructed from u’s check-
in data. Based on this definition, we build an undirected graph, in which nodes denote
(check-in) locations, an edges between any two nodes mean that the two locations
have been visited by one user. Let V be the set of all check-in locations for a given city.
We construct a location network G = (V,E), where E = {(`i, ` j) |(`i, ` j)⊆V ×V}
captures all existing connections between two locations through users’ check-in
behaviors.

The next step is to quantify the strength for each edge (`i, ` j) in G. An edge
connecting two locations can be visited by many users, whose check-in behaviors can
vary differently: some may visit many different locations while others visit only a few.
Thus, we need to take users’ active levels into account to measure edge weights. We
adopt the Shannon entropy to quantify a user’s active level (similar to the definition
of location entropy to measure location’s popularity [6]):

entropy(u) =− ∑
`i∈L(u)

p`i · ln(p`i) (1)

where p`i = u`i/∑` j∈L(u) u` j describes the probability that user u visited location `i.
It is easy to see that entropy(u) depends on both the diversity of locations and the
frequency how u visited those different locations.

Then, we use users’ active levels to define two locations’ (`i and ` j) edge weight
as the following:

W`i` j = ∑
u∈U`i` j

entropy(u) ·
√u`iu` j

∑(`s,`t )∈E(u)
√u`s u`t

(2)

where U`i` j represents the set of users who visited both locations `i and ` j, u`i denotes
user u’s number of check-ins at `i. The factor√u`iu` j reflects how often u visits both
`i and ` j, and it is normalized by all pairs of locations u has visited. By multiplying

entropy(u) and
√u`i u` j

∑(`s ,`t )∈E(u)
√u`s u`t

, it shows how much a user u’s check-in behavior

can be cast onto the edge (`i, ` j). Furthermore, in order to reflect the contributions
made by all the users who visited both `i and ` j, we sum up each user’s contribution
to have the final weight for the edge (`i, ` j).

In the end, we construct a weighted graph, representing a location network for
each city: G = (V,E), with a function W : E→ R+ assigning a positive value to every
edge in G. For each (`i, ` j) ∈ E, we have W (`i, ` j) =W`i` j as defined in Equation 2.
Table 2 summarizes the numbers of nodes and edges, the minimal, maximal and mean
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Table 2: Statistics for the six constructed location networks

City Nodes Edges Min Weight Max Weight Mean Weight

New York 21,646 5,697,507 8.9673e-05 286.2492 0.0383
London 10,423 1,861,304 2.1687e-04 165.5303 0.0647
Paris 6,916 655,793 1.7152e-04 655.1800 0.0665
Los Angeles 19,412 3,881,191 8.5379e-05 381.1223 0.0468
Tokyo 19,610 2,635,335 1.0492e-04 157.8897 0.0287
San Francisco 7,302 1,334,240 1.7223e-04 100.6024 0.0407

weights, for the six constructed location networks. For all the location networks,
most edges have small weights (this can be concluded from the mean weights), while,
there exist a few edges with large weights, which, we suppose, often connect the most
popular locations in the cities. In order to confirm our hypothesis, we obtain each
pair of locations which are connected by an edge with the largest weight for each city.
For example, there exists an edge with the largest weight connecting Rockefeller
Centre and Times Square, which are known as two of the most famous locations in
New York City. Similarly, the other location pairs are also the most famous places
in the corresponding cities: Tower Bridge and Tower of London in London, Musee
du Louvre and Notre-Dame de Paris in Paris, Staples Centre and Dodger Stadium in
Los Angeles, Tokyo Disneyland and Tokyo Dome in Tokyo, AT&T Park and Union
Square in San Francisco.

In addition, it is easy to see that New York city has the largest location network,
followed by Los Angeles and Tokyo, and then by London. Paris and San Francisco
have relatively small location networks. The reason for the different sizes of location
networks are mostly due to the difference between the population and the size of
each city. We list all the basic information (i.e., population, size and density) of these
six cities in Table 3. From Tables 1, 2 and 3, we find that New York has the largest
population density, and its number of Instagram users, check-ins, nodes and edges
are also the highest. Meanwhile, all the corresponding parameters in Paris are the
smallest. Thus, we observe a positive correlation between the size of our location
networks and city’s population density.

3 Graph Measurements and Analysis
After constructing the (weighted) location networks, we analyze their properties to
have a representative description of these networks. In the following, we present four
measurements, as discussed in [12].

Mean degree (MD). Even though our network is weighted, to compare with other
networks, we consider the unweighted mean degree here. That is, for each node, we
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Table 3: Basic information for each city

City Population Size Population density

New York 8.41 789 10,659.06
London 8.67 1,572 5,515.27
Paris 12.29 12,012 1,023.14
Los Angeles 9.82 1,214 8,088.96
Tokyo 13.62 2,188 6,224.86
San Francisco 0.84 121 6,942.15

compute its number of degrees and calculate the mean of all the nodes’ number of
degrees as mean degree.

Degree distribution exponent (DDE). In general, the degree distribution is the
probability distribution of these degrees over the whole network. For our location
networks, we need to construct a histogram of the degrees. Like other power-law
degree distributions, the histogram is highly right-skewed. It means that its degree
distribution has a long right tail of values that are far above the average, indicating
that more nodes have smaller degrees while less ones have much larger degrees. To
describe the degree distribution of each location network, we compute the exponent
α for each degree distribution curve: pk ∼ k−α , where pk denotes the number of each
degree k, and α means the exponent for each degree distribution curve.

Weighted clustering coefficient (WCC). Clustering coefficient captures the degree
to which nodes in a graph tend to cluster together. In other words, it is related to
the number of closed triangles in the neighborhood of a node. Here, we apply the
local clustering coefficient algorithm [14, 19]. For a node, its clustering coefficient is
the fraction of the number of present links over the total number of possible links
between its neighbors. Therefore, the outcome strictly ranges between 0 and 1, where
0 denotes that no links exist between the neighbors, and 1 if all possible links exist.
The equation for clustering coefficient of any node in a location network is given as

WCC`i =
∑` j ,`k∈Cnei(`i)W`i,` j +W`i,`k

∑`m,`n∈Nei(`i)∧`m 6=`n W`i,`m +W`i,`n

(3)

where Cnei(`i) denotes a set of pairs of locations which are both neighbors of `i and
are also connected in the network, namely closed triplets. For each node, we sum
the value of the closed triplets that are centred on the node and divide it by the total
value of all triplets centred on the node. The larger coefficient of one location implies
that user who visits this location will also visit its neighbors more frequently.

After obtaining the coefficient for each location, we compute the average clus-
tering coefficient value for the whole network. To some extent, the average value
reflects the density of the whole network.
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Table 4: Properties comparison with six cities

City Nodes Edges MD DDE α WCC CRC

New York 21,646 5,697,507 526.426 3.818 0.011 -9.5e-4
London 10,423 1,861,304 357.153 3.116 0.013 0.0448
Paris 6,916 655,793 189.645 2.185 0.019 0.0670
Los Angeles 19,412 3,881,191 399.875 3.500 0.014 0.0560
Tokyo 19,610 2,635,335 268.775 3.493 0.014 0.0427
San Francisco 7,302 1,334,240 365.445 3.970 0.012 0.0339

Analysis. Table 4 summarizes the computed four measurements for the six location
networks. We compare their features with other typical real-life networks, such as
biological networks and technological networks. First, we measure the proportion
of existed edges to all possible edges in each location network (New York: 0.024,
London: 0.034, Paris: 0.027, Los Angeles: 0.021, Tokyo: 0.014, San Francisco:
0.050). Compared with the given statistics of a number of published networks [12],
we can find that the edge proportions in our location networks are higher than other
networks, where most edge proportions are less than 10−4. This implies that most
locations in our networks have more connections with others. Furthermore, the nodes
with more connecting edges are often popular locations in the cities. Our location
networks’ mean degrees are much bigger than other networks [12] (e.g., WWW
Altavista network: 10.46, physics coauthorship: 9.27, metabolic network: 9.64),
which is mostly due to the large numbers of edges in our location networks. On the
other hand, clustering coefficient values of our location networks are much lower
than other networks [14]. The main reason for this result is that, due to Equation 3,
the denominator can be influenced largely by the number of edges in networks. As
our networks have a plenty of edges, the values of clustering coefficient arrive at a
low level 1. Since the clustering coefficient measures the density of triangles in a
network, higher value means the networks are much denser and the neighbors of
a node in the network are more likely to be connected. The computed clustering
coefficients in Table 4 imply that the neighbors of one location are not necessarily
connected and influenced by other locations. When considering the exponent α , we
find that our network and other networks have similar values. It means the degree
distribution of our location networks also follows a power law form. In general, we
can conclude that location networks share basic topological features of complex
networks while having their own characteristics.

Table 4 also shows differences among the six cities. London’s location network
has the largest mean degree, even though the location network of New York has a
much larger number of edges than London. This is due to that the edge proportion in
New York’s location network is much lower than London’s, and its degree distribution

1 Clustering coefficient for unweighted graphs will increase when there are more edges. However,
WCC considers not only the number of edges, but also the edge weights. Since most of the edges in
our location networks have small weights, WCC will decrease when there are more edges.
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curve also has a longer tail than London’s. This is also reflected in the clustering
coefficients: London’s location network has a higher clustering coefficient than New
York’s, meaning that its edge weights are relatively larger. For another example,
Tokyo has many more locations than Paris, and the numbers of nodes and edges in
its location network are much larger than Paris’ network. However, the clustering
coefficient in Tokyo’s location network is smaller than Paris’. Meanwhile, Tokyo’s
location network’s exponent α is higher than Paris’, which means most nodes in
Tokyo’s network have much smaller degrees than nodes in Paris’ location network.
These also explain why the mean degree of Tokyo’s location network (i.e., 7.717) is
much smaller than Paris’s (i.e., 12.612). We also observe that the shortest path length
of location network in Paris is the largest while New York has the smallest shortest
path length. From these, we can conclude that each location network has features
specific to their city.

4 Location Ranking and Distances
4.1 Location Ranking
Location popularity has received many attentions in recent years, it is considered as an
essential part for building real-world applications such as location recommendation
and friendship prediction. With our location networks constructed, we want to
measure each location’s popularity as well. To do so, we adopt one of the most
classical algorithms on measuring the popularity of nodes in networks, i.e., PageRank.

To further validate our popularity measurement, we take location entropy [6] for
comparison. Location entropy is one common measurement for location popularity.
If a location has a high entropy, it shows that many different users have visited the
location, thus the location is popular. To compare popularity ranking on locations,
based on the results of executing PageRank on our networks and computing the
location entropy of each node in our networks, we adopt a quantitative way with the
help of location ratings. As mentioned in Section 2, due to the connection between
Foursquare and Instagram’s APIs, when collecting check-in data at a certain location,
we are able to get the location’s rating from Foursquare (between 1 and 10). We treat
these ratings as a ground truth to rank location popularity.

We compute the correlation coefficients between ratings and both PageRank
scores and location entropies for all locations in each city. The results in Table 5
show that PageRank scores are much more correlated with ratings than location
entropies. With the assumption that high ratings indicate popular locations, we
conclude that PageRank scores, computed on our location networks, are very effective
in evaluating location popularity. This further demonstrates the usefulness of our
network construction method (note that location entropy only concentrates on the
check-ins of each location, but not on the relations among locations).
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Table 5: Comparison between correlation coefficients obtained by PageRank and
location entropy

City PageRank location entropy City PageRank location entropy

New York 0.4356 0.1420 Los Angeles 0.4714 0.1885
London 0.3774 0.2039 Tokyo 0.4169 0.1720
Paris 0.3952 0.1482 San Francisco 0.4449 0.2079

4.2 Location Distances
Besides location popularity, locations have other important properties, i.e., their
geographical coordinates. Where a location is geographically located, in many cases,
can determine its fundamental properties such as its functionalities and its value in
the real estate market. In this subsection, we study the relation between locations
organized as a network and their actual geographical coordinates.

To our knowledge, human mobility is probably constrained geographically by the
distance one can travel within a day [9]. Thus, we assume that the geographic distance
(Geodist) between any two locations has an influence on the connectivity between
them in location networks. In other words, Geodist has an impact on user’s judgement
on the choice of visiting different locations. Thus, we need to obtain the check-in
correlation coefficient between Geodist and Netdist (i.e., network distance, that is, the
shortest path length in the network between any two locations), in order to determine
whether there exists any correlation between such two kinds of distance. In particular,
Geodist means the actual geodesic distance computed by the Euclidean distance using
latitude and longitude values, while the weights on edges in the constructed location
network can be considered as Netdist . Finally, we get the correlation coefficient
between these two kinds of distance for each city, shown in last column (CRC) in
Table 4, where most of the correlation coefficient values are close to zero. This
suggests that there is no linear relation between geographical distance and edge
weight defined in the paper.

5 Community Analysis
To further understand the structure of our location networks, we perform analysis on
their community structures. In simple terms, a community is a subset of nodes in a
network with links among the community members are much more than between
the community and the rest of the network. According to [20], the community
structure is one of the most useful granularity to study networks, it has been used by
researchers, e.g., to study interactions between modules [1] and predict unobserved
connections [4].
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Table 6: Summary of detected largest communities for each city

City Comm. 1 Comm. 2 Comm. 3 Comm. 4 #. Comm. %. Top communities

New York 7,679 5,775 5,678 2,473 18 99.8%
London 3,626 3,450 3,299 - 15 99.5%
Paris 2,775 2,333 1,646 - 11 97.7%
Los Angeles 6,309 5,326 4,611 3,133 14 99.8%
Tokyo 6,865 5,845 4,884 1,918 21 99.5%
San Francisco 2,524 2,238 2,192 - 16 95.2%

5.1 Network Community
We adopt one of the classic approaches, namely the fast greedy modularity opti-
mization algorithm [5] (fast greedy), to detect network communities in our location
networks. The algorithm is essentially a fast implementation of the first community
detection algorithm based on modularity optimization [8]. Starting from a set of
isolated nodes, the fast greedy algorithm adds edges from the original graph to
maximize the modularity [5] of the newly generated graph at each step.

We obtain multiple network communities for each city’s location network with
many communities only containing a few locations while several large (three or four)
ones containing most of the locations in the network. Table 6 presents the statistics on
the sizes of the largest communities in each city. For instance, the top 4 communities
in New York and Los Angeles contain more than 99.8% of the locations in these
two cities. This observation corresponds well to other complex networks [5] for
containing only a few large components in their network structures.

5.2 Geographical Community
Next, we project network communities into a geographical space, and find that dif-
ferent communities are associated with different geographical signatures. Figure 1
exhibits the network communities in New York. The locations in the black commu-
nity in New York (top left in Figure 1) are located throughout the city, including
Manhattan, Brooklyn and Queens, while the blue and green communities mainly
concentrates on Manhattan. Moreover, most locations of the blue community are in
midtown, downtown and upwest while the green community has many locations in
upeast side and the central park. Meanwhile, the locations in the red community are
distributed more uniformly compared to other three communities with an interesting
concentration in Jersey city. Similar observations can be made in all other five cities.

Recall the conclusion in Section 4.2 that there is no obvious correlation between
geographical distances and edge weights. Meanwhile, in this section we find that
different communities (partitioned based on the densely connected edges) distribute
at different geographical spaces. This seems to be a contradiction. However, we
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Fig. 1: The largest communities of New York shown on the map separately

need to mention that locations of different communities are not located completely
differently, and most communities are overlapped in city centers.

6 Conclusion and Future Work
In this paper, we have constructed weighted location networks based on check-in
behaviors of millions of Instagram users across six cities in the world. Our initial
study of the constructed location networks has focused on their basic features as
defined for complex networks. Moreover, we mapped locations in each city to their
corresponding geographical coordinates, and discovered that our construction method
is effective in revealing popular locations. We also discovered that there is no linear
correlation between geographical distance and our edge weight. For each location
network, we found a few largest communities covering almost all locations in a city,
as well as such communities have an obvious distribution geographically.

The way how we constructed location networks has an emphasis on quantifying
a user’s over-all check-in behavior and then distributing it to all edges connecting
two locations that the user has visited. It is interesting to compare our construction
methods with other methods for constructing location networks from location check-
ins. Our next step is to further analyze community structure of each location network,
e.g., through the use of different community detection algorithms and the study of
their location category distributions. For instance, we want to apply the recently
proposed clustering method in [3] to check whether location networks also consist a
higher-order organization. Based on a larger Instagram dataset we have collected, we
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will also investigate growth models for location networks, for example, by following
the application of preferential attachment to the growth of the Internet [2].
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Abstract An increasing interest on cryptocurrencies has recently raised, in particular
on bitcoin. A unique feature of this system is that the list of all the economic
transactions is publicly available. This makes available a large amount of information
that can be analysed to discover the topological properties of the transaction graph
and to obtain insights in the behaviour of the users. In a previous work we have
presented a first set of analyses of the bitcoin network. Among other properties
of the network, these analyses have also revealed a set of unusual patterns in the
bitcoin users graph. We conjecture that these topological patterns are due to artificial
users behaviors, not strictly related to normal economic interaction. In particular, in
this paper, we analyse the outliers in the in-degree distribution of the bitcoin users
graph. The results of our analysis support our conjecture, i.e. they are due to artificial
transaction patterns.

1 Introduction
The boost in the diffusion, during the last years, of bitcoin [12], the first true digital
currency, together with the public availability of its blockchain makes it interesting
and feasible to analyse the behaviour of the users of this peculiar economy. Even if
bitcoin still represents a niche economy, it is no longer an experimental currency only
for computer science specialists, and has reached a widespread usage. Therefore,
the analysis of its blockchain may return interesting insights on the behaviour of the
users of a cryptocurrency.

Our previous work [7] analysed several properties of the bitcoin users graph. In
particular, we showed that the graph presents many features characteristics of the
small-world phenomenon, but also some odd behaviours. As a matter of fact, while
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the average distance between nodes is low, the graph presents a high value of the
diameter. This highlights the presence of a few pair of nodes connected by long paths.
Furthermore, the in-degree distribution of the nodes presents some relevant outliers.
A possible conjecture is that these odd behaviors are caused by users exploiting
bitcoin not only for ordinary transactions, but rather for other activities, like fund
management and, possibly, attacks. In other words, our conjecture is that if we could
distinguish and isolate the transactions representing ordinary economic interactions
from the other ones, the resulting user graph would be a better representation of a
small world.

This paper will focus on the analysis of the outliers present in the in-degree
distribution of the users graph. Our analysis shows that the outliers are a consequence
of particular anomalous chains of transactions, that we classify as PS-transactions
(Pseudo-Spam transactions). We give different conjectures about the meaning of
these transactions and analyze their features.

We are currently also investigating the anomalous network diameter and our
preliminary results show that its unexpected high length is caused by the behaviour
of a single user. So those chains can be further agglomerated in just one cluster sig-
nificantly lowering the diameter length and hence obtaining a much shorter diameter
as expected in a small world. However, due to space constraints, these results are not
shown in this paper.

The paper is organized as follows: in Section 2 we report some related work.
Section 3 presents our analysis inferring unusual behaviors of the users of the bitcoin
network and our conjectures about such behaviors. Section 4, presents a refinement
of our initial analysis which is exploited in Section 5 to prove our initial conjecture.
Finally, Section 6 reports our conclusions.

2 Related Work
Several features of the bitcoin network have been recently analysed. Most analyses
are based on a ”transaction graph” built from the blockchain, which is, in turn,
transformed in the ”users graph” (multi-graph with sets of addresses as nodes and
arcs derived from the transaction graph) through a well established heuristic rule. By
applying this rule, all the input addresses of a multi-input transaction are considered
as belonging to the same user [8, 12] (and we say that they are clustered in a cluster
representing the user). This heuristic rule, possibly combined with other heuristic
rules, has been used for several analyses [4, 9, 10, 11, 13].

Our previous work [7], has highlighted several properties of the bitcoin network,
detected by studying the time evolution of the network in the last years. We have
observed a small average distance and we have characterized the network as a small-
world. Moreover, we have computed also the diameter by using the algorithm in [6].
Surprisingly, we have observed an high diameter and the presence of several outliers
in the in-degree distribution of the nodes. We found that the most central nodes in
the network (according to harmonic centrality [5]) are also the ones with highest
degree. Finally, we verified the rich get richer conjecture, both from the point of view
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of the balance of each node and from the connectivity point of view. The analyses we
conducted revealed the presence of unusual patterns in the bitcoin graph. The goal of
the following sections is to study one of these anomalous patterns.

3 Analyzing Indegree Outliers and Detecting PS-transactions
As observed in [7], the indegree distribution of the nodes of the users graph follows
a power law, as expected in a small world network. For the sake of completeness
we report this in indegree distribution in Figure 1(a) (note the log-log scale). In
[7] we also observed that the exponent of this distribution is stable over time. (i.e.
the exponent for the distribution of the indegrees of the graph obtained from the
blockchain at discrete time intervals). In this paper, we aim to verify the following
conjecture.

Conjecture 3.1. The small world theory discrepancies, as the indegree distribution
outliers, are caused by artificial users behavior.

Restricting ourselves to the indegree distribution analysis only, we want now to verify
the hypothesis by proving that such distribution outliers are in fact a consequence of
long chains of special transactions.

In order to select the indegree outliers to be analyzed, we consider all the degrees
having the following property (with 10 as value of the parameter k).

Property 3.1. Let y = I(x) be the indegree distribution, where I(x) is the number of
nodes of the users graph with indegree x, and let ∆ be the maximum indegree in the
graph and k ∈N a parameter. For every k < x≤ ∆ , x is a suspicious outlier if I(x) is
at least one order of magnitude greater than the average I(x− i) with 1≤ i≤ k, i.e. if

I(x)> 10 · ∑
k
i=1 I(x−i)

k .

The only spikes satisfying the Property 3.1 are the ones corresponding to indegree
708, 709, 771, and 772.The corresponding I(x) values are between two and three
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order of magnitude above the value expected. We have analyzed the nodes of the
network corresponding to these peculiar degrees.

To analyze the selected outliers, we started from a manual inspection of them. To
do so we retrieved in the graph the clusters with indegree 708, 709, 771 and 772
and isolated their neighborhood and transactions history. This provided us with 1647
clusters to analyze. We noticed that many of them had almost consecutive identifiers
in our graph. That happened because the oldest addresses contained in each of those
clusters appeared for the first time in the blockchain together as destination of a
payment in a unique transaction.

Looking for the first appearance of a sample of those addresses in the blockchain
we noticed some peculiar transactions. One of these, for instance (Transaction hash
35dead89c059e846e2013a06a70cd84a7ba0f80da7741c283d6efd57
3e0a7319) has one input and 101 outputs paying 0.00001 BTC to each one of
the outputs except one, that is filled with the change (minus the fees). The address
containing the change is then used to perform an analogous transaction leaving
the change in a new address and so on. Basically the behavior of the transaction
creator is to create a chain of transactions, where a transaction at each step pays a
constant amount of 0.00001 BTC to some addresses and leaves the change in an
intermediary address used as input for the next hop in the chain. A chain ends either
when the funds in the last change address are used for a transaction without this
particular structure or when the input funds are completely spent and no change
address is used in the last transaction of the chain. We also noted that the output
addresses receiving 0.00001 BTC were addresses for the most part identifiable with
users from the bitcointalk forum (indeed, the forum users had specified those
addresses in their signatures). This suspicious transactions chain led us to define a
new classification for transactions, labeling all the transactions with this peculiar
behavior as pseudo-spam transactions (PS-transactions).

Definition 3.1. Let A be the set of all addresses present in the blockchain. Given a
transaction t modeled as a tuple (In,Out, InAmount,Fees), where:

• In⊆ A;
• Out is a multiset of couples (o,b) where o ∈ A and b ∈R, where b corresponds

to the amount payed to address o by In;
• InAmount ∈R;
• Fees ∈R;

we say that t is a pseudo-spam transaction (PS-transaction) if it satisfies the following
properties:

• |In|= 1 ;
• |Out| ≥ 2 ;
• |{(o,b) ∈ Out : b 6= 0.00001}| ≤ 1.

In other words, a PS-transaction is such that the only input address pays all the
others (at least two) 0.00001 BTC except one which can be the recipient of an
arbitrary amount. We call this particular address change address, i.e. a is a change
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address if a is s.t. (a,b) ∈ Outi and b 6= 0.00001. We call common output any output
containing an address that is not a change address. Of course in each PS-transaction
can exist at most one change address.

3.1 On the Economical Meaning of PS-transactions
Artificial transactions are not uncommon in the blockchain. Since they target what, at
first glance, seems like a random selection of addresses in the blockchain, some users
in the past have noticed receiving unexpected payments from such transactions and
some interest has sparked around them. Unfortunately, there is no clear explanation
of the goal of such transactions. In particular, in the following we explore some
possible existing conjecture, showing that none of them is able to fully explain the
purpose of our PS-transactions.

It is possible that these transactions are part of an attack on users pseudonymity,
as an attempt to link addresses ownership. In fact the amounts sent are so tiny that
in order to be spent they must be first combined with other funds in a multi-input
transaction. This would potentially reveal new linking for the multi-input clustering
heuristic (see Section 2) increasing its effectiveness. Even if this theory sounds
reasonable, it does not seem to be applicable to our observed real use case. In fact the
targets of our manually observed suspicious transactions are not picked at random
from the blockchain but derived from a very close set of users belonging to the
bitcontalk forum, and the transactions pay the same amount to any address
multiple times. For an attacker it would make little sense to send funds (hence
spending them) to the same address a lot of times and would be more efficient to send
those funds to different addresses instead, because this would increase its probability
of triggering a funds consolidation while minimizing the cost of the attack.

Another possible conjecture is that those transactions are used as part of a spam
attack, to fill the blockchain space with useless data. But this is arguably not true
since most of those transactions pay a regular fair fee to be included in the blockchain
and so they have the same right to be included as any other transaction. Note that
we perform a transaction analysis based on the blockchain information, so we only
consider the permanent effect of transactions. The kind of transaction observed can
be effectively used to perform a live spam attack to rapidly fill the users pending
transactions lists, as historically really happened during the flooding attack of July
2015 [1]. But live spam attacks by themselves leave little to no sign on the blockchain.

Another possible interpretation would be that this transactions are used for ad-
vertising. By using vanity addresses or inserting human readable messages in the
transactions it is possible to use a transaction to cheaply save an advertisement mes-
sage in the blockchain forever. By including in such transactions the largest possible
number of outputs one may attempt to increase the message visibility.

A famous example of these transactions arose to popularity during the Sochi
Olympics, because two addresses (1SochiWwFFySPjQoi2biVftXn8NRPCSQC
and 1Enjoy1C4bYBr3tN4sMKxvvJDqG8NkdR4Z) started sending thousands
of transactions paying exactly 1 satoshi (0.00000001 BTC) to what seemed like
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random addresses read directly from the blockchain. Those transactions payed no
fees and so only few of them were actually saved in the blockchain but they remained
for hours in the users wallets as unconfirmed transactions, gaining a lot of visibility
[2, 3]. It seems difficult to think that this was part of a deanonymization attack since
most of the transactions never became part of the blockchain and so could not be
spent to possibly reveal addresses linking. It might have been considered a spam
attack but only limited to the live network (by filling the unconfirmed transaction lists
of the users with useless data) but it had very little effect on the blockchain since few
transactions were actually included. So the most plausible theory seems to be that it
was part of a temporary spam advertising campaign, and a successful one since most
bitcoin users received the message to “Enjoy Sochi” with very little cost. The cost
was so little since very few transactions were accepted in a block (hence actually
spending the used funds) and the 0.00000001 BTC payments carried so little value
to do not matter anyway.

Whatever is the reason for this kind of transactions, it is obvious that they should
be considered artificial transactions anyway, since the transaction purpose is to
obtain some kind of side real world effect rather than to transfer value between
addresses. This is clearly obvious for the Sochi example where the fair fees cost of a
transaction would exceed the value effectively transferred. The same can be said for
our manual inspected transactions were the fee was 0.0007184 BTC, hence seventy
times the single amounts transferred and 41.8% of the total value actually spent by
the transaction. This is the reason why we have labeled this kind of transactions as
“pseudo-spam” even if we do not know neither want to imply that they are part of a
spam attempt.

3.2 Chaining PS-transactions
Applying Definition 3.1 to our dataset we labeled 578 316 transactions as PS-
transaction, out of the 99 602 440 multi-input multi-output transactions contained
in our database. The transactions vary a lot (considering most of the transactions
features as the number of outputs or the fees payed), but an interesting behavior can
be seen analyzing the timestamps cumulative distribution among those transactions.
As shown in Figure 1(b) we can see a steep step during July 2015 showing that
most of those transactions were performed at that time. This is consistent with our
observations, since the transactions of our case study take place during July 2015
as well, and with the existence of an historically recorded flooding attack happened
during the same period [1].

As we’ve previously said, the interesting behavior is not only about the transactions
themselves, but rather about their use as links in a chain. For this reason, we define a
“pseudo-spam chain” (PS-chain) as follows.

Definition 3.2. A pseudo-spam chain (PS-chain) is a sequence of PS-transactions
in which the unique input address of the i-th transaction is the change address of
the (i−1)-th transaction and the amount in input of the i-th transaction is the value
payed to the change address in the (i−1)-th transaction.
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Fig. 2: PS-chains statistics (a1,b1,c1) and almost PS-chains statistics (a2,b2,c2)

Given a set T of PS-transactions, not always there exists just one pseudo-spam
chain candidate including all the PS-transactions in T . We consider the smallest
partition of T in PS-chain, i.e. whenever two PS-chains can be merged we merge
them.

Considering as T the set of all the PS-transactions, we merged the PS-transactions
in chains obtaining 24 381 PS-chains. To prune the PS-chains multiset from false
positives we eliminated from the multiset all the singletons, hence discarding all the
pseudo-spam transaction candidates that were not part of any chain. This left us with
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3 805 PS-chains. In the following we report some basic statistics of the PS-chains we
have found.

Average Number of Outputs. We have observed the cumulative distribution of
the average number of outputs (excluding the change address linking to the next link
in the chain) in each chain, which is shown in Figure 2(a1). We can notice how a
large number of chains (i.e. 2 240) has exactly one single output address (excluding
the change address). If we consider the cumulative distribution ignoring this special
case, hence ignoring single output chains, we can notice a steep increase around
50: this value seems to be the preferred average number of outputs of the chains.
The transactions we have manually examined had 100 outputs excluding the change
address. We have seen that a good percentage of the PS-chains found share this
behavior (approximately 7% if we don’t count the single output ones).

Chain Lengths. If we consider the distribution of the lengths of the PS-chains
found, shown in Figure 2(b1), we can notice very high initial values as well. More
precisely, the chains of length two are 39.3%, while the chains of length at most three
are already more than 50%.

Chain Impact. The small average number of output and the short length of many
chains show that we found a lot of chains with a very low overall number of outputs.
We define the impact of a chain as its average number of outputs times its length,
or in other words the total number of outputs (excluding change addresses used as
intermediary chain links) of all the transactions included in the chain. The cumulative
distribution of this new measure is shown in Figure 2(c1). The higher this value
is, the more “disruptive” the chain can be considered for the graph. From the plot
we can immediately observe as 33.3% of all the chains have the minimum value, it
means that one third of all the chains has length two and only one output is not a
change output in each of its two transactions. We think that there is an high chance
that these chains are normal and not artificially intended. Hence, for small values
of this new measure we cannot label those chains as artificial since they may as
well result from a lot of “normal” use cases. Even if those chains are not naturally
occurring but deliberately created, their impact on the network is limited and not
statistically relevant (since they represent 0.026% of all the multi-input multi-output
transactions). We can chose a threshold for the chain impact measure, below which
the chain are to be considered indistinguishable from legitimate transactions chains
and we can prune the PS-chains set accordingly.

4 From the case study to generic chains
In the previous section we have defined what is a PS-transaction and a PS-chain
starting from manual observations. The definition of a PS-transaction was given
keeping into account our practical observation that such transactions payed an amount
equal to 0.00001 BTC to each output, but we can easily observe that the amount
payed as output is not the distinctive feature of the chains we’re trying to model,
their structure rather is. Taking into account this observation, we consider different
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transactions sharing a similar structure to the PS-transactions but having arbitrary
amount spent by the common outputs.

Definition 4.1. Given a transaction t we say that t = (In,Out, InAmount,Fees) is an
almost PS-transaction if it satisfies the following properties:

• |In|= 1 ;
• |Out| ≥ 3 ;
• |{(o,b) ∈ Out : b 6= a}| ≤ 1, for some a ∈R.

It is worth observing that not all the PS-transactions are almost PS-transactions.
Indeed, we point out that we need to consider transactions of at least three outputs to
be able to distinguish between the regular outputs and an eventual change address.
Moreover, we also further restrict ourselves to only consider almost PS-transactions
with common output value smaller than 1 BTC because high value transactions are
more likely to be considered not spam.

We then define an almost PS-chain exactly as in Definition 3.2 but using almost
PS-transactions instead. Applying our classification to the blockchain we found
1 050 783 almost PS-transactions that could be joined in 149 328 almost PS-chains.
Among these, 40 208 almost PS-chains were not singletons.

If we perform the same analyses on some basic statistics of the almost PS-chains
found as we did before for the PS-chains in Section 3, we obtain similar results.
The plot of the cumulative distribution of chain lengths shown in Figure 2(a2) and
number of outputs (excluding change addresses) shown in Figure 2(b2) show the
same behavior as in Section 3, with 47.3% of the chains having length two and
34.6% of the chains having the minimum number of outputs. This suggests that our
case study was a good approximation of the general phenomenon. If we evaluate
the chain impact measure cumulative distribution as before we obtain a similar but
smoother plot, shown in Figure 2(c2). For the almost pseudo-spam case we can also
consider a new parameter that is the common outputs amount value of transactions
and chains. The common output amount value cumulative distribution for almost
PS-transactions found is depicted in Figure 3(a). We can immediately observe how
the common output amount value used in our case study (0.00001 BTC) in Section 3
is the most frequent value for almost PS-transactions, covering 43.8% of all such
transactions. We also note that all of the highest frequency common values are all
“clean” values (for example 1, 600, 1000, 1250, 2750, 3000, 3500). This is compatible
with human designed transactions rather than random purchase transactions, since
prices are usually expressed in traditional fiat currencies such as USD or EUR, and
their change in BTC is rarely a “clean” number. In Figure 3(b), we show the common
output amount values cumulative distribution of the almost PS-chains found. In this
graph the highest frequency values are clean numbers (1000, 7800, 10000, 100000,
200000, 500000, 1000000) as in the previous graph but the value 0.00001 has a
smaller importance. This happens because a lot of the transactions with this common
output value were joined in single long transactions.



758 Damiano Di Francesco Maesa, Andrea Marino and Laura Ricci

1000

10000

100000

1e+06

1e+07

1 100 10000 1e+06 1e+08

common output amount

cumulative freq

(a)

100

1000

10000

100000

1 100 10000 1e+06 1e+08

common output amount

cumulative freq

(b)

Fig. 3: Common output amount (expressed in 10−8 BTC) cumulative ditributions for
almost PS-transactions (a) and almost PS-chains (b)

5 Verifying Conjecture 3.1
In the following, we aim to prove Conjecture 3.1 by proving that the four outliers
observed at the beginning of Section 3 are caused by few PS-chains targeting a small
set of addresses artificially increasing their corresponding cluster’s indegree. It is
worth observing that not all of the output addresses of PS-chains are among those
four outliers. Those other addresses do not stand out because they are part of already
popular clusters, and so their indegree is marginally affected by those transactions
while the pseudo-spam effect is more visible in other unpopular addresses. We also
observe that we shall not expect all of the clusters with an indegree value of 708, 709,
771 or 772 to be artificially inflated. In fact, it is natural to expect the existence of a
number of clusters, e.g. about 10, with these indegrees.

We start by checking if the clusters marked as outliers have at least one address
that appears as output in a PS-chain. We find out that 1 630 over 1 647 clusters satisfy
this. It means that only 17 clusters are not affected by the PS-chains. These findings
are consistent with what we expected. More precisely, if we restrict just to cluster
not involved in PS-chains we obtain an outlier-free indegree distribution. This alone
is of course not enough to prove our supposition yet. We have only observed that all
the outliers take part in a PS-chain but we still have to prove that the PS-chains are
the sole cause of those outliers. To do so we firstly introduce the PS-set notion.

Definition 5.1. Given an almost PS-chains set C and a threshold r ∈R we define as
pseudo-spam set (PS-set) the set of transactions ti such that there exists j with ti ∈ c j,
c j ∈C, |c j|> 1, and impact(c j)≥ r, where impact(c j) is defined as the sum of the
number of common outputs of each transaction tu ∈ c j.

In other words, given a threshold, a PS-set derived from an almost PS-chains set is
the set of all the almost PS-transactions belonging to a chain in the candidate set that
is not a singleton and has a chain impact measure greater than the threshold.

Now that we have a general definition for the artificial behavior we are trying
to isolate we can finally verify whether Conjecture 3.1 is true or not. To check if a
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Fig. 4: Comparing the indegree distribution of the users graph pruned of the trans-
actions belonging to the PS-set for threshold values of 10 (a), 22 (b) and 3935
(c).

pseudo-spam set alone is causing the indegree distribution outliers we re-compute
the indegree distribution of the blockchain, ignoring the transactions belonging to
the PS-set derived from the almost PS-chains candidate set obtained in Section 4, for
increasing values of the threshold.

To choose the threshold values we look at the plot of the chain impact, shown in
Figure 2(c2), and we observe that more than 50% of the chains have an impact value
smaller than 10, more than 75% have an impact value smaller than 22 and more than
99% have an impact value smaller than 3935. So we choose those three values (10,
22 and 3935) to obtain a PS-set, this results in the indegree distributions depicted
in Figure 4. As we can see the outliers disappear for all the values of the threshold
considered without macroscopically affecting otherwise the overall distribution (see
Figure 1(a) for a comparison). Not only this proves Conjecture 3.1 but it also means
that the outlier generating chains of our case study are among the chains with largest
impact, and so among the longest and with most outputs chains. This explains why
those chains are the one that so macroscopically affect the indegree distribution of
the entire network, enough to cause outliers in said distribution. Note that even if
only the highest impact chains macroscopically affect the indegree distribution all
the PS-transactions in the PS-set influence it. So also including lower impact chains
helps cleaning the indegree distribution from artificial skewed values. Of course the
lower the impact value used as threshold the more probable is the presence of false
positives in the set, so a trade-of between the two has to be found.

6 Conclusions
This paper investigates the possible reasons of the presence of outliers in the indegree
distribution of the bitcoin users graph. We have conducted an extensive set of analyses
which have shown that the outliers are generated by artificial chains of transactions.
We plan to extend our work to analyse other characteristics of the users graph. For
instance, we are investigating whether the high diameter of this graph is due to other
kinds of artificial transactions and we also plan to give insights into the nature of
these transactions. More precisely we plan to further study the possible semantic of



760 Damiano Di Francesco Maesa, Andrea Marino and Laura Ricci

PS-chains and to expand the analysis to include new types of artificial transaction
patterns and their effect on the bitcoin users graph.
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Abstract In this paper we introduced a graph-based metric to measure a similarity
between weighted sets of classifications codes defined as nodes on hierarchical tax-
onomy trees. We applied this metric to build relationship networks among companies
and to find company peers (communities) in IPR (intellectual-property rights) domain
based on patent portfolios.
To characterize evolution of patent portfolios for companies we used weighted sets of
international patent classification codes (IPC), where each IPC weight corresponds to
a number of IPC codes in a company patent portfolio aggregated to a given hierarchy
level over a given period of time.
We used the suggested graph-based similarity at different hierarchical IPC levels to
build corresponding networks and detected communities over different time periods.
To track communities evolution in time we developed a cluster-matching algorithm
to align community labels over time. Then we study evolution of communities in
time to identify changes in a company strategy and its peers at the given time.
The suggested methodology may be applied to other domains that include hierarchi-
cal classification sets such as trademarks, legal documents, scientific papers, lawsuits
etc.

1 Introduction
1.1 Patent networks
Patent network analysis is widely used to identify technology trends and formulate a
technology strategy of a company, e.g., [1]. Typically patent networks are built using
relationships among individual patents based on patent citations [2] or text analysis
of patent abstracts, specifications, claims etc [3]. Recently patent text analytics is
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extended by using weighted keyword-based patent networks [4]. These methods
usually are based on pairwise comparison of single patents complimented with total
amount of patents in different technology sectors that allows to identify technology
trends. On the other hand, in order to formulate a company strategy it is also important
to know about activities of competing companies (peers) in relevant technology
domains.

Finding company peers implies a comparison of profiles of companies and several
attempts have been made to create company profiles or ”fingerprints” reflective of
assets and endeavors of the company. This may be done in several dimensions, e.g.,
fingerprint dimensions may include patent portfolio, trademarks, as well as products,
fundamentals, geography, market associations, etc. At such fingerprints different
taxonomy schemes (e.g., sets of classification codes) are widely used to describe
dimensions. In this paper we address only patent portfolio domain.

Comparison of companies in IPR domain requires comparison of patent portfolios
which include different amount of patents (patent weights) in different (and not
necessarily overlapping) IPC categories. Besides, companies may have large patent
portfolio volumes that makes difficult to differentiate and identify changes of topics
using patents citations or patents text analytics. In this paper we used hierarchical
International Patent Codes (IPC)[5] that are assigned by patent examiners and cover
content of patents in more than 100 countries. Currently hierarchical IPC codes con-
tain 8 sections (one letter), 130 classes (2-digit number), 639 subclasses (one letter),
7434 groups with 65152 subgroups (one-to-three digit number). In the following we
refer these hierarchy levels hk by number of symbols they contain, i.e., IPC1, IPC3,
IPC4, IPC7. To compare patent portfolios we need to define a similarity between
weighted sets of hierarchical objects.

1.2 Similarity measures
Similarity is widely used concept and many similarity measures have been suggested
[6]. For example, a semantic measure in an IS-A taxonomy based on a shared
information content of the shortest common distance between two words/concepts in
a lexical taxonomy is proposed in [7, 8]. As its generalization, an universal definition
of similarity from information theory point of view was developed in [9]. However,
these concepts mainly address a similarity between single objects, while to compare
patent portfolios we need to define similarity between sets of weighted hierarchical
elements. On the other hand, methods to calculate similarity between sets of objects
typically do not take hierarchy into account (e.g., cosine similarity).

In this paper we propose a similarity measure to compare weighted sets of hi-
erarchical objects and applied it for patent portfolios comparison. The proposed
similarity measure allowed us to present relations among objects, e.g. companies, as
a connected graph; it is hardly possible with other types of similarity such as cosine
similarity. Then we applied network analysis to find peers and analyze peers evolu-
tion in time. Also, the proposed method allows us to map activities of companies on
a connected technology map to provide a view on a broader technology evolution.
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The paper is organized as follows: Section 2 outlines a graph-based metric to
compare weighted hierarchical sets. In Section 3 we built patent portfolio evolution
for a number of companies at different hierarchical IPC levels. Next we used the
suggested metric to calculate pairwise similarities between companies in IPR domain
at different hierarchical levels followed by construction of corresponding networks
and their evolution in time. To find peers (communities) we applied community
detection methods [10, 11, 12] at different IPC hierarchical levels hk for different
years (2008-2014). To track communities evolution in time we developed a cluster-
matching algorithm to align community labels over time based on [13]. Finally, we
analyzed evolution of communities in time to identify changes in a company strategy
and its peers at a given time.

2 Comparison of weighted hierarchical sets
2.1 Preliminaries
Let’s consider a set C of objects ci, where |C| = Nc is a total number of objects.
Relations between objects {ci,c j} may be presented as a weighted undirected
graph G(C,E,S), where E = {eil} is a set of edges eii ∈ {0,1} and S is a simi-
larity matrix, si, j = s(ci,c j) ∈ S, , i, j = 1, . . . ,Nc, is similarity between ci and c j.
Hierarchical attributes for a given object ci may be presented as a tree Ti(a(hk)),
where ci is the the root and attributes a(hk) are nodes of ci on the tree at a hier-
archical level hk. As an example, let’s consider objects c1 and c2 with attributes
taken from a set a = {A,B,C,D,E,F,G,H} corresponding to IPC1 as shown at
Fig. 1. Similarity between objects ci and c j (shown by dashed lines) usually is de-
fined as a function of intersection of corresponding subsets a(ci) and a(c j), e.g.,
s(ci,c j) = f |∩ (a(ci),a(c j))| (cf. Fig. 2).

In the following we will call relations graph G(C,E,S) as a network to avoid
confusion with graphs presenting taxonomy trees Ti.

2.2 Weighted taxonomy trees
Figure 2 illustrates the suggested approach to define relationships between objects c1
and c2 with weighted hierarchical attributes at levels IPC1, IPC3 and IPC4. In case
of patent portfolios, weights wn(hk) may present a number of IPC codes aggregated
to level hk within considered IPC class (B02F, B02,B at Fig.2). Let’s assume that
objects c1 and c2 have, among others, patents in IPC code B02F, Fig. 2. Then this IPC
category contributes to similarity s(c1,c2) at three hierarchical levels {B, B02, B02F}
(see dashed lines between c1 and c2) such that the deeper we go down on the tree,
the higher similarity is: s(c1,c2,h1)< s(c1,c2,h2)< s(c1,c2,h3). For example, if we
compare IPC classes B02G and B02F, then for these codes only 2 layers {B02,B}
contribute to similarity; note no similarity between B0G2 and F04.
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Generalization to weighed hierarchical sets and its applications is briefly outlined
below. In particularly, a patent portfolio for a company c j may be presented as a
set of tuples Pj(hk) = {ai(hk),w(ai(hk)) }, where ai(hk) = IPCi(hk) is the i-th IPC
code in patent portfolio at the k-th hierarchy level, w(ai(hk)) is its weight, i ∈ N j(hk)
is a number of different IPCs in Pj(hk). In our case w(ai(hk)) is a number of IPCs
aggregated from all patents containing IPCi(hk) code. Note that since there may be
multiple IPCs characterizing a single patent, this definition applies both to patent
portfolios and to single patents. In the following we call tuples Pj(hk) as aggregated
IPCs at the level hk. For example, patent portfolios aggregated to hk = 3 level and
sorted by weight for companies c1 =’Samsung Electronics’ and c2 =’Panasonic’
are presented as P1(3) = {{G06F,10251},{H04N,7800},{H01L,6634}, . . .}. and
P2(3) = {{H04N,5920},{G06F,4989},{H01M,2616}, . . .}, respectively.

2.3 Similarity between weighted hierarchical sets
Typically methods to calculate similarity (e.g., cosine similarity) do not take hierarchy
into account. For example, cosine similarity between patents having rather similar
IPC codes A01B11 and A01B12 is zero. Similar to patent portfolios comparison,
the problem exists in patent to patent comparison since even a single parent may
be categorized by a set of IPC codes. Furthermore, it is not clear how to take into
account weights at different hierarchical levels and define a normalization to compare
weighted sets of hierarchical classification codes, such as patent portfolios with
multiple IPCs. In this section we briefly outline the proposed method to compare
weighted sets of hierarchical objects where sets have the same cardinality. More
detailed generic description of the proposed method is rather involved and to appear
elsewhere.

Let’s define p(al ,ci) = [al , . . . ,ci] = p(ai
l) as a sequence of nodes on Ti forming

the shortest path from node al to root ci. Then we may define a similarity s between
nodes al and am as a number of common nodes between paths p(ai

l) and p(a j
m):

s(al ,am) = s(p(ai
l), p(a j

m)) =
∣∣∣
⋂
(p(ai

l), p(a j
m))
∣∣∣ . (1)

Clearly, s(al ,al) = |p(al)| corresponds to a number of hierarchical levels on the path
from al to the root on Ti. Similarly, s(al ,am) may be seen as a number d of shared
hierarchical levels or a distance d(al ,am) on T . In this settings s is a linear function
of d. On the other hand, for irregular trees such as IPCs taxonomy, contributions to
similarity may not necessary depend linearly on hk. To take this property into account
we included function f (hk) into the normalization below. Recall that the longer a
classification code, the more information it provides, i.e., s(hk) is a monotonically
increasing function of hk.

Let a and b be portfolios for companies c1 and c2. Then a normalized similarity
sn between two codes from a and b on the same taxonomy tree may be written as
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sn(al(hk),bm(hk)) =
s(al(hk),bm(hk))

f (hk)
. (2)

It may be shown that a normalized similarity between unweighted hierarchical sets a
and b at level hk may be presented as below

sn(a,b,hk) =
1

Cmax

N

∑
l

N

∑
m

sn(al(hk),bm(hk), f (hk)) , (3)

where
Cmax = 1+(N−1) f (hmax−1)

/
f (hmax) . (4)

A normalized similarity between weighted hierarchical sets a and b (patent portfolios)
aggregated to hk level may be written as

s(w)n (a,b,hk) =
1

C(w)
max( f ,N,hmax)

N

∑
l

N

∑
m

Φ

(
w(a)

l w(b)
m ,W (a),W (b)

)
sn(al ,bm, f (hk)) .

(5)
Note that there may be different ways to define function Φ(). For example, by
applying the same methodology as in (1) for weights we may derive a weighting
symmetric function as below

Φ

(
w(a)

l ,w(b)
m ,W (a),W (b)

)
= min


 w(a)

l

W (a)
,

w(b)
m

W (b)


 (6)

W (i)(hk) = ∑
m

w(i)
m (hk), i = a,b (7)

The max similarity in (Eq.5) is reached when all IPC codes in both portfolios are
located in the same IPC class at the lowest hierarchy level.

This methodology may be extended to comparison of two ontologies with a
difference that instead of a single underlying tree as in the case above, there may be
several (or a forest of) underlying trees. It implies that mapping of ontology objects
and similarity calculations should be aggregated over relevant subsets of underlying
trees.

3 Patent portfolios comparison
3.1 Evolution of patent portfolios
Companies change direction and enter new areas of technology and may cease
operating in long-involved areas of technology. In this section we analyzed evolution
of company patent portfolios at different hierarchical levels to detect changes in
a company activities. As a data source we used Derwent Patents Database [14]
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available via Thomson Innovation[15] and built patent portfolios for 105 companies
covering totaly about 3×106 patent families registered in the USA during period
2008-2014.

As an example, Fig. 3 shows IBM patent portfolio evolution at different hierarchi-
cal IPC levels over time. Here colors correspond to different IPC codes for patents
within IBM patent portfolio, labels on side color-bars indicate patents mapping to the
highest hierarchical level IPC1. The absence of patents in a particular IPC category
is denoted by blue color (black color in paper version). For example, one can notice
a blue color line during 2010-2014 at Fig. 3a (y=19 corresponds to IPC3 = G07) and
Fig. 3b (y=38,39 correspond to IPC4 = G07C,G07F). It indicates that IBM stopped
patent activity in measurement equipment for registering tokens. On the other hand,
from 2010 there is growing activity in IPC3=B81 (y=8 at Fig. 3a) corresponding to
nano-technology, in particular, in field of manufacturing of devices and systems on
substrate IPC4=B81C (Fig. 3b).

Note that new trends may not easily be observed at a very course or a very granular
hierarchy levels, so we used cross-level analysis to detect changes and then digging
for more details.

3.2 Networks evolution
Networks are dynamic and changing over time with some companies becoming peers
and other peer companies losing the association as a peer company due to a number
of reasons. Over time companies enter the competitive landscape and fall out of the
landscape. Dynamic network analysis and models to describe evolution of communi-
ties are under intensive studies, in particular, in social networks (SN) domain, e.g.,
[16, 17, 18]. In this paper we do not consider models for SN communities evolution,
but primary addressing a discovery mode to look for disruptive changes that modifies
competition profile in IPR domain.

In particular, given sets of classification codes (e.g., IPC-based patent portfolio)
defined on the same classification tree we analyzed peers (communities) evolution
using the following steps:

(a) define graph-based similarity metric as a function of distance between nodes on
the underlying classification tree;

(b) calculate pair-wise similarity between nodes by mapping nodes (IPCs) from
different portfolios to the underlying classification tree (see Eq.2);

(c) calculate similarity metric between sets of weighted classification codes (e.g.,
general case Eq.5, examples Eq.6, Eq.7) and build network snapshots for different
time periods;

(d) apply community detection algorithms to network snapshots to find stable com-
munities based on random walk [12] within each time snapshot;

(e) build a reference network by aggregating all network snapshots over time and
applied community detection algorithms to find communities within;
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(f) use aggregated community labels as a reference and matched community labels
from different network snapshots to the reference community labels;

(g) steps above allow us to analyze communities evolution over time, detect company
peers at given time and predict new trends.

Fig. 4 shows a network example built using 10 IPC codes with largest weights
in each patent portfolio for the top 300 companies with largest patent portfolio
volumes. We found that the suggested method results in a connected network, but for
visualization purposes Fig. 4 shows only 5% of largest similarity values. As one can
see, even under this simplification, the suggested method results in several connected
clusters which allows to find mapping to technology areas and its relations. Also it
easy to detect companies which are active in several technological areas, such as
’Siemens’, ’Samsung’, ’Hitachi Chemical’ and ’Funai Electric’.

Fig. 5 presents an example of evolution of peer communities in time before (on the
left) and after (on the right) community labels matching for the top 100 companies
with the highest patent portfolios volumes. The first column on the left on both
figures shows references for communities matching. All nodes (company IDs) in
time snapshots are grouped according to the reference layer grouping.

As one can see from Fig. 5b, the largest part of competitive landscape stays mainly
stable (shown by yellow in online version), while some companies are moving or
exploring other technology domains. At the same time one group of companies
(green in online version) keeps investing in another technology domain (orange in
online version) in 2009 and 2013, while staying in its main domain the other time.

4 Conclusion
In this paper we propose a similarity measure to compare weighted sets of hierarchical
objects. As an example, we consider company patent portfolios characterized by
hierarchical IPC codes. Using the suggested similarity measure we build network
snapshots for different time periods and applied network analysis to find company
peers in IPR domain. It allows us to study peers evolution at different hierarchical
levels and find changes in competitive landscape. The suggested methodology may
be applied to other domains that include hierarchical classifications.
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Fig. 2: IPCs as taxonomy trees.
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Fig. 3: Example of patent portfolios evolution in time at difference hierarchy levels.
Company: IBM; hierarchical levels IPC3 (left, a) and IPC4 (right,b). Colored bars
indicate mapping to the highest hierarchical level IPC1 (colored figures online).
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Fig. 4: Mapping patent portfolios of top 300 companies on technology categories:
network with 5 % of strongest similarities to highlight technology categories; hierar-
chical level IPC4; 10 IPCs in each portfolio with the largest weight (colored figure
online).
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Fig. 5: Example of evolution of peer communities (shown by colors) in time before
(left, a) and after (right, b) community labels matching for the top 100 companies
with the highest patent portfolios volumes. The first column on the left on both
figures is used as a reference for communities matching. This reference corresponds
to communities detected in an aggregated network built over time period 2008-2014.
All nodes (company IDs) in time snapshots are grouped according to the reference
layer grouping.



Abstract The influence of social connections on human behaviour has been demon-
strated in many occasions. This paper presents the analysis of the dynamic properties
of longitudinal (335 days) community data (n=3,375 participants) from an online
health promotion program. The community data is unique as it describes how the
network has evolved since its inception and because the information exchanged
through the network was predominantly about the achievements of participants in the
program and therefore influencing behavior through social comparison. The analyses
show that the largest component of the community network has characteristics of a
small world network. The analyses also show that connections are formed according
to a strong attachment preference according to the gender, and a weaker homophily
for Body Mass Index. The presented analysis can serve as basis for creating novel
interventions that influence physical activity behavior through social connections.

1 Introduction
Social Network Analysis (SNA) is a broad research area, with applications in many
different disciplines, incorporating aspects of sociology, social psychology and
anthropology [19]. SNA is useful for studying nodes’ influences within a network,
and how behaviours, opinions or sentiments are spread in social networks [3, 6]. The
nodes with an important position can be used to find points of interventions to stop
or to enhance the process under study [1, 2, 9, 11, 21].

However, many of the contributions in this field are based on static networks,
without taking the time dimension into account. The dynamics of the network can
reveal more about how the network evolves over time [5, 22].
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In this paper, we investigate the dynamic properties of longitudinal (336 days)
community data (n=3,375 participants) from an online health promotion program.
This data set presents a network of people that share their physical activities and see
others’ activity levels. It is a data set specifically focusing on health promotion, in
contrast with other research which is mostly using online social networks for general
purposes, such as Facebook, Twitter, etc. [8, 15].

To build this data set, the participants wore an activity monitor device that tracks
their physical activity level (PAL). They also had access to an online system where
they could befriend other participants in order to share and see each others’ PAL. The
data sample used in this work was collected from 28/04/2010 until 30/03/2011. The
analysis of the characteristics of this social network in a health promotion context
provides a basis for answering the following questions:

1. How does the largest component of this specific social network develop over time?
2. Does this social network demonstrate the homophily phenomenon (concerning gender and

BMI)?
3. Can we use the dynamic analysis of the network to determine influential nodes?

The paper is organized as follows. Section 2 discusses the dynamic aspects of
social networks, and presents the concepts explored here. Section 3 explains the
analysis performed, metrics used and the selection process. Section 4 shows the
results of the analyses. Finally, Section 5 concludes the paper with a discussion of
the consequences and the possible applications of the findings.

2 Dynamical Social Network Analysis
The dynamic aspects of social networks can be analyzed in two ways: (1) looking at
the changes inside the network (changes in the nodes’ attributes as opinions, beliefs,
etc.), or (2) looking at the changes of the network itself (the topology of the network,
the nodes’ degrees, etc.). Dynamical networks are considered here as social networks
where the topology changes over time due to new connections or new subjects inside
the network.

Static measures of nodes’ degrees, centrality, shortest paths, etc. of one fixed
snapshot of the data are not sufficient to understand real networks that evolve over
time. How new connections are made in or removed from the social network can to
some extent be explained by these two phenomenons: homophily and preferential
attachment (‘more becomes more’) [4, 14]. These concepts will be explored further
in this work.

The dataset that we use is also used in [10]. In their work, the authors explore the
internal states of the nodes and the correlations between the characteristics of the
nodes for a shorter period (14 weeks). In [13], the same data set is the basis for a study
on the differences between people inside and outside a community, showing how
the community aspect plays a role in changing the physical activity level during an
intervention. The current work is dedicated to the topological and structural aspects
of the network and its connections over time.
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3 Methods
This section explains the data collection and the data processing. The aim is to
provide a clear understanding of how the data was collected, how the subset was
selected and how the analysis was done.

3.1 Data Set and Data Selection
The data set is the result of an online physical activity promotion program, where
the participants wore an activity monitor that tracks their physical activity level
(PAL). The devices were synchronized with an online system, which also provided
the possibility for them to join a community through connection requests. The
participants could also participate in a health promotion program, and those who
decided to do that were tagged in our data set with a ‘start plan date’. The data used
in this work spans 336 days, from 28/04/2010 until 30/03/2011.

As the decision to join the community was optional for the participants, around
10% of them decided to join the social network to exchange their information about
the PAL tracked by their devices. In total there are almost 5,000 nodes that opted to
join the online community at some moment during the experiment.

Due to changes in the system, some cleaning was necessary to keep the data set
reliable for the analyses performed. From the originally 5,000 nodes and around
28,000 edges, we filtered nodes and edges according to the following characteristics:

a) Nodes without ‘start plan date’ were removed;
b) Nodes were included according to the date of their started plan;
c) Nodes that dropped out the experiment (tagged with a value for ‘dropout date’)

were taken off at the day when they quit the network and the program;
d) Nodes without a value for BMI (Body Mass Index), gender and nodes in which

all information was missing were taken out;
e) Edges without ‘start date’ value were removed;
f) Edges connected to excluded nodes were removed.

From a total of 28,418 edges, 3,802 edges didn’t have information about the
date of connection, because some requests for connections in the network were not
approved from the receiving peer. As these edges are represented in two directions,
1,901 unique edges were discarded. From the 24,616 edges left, 12,047 are duplicated
edges, i.e., node A connects to B, but the edge (B,A) already exists. As all connections
are bidirectional, this is redundant data. So we have, in the end, a total of 12,569
edges representing connections that were formed during the experiment.

The data set originally contained 4,989 nodes. Of those, 1,614 nodes were not
eligible because they do not have values for all the attributes needed for the analysis
(i.e., gender, BMI and start plan date). The selected data set has 3,375 nodes left.

The nodes are only included in the network in the period between the start plan
and the drop out date (for those that dropped out). After the node leaves the network,
all its connections are deleted also. The impacts of the cleaning process are irrelevant,
because the nodes and edges removed didn’t participated in the program as demanded.
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3.2 Social Network Analysis
The network measures that are calculated are [19]: (1) degree distribution; (2) average
degree; (3) closeness centrality; (4) eigenvector centrality; (5) betweenness centrality;
and (6) average shortest path . These aspects were analyzed for each day of the
experiment.

Formula 1 shows the calculation for the combined centrality, a combination of
the betweenness and closeness values:

CombC(i) =
CC(i)+CB(i)

2
(1)

CC(i) and CB(i) are the closeness and betweenness centralities, respectively. This
formula doesn’t consider the balance between the two centrality measurements, and
might be improved for future analysis. For our analysis it is correct to say that the
Closeness centrality will influence more than the betweenness for having higher
values in general.

Homophily is the tendency of nodes to create strong connections with others
that are alike, have the same opinions, or share similar characteristics [14]. The
homophily principle can be studied in two ways: the social homophily and the value
homophily [12, 20]. In this work, the social aspects (gender and BMI) are studied in
depth, while the value aspects are left out of the analysis.

The homophily according to gender was calculated using the gender of the nodes’
edges. These edges were categorized as follows:

Edge MM (EMM): a connection between two male nodes;
Edge MF (EMF): a connection between a male node and a female node;
Edge FF (EFF): a connection between two female nodes.

As the three categories are disjoint, the total number of edges equals to EMM+
EMF + EFF . The homophily for female gender and male gender are given by
equations 2 and 3, respectively.

HomophilyF =
EFF

EFF +EMF
(2)

HomophilyM =
EMM

EMM+EMF
(3)

To calculate homophily for the BMI, we considered nodes with BMI in the same
range as equals. Two different thresholds were used: 5.0 and 6.5, which are the
respective ranges for the group of Normal and Overweight BMI in the categorization
according to [18].

The ratio between the nodes’ edges with a small difference in BMI and the total
number of edges yields the percentage that follows the homophily principle for the
BMI. The equations follow the same principles of equations 2 and 3.

The ego-network density for the nodes is used to find important nodes. The
density is calculated in two steps. First, the ego-network of all the nodes (including
the observed node) is created using 1-step neighborhood. After this step, the density
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of the ego-network was calculated as: Ego-density = |E|
n(n−1) , where |E| is the number

of edges in this subgraph, and n is the number nodes.

4 Results
This section presents the results obtained from the social network analysis. The
section is organized according to the questions from Section 1:

1. How does the largest component of this social network develop over time?
2. Does this social network demonstrate the homophily phenomenon (for gender and BMI) ?
3. Can we use the dynamic analysis of the network to determine influential nodes?

4.1 Nodes, edges and degree distribution
On day 98 of the experiment the number of nodes in the graph is stabilized at 2,996. The number of
nodes in the largest component increases until the end of the experiment, due to new connections
established among the nodes.

For the edges there is also a point of stabilization in the new connections around day 100. From
that day onward there is a very small increase in the number of connections (around 8.2%). Most of
the edges are in the largest component, as it is expected in a network that follows the Small World
Network model.

The graph follows a Power-law distribution for the degrees of the nodes for all time steps. Figure
1 shows the degree distribution for the days 1, 100 and 336 in a log-log scale (for illustration1). The
lower graphics show the coefficients for the linear regression of the correlation between the degree
of the nodes and the number of nodes with certain degree.

As shown in the lower graphic, the p value is always significant for our data set, and the
R-squared is close to 1, showing that the model explains very well the data, mainly after day 100.

The ‘more becomes more’ principle is the assumption that nodes with higher degree have a higher
chance of receiving more connections over time [16]. Figure 2 shows how the degrees of the nodes
with the fewest connections (the ‘poorest’, right) and nodes with the most connections (‘richest’,
left) evolve over time. More investigation is needed to claim that the preferential attachment is
observed here, but the information about the rich and poor nodes suggests that it could be present in
our data set.

4.2 Largest component and other components
The ‘largest component’ is the biggest connected component among all components of any graph.
Figure 3 shows the percentage of the nodes of the graph that are part of the largest component for
all time steps in two different scenarios. In the first scenario, all nodes are included in the graph. As
can be observed, the average number of nodes in the largest component is 65% after day 296 for
the entire graph. The increase in the percentage follows the inclusion of new edges after time 100
(when the number of nodes is stable).

As there are many nodes with degree 0 (isolated nodes), for the second scenario, the nodes
with degree 0 were excluded from the graph. In this scenario the percentage of nodes in the largest
component goes up to 80%.

1 The other days and other animations can be seen at http://www.cs.vu.nl/˜efo600/
cn2016/

http://www.cs.vu.nl/~efo600/cn2016/
http://www.cs.vu.nl/~efo600/cn2016/
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Figure 4 shows the evolution of the connected components over time. The upper graphic shows
the number of components over time. As edges are inserted, many components are joined, explaining
the decrease from around 1,200 connected components to almost 600 in the end. The red line shows
the number of components bigger than 1, i.e., non isolated nodes. This number goes from 39 on day
1 up to 164 in the last day of the experiment. The number of isolated nodes goes from 1,193 in day
1 down to 492, what explains the high number of components, even after the largest component
gathered more than 60% of the nodes of the network.

The correlation between the size of the components and the number of components with a
specific size (frequency of occurrence) is shown in the middle part of Figure 4 in three graphics, for
days 1, 165 and 335. The correlation is significant for all time steps. The three lower graphics show
the p value, R squared and standard error for the regression done in all the time steps of the data set.
It can be seen that the fit parameter goes from approximately 65% to less than 40% in the end of
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Fig. 1: Degree distribution in days 1, 100 and 336 (top) and p value for slope, R
squared and standard error (bottom)
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Fig. 3: Percentage of the nodes in the largest component. All nodes (lower red line)
and nodes with degree larger than 1 (higher green line)

the experiment. This can be explained by the changes in the largest component, and the joining of
previously separated components.

4.3 Centrality measurements
As the largest component has most of the nodes and edges, it is also interesting to explore the
centrality measurements for this component. The following metrics were analyzed: (1) betweenness
centrality, (2) closeness centrality, (3) eigenvector centrality, (4) average shortest path.

The betweenness centrality indicates how important a node is for the transfer of information
or any kind of spreadable element inside a network. Nodes with higher betweenness have more
shortest paths passing through themselves, and therefore can enhance their role in the network. The
closeness centrality is the proximity of a node to the rest of the network, and it is calculated by the
inverse of the sum of the shortest distances between each node and all other nodes in the network.
The eigenvector centrality is calculated based on the centrality of its neighbors.

The average centrality for all the nodes (betweenness, closeness and eigenvector) is shown in
Figure 5. The first three graphics on the left show all time steps, while the first three graphics on the
right provide a zoomed-in version between day 50 and 336.

The lower graphic in Figure 5 shows the average shortest path. The average shortest path for our
data set stabilizes around 6.5, a low value as suggested by the theory in [17].

The combined centrality is useful in finding important nodes that combine a good betweenness
centrality and closeness centrality. Figure 6 shows the combined centrality for all the nodes with
degree higher than 1.

It is possible to highlight the list of nodes with higher centrality (the most potentially influential
nodes in the network). Figure 6 shows the most central nodes measures of betweenness, closeness
and the combined centrality. As shown in Figure 6, nodes 68593 and 3335 are very important for
this data set, as they present the highest values for these measurements.

4.4 Homophily
To investigate homophily according to gender and BMI, the edges were evaluated to determine
whether the nodes they connect belong to the same category. The results for the gender analysis
follow the equations 2 and 3. The data set has 51.4% of the nodes of gender male, and 48.6%
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Fig. 4: Components analysis. Number of components in the graph over the time
(upper), the correlation between the size of the component and the frequency of the
size (days 1, 165 and 335) (middle) and the parameters from the linear regression for
all time steps (lower)

female. Regarding the BMI of the population, 0.8% are underweight, 33.6% are normal, 34.8% are
overweight and 30.8% are obese [18].

Figure 7 (left) shows the homophily according to the BMI of the nodes. Two ranges were tested
for the nodes: 5.0 and 6.5. For the range of 5.0, the ratio of edges with nodes within the same range
is around 50% after day 100, while for range 6.5 this value is increased to around 59%. For both
ranges, more than half of the connections are within nodes with close BMI.

Figure 7 (right) shows the homophily according to gender. Three calculations were made:
(a) edges connecting male-male nodes, (b) edges connecting female-female nodes and (c) edges
connecting same gender nodes (male-male plus female-female edges). In this data set, the homophily
for women holds for between 50% and 60% of the edges. That means that women connect around
half of the time with other women.

For men we observe that more than 60% of the connections are to nodes of the other gender,
female. The fact that women have more connections among themselves is know by other studies on
gender and relationships [7]. However, the figure also shows that homophily is not present for the
male-male connection (i.e., new connections of men are more often with women). When taking
both categories together, there is homophily on gender: above 60% of the edges connecting people
of the same gender.
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4.5 Identifying influential participants
The dynamic nature of the network is clearly visible from the analyses presented in the previous
sections. In previous work we have shown that the more successful participants in the program
are, the smaller is the density of their ego-network [10]. This section demonstrates that the set of
most influential participants dynamically changes over time. We identify influential participants by
comparing properties such as betweenness centrality, closeness centrality, eigenvector centrality,
ego-network density and average shortest path.

Figure 8 shows the relation between the node degree of each participant and their ego-network
density for the first and last day of the experiment. In this graph we’re interested in nodes that have
a low density yet a growing degree, as they can be bridges on spreading of emotions, for instance.
These are the participants in the top-left quadrant of the graph. Despite the fact that this is just a
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snapshot, the changes over time provided by the combination of each day’s relation can give a better
picture of what is happening inside a network.

We plotted graphs for all days of the dynamic network which revealed that the set of nodes that
emerges in the top-left quadrant are frequently changing. During the experiment, four leader nodes
were in evidence considering the ratio between the degree of the nodes and the ego-network density.
Node 409 (from day 1 to 12), node 3069 (from day 13 to 40), node 25127 (from day 41 to 254) and
node 3335 (from day 255 to 336).

5 Conclusions
In this paper, we have investigated the dynamic properties of a longitudinal study of a networked
community participating in an online health promotion program. It turned out that studying the
dynamics gives additional insights in characteristics of the network. For example, it is shown that the
number of components in the network is decreasing while the size of the components is increasing
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at the same time. The components themselves follow a Power-law distribution at all time steps:
there are a few components with many nodes, and a lot of components with only a few nodes. It is
also shown that characteristics like betweenness, closeness, eigen vector and average shortest path
at the start of the network are very different from the values after 356 days; however it turned out
that already after 50 to 100 days most measurements were relatively stable.

The dynamical data set also allowed us to evaluate whether two well-known phenomena of
evolving networks are present: homophily and preferential attachment. Our analysis showed that
homophily takes place on the aspect BMI and gender; the latter especially for female-female
connections. Apart from the possible preferential attachment, more investigation is needed to affirm
that it is present in this data set.

Finally, the combination of degree measurements and the density of the ego-network was
presented, and we aim to use it to identify people that are potentially influential in their network in
further work. Interestingly, the set of people who are influential according to this metric changes
during the evolution of the network, even after the moment that the nodes of network have stabilized.
This suggest that continuous monitoring the evolution of a network is important to identify such
people.

We believe our discoveries and methods can form the basis for automated (health) interventions
that exploit the social network for changing behaviours of individuals, and possibly lead us to future
discoveries about leadership, spreading of emotions or any other application related to the network’s
topology and dynamics.
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Abstract This paper explores the relations between social ties and cultural constructs in small groups.
The analysis uses cross-sectional data comprising both social networks within three art groups and
semantic networks based on verbal expressions of their members. We examine how positions of
actors in the intragroup social networks associate with the properties of cultural constructs they
create jointly with other group members accounting for different roles actors play in collective
culture constructing. We find that social popularity rather hinders sharing of cultural concepts,
while those individuals who socially bridge their groups come to share many concepts with others.
Moreover, focusing and, especially, integration of cultural constructs, rather than mere ‘thickness’
of those, accompany intense interactions between the leaders and the followers.

1 Introduction
Network analysts combining culture and networks have shown that culture is linked to social
relations. One the one hand, researchers argue that culture is reproduced through interactions and
therefore relies on concrete interpersonal ties (e.g., [7, 8, 36]). On the other hand, it is shown that
culture affects structure of social ties (e.g., [14, 23]. In sum, culture and social networks are seen as
mutually constitutive, or dual [5, 25].

Most of the above studies view culture as a set of constructs which combine ideas, concepts,
and meanings shared among individuals (for an overview, see [25]). These constructs correspond to
similar ways of interpreting the world and condition similarities in preferences, tastes, ideas, and
judgments (for an overview, see [30]). Cultural constructs are exhibited in verbal (written or spoken)
expressions of people who belong to the same culture [26, 38]. In these expressions, structures of
associations between words rather than the words themselves represent cultural meanings [33, 37].
Hence, research has been advocating a structural view on verbally expressed culture [6, 9]. Yet,
the relations between social networks and culture as structure have not been sufficiently analyzed,
especially in small groups (see in relevant overviews by [25] and [5]). This paper investigates how
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social network positions of actors in the social networks associate with cultural constructs they
create jointly with other group members.

Using semantic network analysis based on word collocation [6, 16, 32, 34], we trace cultural
constructs as patterns of associations between concepts expressed by individuals’ and relate the
properties of those cultural constructs to positions in networks of social ties occupied by individuals.
Hence, we apply the growingly popular socio-semantic framework [27, 29, 31, 32].

In particular, we focus on groups of visual artists. These groups jointly generate culture, most
often in observable processes of creating corporeal artistic objects and group interactions, exchang-
ing on – often joint – artwork creation, collective exhibitions, discussions on the events and figures
of the artistic scenes, and other artistic and everyday topics. Network analysis has been widely
applied to study creativity and social relations between artists. Yet, network studies of art have
focused primarily on organizational and market levels (e.g., [3, 13, 15, 35]), while creativity is
seen as dependent on an individual’s [11, 21] position in a network of external relations [20]. The
question of how internal networks of art groups operate appears to be out of scope. Meanwhile, it
is those internal networks of art groups that bring to life novel artistic visions and artistic styles
many groups strive for [17] thus generating variations in culture. So, it makes sense to take a
closer look at such internal social networks. Simultaneously, research on language use has been
argued to be “a powerful way to study the collective action of cultural production in art worlds”
[12, p. 201]. Developments in semantic networks allow for the exploration of relations between
cultural production and social networks within art groups. Yet, so far, very few studies applied
formal semantic network analysis techniques to artistic settings [1]. This paper deals with this gap.

2 Data
The empirical data used in this study covers 3 art groups from St. Petersburg, Russia, encoded
as ‘A’, ‘B’, and ‘C’. All of them are working in the format of contemporary visual art. They
all are characterized by intense interaction between the members, (decades-long) backgrounds
shared by most of the members, and regular joint artistic and/or everyday practices. Hence, their
cultural constructs may both affect their interactions and be impacted by these. Besides, the groups
actively produce texts and narratives that can be used to capture expressed cultural constructs.
Simultaneously, the groups are different in organization, educational and cultural backgrounds of
their members, understandings of art and its tasks, forms of spatial embeddedness in the city space,
and artistic styles. This provides variability in cases.

We collected data between 2011 and 2012 via in-depth ethnographic studies conducted in each
of the 3 groups. Because the groups do not have formal boundaries, we decided to include only
core members in the data collection, that is those members with stable membership and continuous
involvement in the group practice.

The data consists of two main parts: textual data and sociometric data. The textual data includes
verbal expressions of the group members with clearly identifiable individual authorship. The corpus
of texts is composed of transcripts of 24 open-ended narrative interviews, each 30–240 minutes
long, transcripts of dialogues between group members coming from 17 ethnographic observations,
each 2–8 hours long, as well as posts in Russian social media, textual works of the artists, such as
newspaper articles, prose and poetry. We managed to gain texts by every core member in all the 3
groups. Unprocessed individual corpora sized between 4128 and 28928 words per member.

The sociometric data was obtained using the roster recall method surveys capturing frequency of
interactions among members of each group. The question asked was “How often do you interact?”,
suggesting to choose from 5 response options to evaluate frequency of interactions with each of
other members of the group: almost never; 1 or less/month; 2–4 times/month; 5–14 times/month; 15
or more times/month. Further, responses were quantified on ordinal levels, from 0 for ‘almost never’
to 4 for ‘15 or more times/month’. 25 out of 29 core members responded to the survey resulting in a
response rate of 86.21%.
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3 Method
3.1 Mapping of the Socio-Semantic Networks
To capture patterns of social ties, cultural structures, and structure of relations between them,
three types of networks were mapped using the data on the three art groups: actor-actor (social
network representing structure of social ties), concept-concept (semantic network representing
cultural constructs) and actor-concept (bimodal concept usage network representing links between
individuals and certain cultural constructs). Combined, these three types of networks constitute
socio-semantic networks [32].

The edge widths of the actor-actor (social) networks in Fig. 1 are based on ordinal levels from
0 to 4 captured by the sociometric survey. Tie strength was taken as an average of individuals’
evaluations of frequency of interactions with each other. When no response was received from one
of the individuals in a dyad, only the strength indicated by the other one served as an input for the
social network.

(a) A (b) B (c) C

Fig. 1: Social networks of the 3 art groups: “A”, “B”, and “C”.

The other two types of networks were mapped based on the collected texts. Concepts, which
are stems of words used in texts, are the nodes in semantic and actor-concept networks. To map
relations between concepts in semantic networks we used words collocation technique, which
implies that links between nodes are mapped based on word stems co-occurrences in texts. These
networks represent cultural constructs expressed by individuals [6, 25]. Relations between concepts
and actors were mapped based on usage of certain concepts by certain individuals in their texts.
Neither frequency of words’ collocation nor frequency of words use were accounted for in this
analysis, so both semantic and concept usage networks are binary.

The procedure for mapping semantic and concept usage networks was as follows. First, the
textual data were split into separate files containing all narratives and written texts by each single
group member, separately. Then, we removed interviewers’ and observers’ comments and technical
information. Second, textual data were preprocessed in AutoMap [10], applying concept stemming,
lowercasing, removal of punctuation and numerals. A delete list was created and applied, removing
pronouns, adverbs, prepositions, conjunctions, junk words, as well as less meaningful verbs, such
as ‘say’, ‘talk’, and ‘think’.

Third, AutoMap was applied to each of these separate files to generate individual semantic
networks of each artist. Parameters of semantic network generation were specified as follows:
window size between 2 and 3 words was used to map lines between concepts; sentence was used as
a stop unit.

Fourth, individual networks of each group member were aggregated into union semantic networks
(so that links are now based on collocation of concepts in texts of any of the artists), while actor-
concept networks still contained the information on usage of certain concepts by certain actors.
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Fifth, concepts used by only one group member (i.e. having fewer than 2 binary actor-concept
links) were removed from semantic and actor-concept networks as we are interested only in capturing
shared cultural constructs. Therefore, our analysis includes only concepts used by at least two actors
in a group. We note, however that in this paper, links between concepts are not necessarily shared.

The three types of networks (social, semantic, and bipartite concept usage) were mapped for
each of the three art groups, resulting in 12 networks in total and comprising 3 socio-semantic
networks of the 3 groups further used in this analysis.

3.2 Operationalization of the Social Network
The social network survey recorded the frequency of interactions among members of each group.
However, this frequency was measured on ordinal levels, which carry concerns over numerical
comparisons from one level to the next. For example, the ratios among levels differ from any
estimated levels. So, we instead replace tie strengths with estimations of the actual frequency of
contact.

Table 1 enumerates the estimates and ranges (for sampling) for tie strength ordinal scale values.
In our subsequent analyses, the estimates, rather than the survey responses, are employed. An

Table 1: Mapping of Tie Strengths to Ranges and Estimates

Survey
Response Description Min. Max. Estimate

0 Almost Never 0.01 0.1 0.05
1 1 or less/month 0.1 1.0 0.5
2 2–4 times/month 1.5 4.5 3.0
3 5–14 times/month 4.5 14.5 9.5
4 15 or more times/month 14.5 20.0 20.0

alternative approach is to consider uniform sampling of tie strengths using the estimated min
and max actual frequencies (also shown in the tables). Finally, asymmetric interaction reports are
symmetrized by averaging the dyadic reports.

3.3 Descriptive Statistics
We present some descriptive statistics of the social and semantic networks in Table 2. These groups
are relatively small and may be considered to be small social networks, which bear the characteristic
of being socially cohesive. That is, the social networks are highly dense. By contrast, the semantic
networks exhibit extremely low densities, which is largely due to the high number of concept nodes
and the co-word window employed in the semantic network generation. Despite the huge difference
between the densities of social and semantic networks, we note that these densities are ordered
similarly, suggesting a relation between social networks and cultural constructs. For example, the
“C” network exhibits both the lowest concept and actor network densities.
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Table 2: Social and semantic network statistics

A B C
Actors 6 14 9

Ties 15 89 28
Ord. Weighted Ties 44.5 152 53

Est. Wgt. Ties 163.75 284 141.75
Interactions/Tie 10.92 3.19 5.06

Social Network Density 1.000 0.978 0.778
Concepts 7513 4800 13681

Semantic Network Density 0.00077 0.00058 0.00039

3.4 Extraction of socio-semantic subgraphs
In Fig. 2, we visualize the union graph of the bipartite concept usage network and the unimodal social
network for the “C” group. The concept usage network is optimized using the pivot multidimensional
scaling (MDS) algorithm [4], as implemented in Pajek [2], so that structural equivalence is optimally
displayed. That is, nodes that are connected to similar others are placed in proximity to one another
and nodes connected to the same other nodes – exactly upon each other, thereby reducing the visual
complexity induced by the 13,681 observed concepts. Clusters of concepts form distinguishable
groups or ‘bands’ of concept nodes scattered around nodes of actors using them (See Fig. 3). The
added value of such an optimization is that it gives a picture of how actors are grouped together
with regard to usage of similar sets of concepts and concepts are grouped with regard to their usage
by certain sets of actors.

Fig. 2 Visualization of actor-
concept and actor-actor net-
works of group ‘C’.

Actor nodes are in yellow and labeled (anonymously). Concept nodes are colored according to
combinations of actors sharing them and sized by the number of structurally-equivalent concepts.
Grey lines refer to concept usages, while overlaid red lines represent social ties.

Due to the nature of pivot MDS algorithm, some actor nodes usually form a triangle-shaped
structure with other actor nodes located in the middle of the diagram. Actor nodes located at
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triangle’s vertices represent people who use the largest amount of concepts shared with other
members, while actor nodes located inside represent those who use a significantly smaller number
of shared concepts. Thus, a distinction between different positions of actors in the concept usage
network is captured. Actor nodes located a triangle’s vertices appear to be very different in their
cultural constructs with regard to each other, as reflected by the content of the concepts they use.
What they have in common is that they use many concepts, which are also used by many others in
the group. Hence, they span the semantic space playing an important role in culture constructing
in the group. Therefore, we label them ‘discourse spanner(s)’ (or DS). Simultaneously, these
individuals appear to be informal leaders in their groups, acknowledged as such by other members
and demonstrating corresponding behavior in group interactions. Due to their strong involvement
in the formation of their groups’ shared semantics, characteristics of the semantic networks that
DS contribute to are most worth considering in order to understand how culture is constructed in
groups.

The second type of position in the socio-semantic network is represented by the ‘majority’ (or
M) of other actors who are using shared concepts to a much lesser extent and hence are less involved
in culture constructing within their groups. The positions of DS and M represent not only two
different types of positions in the concept usage structure, but also two distinctive roles in group
culture constructing corresponding to these positions. Although in this paper we mainly focus on
the DS, we still account for M.

As an important technical step, for each group we extracted different socio-semantic subgraphs.
These subgraphs include (1) different combinations of DS and M actors, (2) concepts shared by
them, as suggested by the pivot MDS optimization (e.g., blue concepts in Fig. 2 correspond to
concepts shared by 1 of the DS and one or more of the M), and (3) any links between concepts they
have in their semantic networks; we note that links between concepts are not necessarily shared.

Fig. 3 represents an example semantic network of a socio-semantic subgraph which includes
concepts used by the DSs, encoded as CC and CG, share with some of the M (green nodes in Fig.
2). It represents, for instance, that the concepts ‘poem’ and ‘prose’ are used by DS ‘CC’, DS ‘CG’
and at least one individual in M; meanwhile, the association represented by the link ‘poem’-‘prose’
may be characteristic of only CC, or CG, or the individual(s) from among the M.

Due to the limits of space, our analysis in this paper considers only those socio-semantic
subgraphs that include one DS and one or more of the M.

4 Results
As a starting point, in Table 3, we predict (in the statistical, non-causal sense) concept usage by
individual actors’ social network position statistics, namely degree (CD) and betweenness (CB)
centralities.2 The former measure captures the extent to which an actor interacts with others, while
the latter indicates the extent to which an actor plays a bridging role within his/her group. [18, 19].
We examine centrality measures derived from the undirected, unweighted graphs as well as the
estimated, empirical edge weights, in order to address homogeneity of unweighted degree centralities
due to high density in some groups. The models are applied across all groups (total of 29 members),
and the dependent variable is log-transformed due its skewness.

The results primarily reveal that betweenness (CB) is positively associated to shared concept
usage by individuals while degree (or popularity, CD) is negatively associated. The relative, absolute
magnitudes of these effects vary by the operationalization of the tie, whether it is mere existence or

1 Node size corresponds to betweenness centrality of concepts. Pendants were recursively hidden in
the main picture. The full semantic network is displayed in the lower-right.
2 Due to the low sample size, we cannot include additional predictors or employ a nested model.
However, group size, while significant on its own, is collinear with CD, but does not predict as well
not do group-level dummy variables.
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Fig. 3: Largest pruned component of the semantic network of a socio-semantic
subgraph with CC, CG, and M.1

Table 3: Predicting concept usage by social network measures

log of Shared Wgted. Centrality
Predictor Concept Usage Predictors
Intercept 7.992*** 7.728***

(0.429) (0.500)

CD −0.165*** −2.156*
(0.043) (0.825)

CB 0.642* 1.258*
(0.241) (0.604)

Adj-R2 0.423 0.162
n 29 29
∗ : p < .05;∗∗∗ : p < .001
Note: Second model uses the same dependent variable as
the first but alternative, weighted predictors.
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the strength.3 That is, actors use and share with others more concepts when they connect areas of
their social networks, while they use and share fewer concepts when they intensely interact with
their closer circles. This reveals that conceptual prominence of DS is hindered by their popularity
but is empowered by their ability to connect the group. Given that degree and betweenness are often
positively correlated, the negative effect of CD reveals that those DS who use particularly many
concepts are rather distinctive gatekeepers than merely merely globally central through high ranking
on both measures [27, 28, 29].

In Table 4, we compare the weighted social network to the ‘concept sharing network’; the latter
is the bipartite concept usage network transformed via network multiplication (or folding) into a
unimodal actor-actor network in which the edge weight represents the extent of shared concepts.
For each group and socio-semantic subgraph corresponding to different types of roles (DS and M),
the correlations between the edges of the social network and those of the concept sharing network
are tested for significance under a permutation test that produces a null distribution resistant to type
I errors induced by matrix (network or distance) auto-correlation [24]; the resulting correlation is
called a ‘QAP correlation’ [22]. We examine the relationship between the social ties and concept
sharing by pairs of actors for each group, in general, as well as for DS and M subgraphs within
each group. These subgraphs strictly contain only social ties among DS (or M, respectively) and the
concepts DS (or M) share between them. The edge weights in the concept sharing networks are
additionally log-transformed due to skewness.

Table 4: QAP correlations between shared concepts and social ties per subgroup

Pearson r
Name Pearson r (w/log trans.) n
Discourse Spanners (DS) Subgraph

A — — 2
B .298n.s. .296n.s. 4
C .345n.s. .399n.s. 3

Majority (M) Subgraph
A .041n.s. .035n.s. 4
B .123n.s. .128n.s. 10
C −−−...333333777ˆ −−−...444000111ˆ 6

All Members Graph
A −.034n.s. −.001n.s. 6
B .034n.s. .105n.s. 14
C −−−...222888444ˆ −−−...333555000* 9

n.s. : p≥ .10; ˆ : p < .10;∗ : p < .05

Despite the small samples, there are some results worth mentioning. First, we see that the DS
social and concept sharing networks (for those groups that contain more than two DS) exhibit
positive, albeit insignificant, correlations. These suggest the social ties between DS as a subgroup
and concept sharing between them have an ambivalent association: either strong ties act as a
normalizing force on inducing a common dictionary or vice versa.

3 Results from considering weighted concept usage (multiple use per concept by a single individual)
are very consistent with the shown results.
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The M subgraphs also exhibit this ambivalence with the exception of group C, whose signifi-
cantly negative correlation indicates that the more strongly M actors are tied, the fewer concepts
they share. This suggests that certain M members of group C sought distinction from one another in
their cultural constructs. This correlation remains when we look at the entire C group despite the
normalizing nature of the DS of that group.

As the above analysis shows, mere concept sharing by individuals does not demonstrate any
prominent relation with social ties. Further, we account for cultural meanings by considering links
between concepts (semantic networks), and we search for relations between social ties linking
actors and cultural constructs the actors jointly express. We compare semantic network statistics
of subgraphs that include one DS and the M (i.e. separate union semantic networks connecting
concepts shared by DSs and one or more of Ms) against normalized sum of weights (i.e. the sum
of dyadic degree centralities divided by maximum sum possible) of the edges a DS has with the
M. Specifically, we compare graph-level measures (GLMs) computed for the semantic networks
(per sets of DS+M) against the interaction strength the DS exhibits with the M in their respective
groups. This comparison (Table 5) exposes the extent to which the cultural constructs created by
discourse spanners together with the majority of other actors in their groups relate to cumulative
strength of social ties between the DS and the M within a group.

Table 5: Semantic network statistics v. averaged social network tie strengths

Measure rord rest rMC

Density .116n.s. −.047n.s. −.001n.s.

Degree Centralization .375n.s. .259n.s. .314n.s.

Betweenness Centralization ...888888333** ...888222222** ...888111444*
n.s. : p≥ .10,∗ : p < .05,∗∗ : p < .01

There are n = 9 DS (3, 2, and 4 for each group respectively). Density indicates the unweighted
density of the semantic networks in each DS+M socio-semantic subgraph. Degree and betweenness
centralizations are variance-based metrics of the distribution of nodal degree and betweenness
centralities and are normalized between 0 and 1. They reveal the extent to which the structure
contains concepts that a) harbor significantly more semantic linkages to other concepts and b) play
prominent bridging roles in the semantic network, connecting disparate areas of a group’s cultural
constructs and thus integrating them. Together, they can describe properties of cultural constructs.
For example, higher density would suggest ‘thickness’ of cultural constructs; and lower degree
centralization may indicate more diversified cultural constructs, in contrast to those that are narrowly
focused.

We report the nominal Pearson correlations (r) derived from both the ordinal responses and
empirical estimates as well as a mean from Monte Carlo sampled tie strengths; these are all
consistent with one another for the higher correlations. Significant and positive correlations for
betweenness centralization indicate that the presence of distinct concepts that prominently bridge
semantic networks accompanies stronger bonds between a DS and a M. In other words, strong
social ties are associated with integration of cultural constructs. The other positive correlation, for
degree centralization, although insignificant, points towards decreased diversification of cultural
constructs as being associated with stronger social ties between a DS and a M. It suggests that
the cumulatively strong ties between DS and M may make group discourse elaborate on some
narrow set of focal concepts, perhaps mobilizing the group discourse. Thus, focusing and, especially,
integration of cultural constructs rather than mere ‘thickness’ of cultural constructs accompany
intense interactions between DS and the M.
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5 Conclusion
This study focused on relating social networks and cultural constructs in art groups, with implications
on social and cultural duality extending to other domains. By studying the interplay between social
and semantic networks, we attempted to shed light on the relation social role and position of an
individual have with his/her involvement in constructing shared culture in a group. Minding that our
findings are limited due to analysis of cross-sectional data on small groups embedded in a single –
artistic – setting, we can summarize the following.

First, the analysis revealed that, even in small groups of friends, higher diversity and intensity
of direct social ties hinders sharing of cultural constructs. Rather, those individuals, who socially
bridge less well-connected areas of their groups, are the ones who engage in the shared cultural
constructs with others.

Second, the amounts of concepts shared by the group members and strength of social ties
between them are not necessarily related. While those individuals using significant amounts of
shared concepts bear some of this association (which Roth and Cointet refer to as “semantic
homophily” [32], in one of the groups, the members employing significantly fewer shared concepts
exhibit heterophily, whereby stronger ties are marked by lower levels of concept sharing. This
finding differs from those of [32] (ibid.) which, however, rely on analysis of much larger groups.

Finally, we found that stronger focusing and higher integration of cultural constructs rather than
mere ‘thickness’ of cultural constructs accompany more intense interactions between the leaders
and the followers. Our preliminary interpretation is that leaders are strategically interacting with
others in order to jointly construct a shared creative vision and to integrate the group. In this process,
leaders rely not only on their competence or formal authority, but also on focusing on emerging
cultural constructs and on interaction with others. The more intensely they interact with the rest of
the group, the more they bridge and focus the individual group’s cultural constructs on a shared set
of concepts serving to span the group’s culture. At the moment, we cannot say for sure whether or
not it is a phenomenon specific to creative settings, and if there is an asymmetric relation. This issue
will be addressed in our analysis of longitudinal data, currently being collected.

Overall, we can preliminarily conclude that the socio-semantic network approach is capable of
delivering findings on the duality of cultural and social structures relevant to the ongoing discussion
(see [5, 25] Yet, the analysis would benefit from a more extensive account of links between concepts
(semantic networks) and from combining of quantitative and qualitative data. We expect that joint
formal analysis of semantic network properties with contents of semantic networks, along with
ethnographic and interview data, will deliver further insights.
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Abstract Water Network Partitioning (WNP) in District Meter Area (DMA), obtained inserting
remote control valves and flow meters in water supply systems, allows simplifying the water balance
and pressure control in order to reduce water leakage and to improve water quality protection.
Traditionally, the WNP is based on empirical suggestions and on trial and error approaches used
with hydraulic simulation software, difficult to apply to large networks. Recently, some heuristic
procedures, based on graph and network theory, have shown that it is possible to find optimal
solutions in terms of number, shape and dimension of DMAs. In this paper, spectral clustering
theory was used to define the water districts, taking into account the spatial and hydraulic constraints,
through weight matrices. A comparison between different spectral clustering methods was achieved
on a real water network measuring some energy performance indices, in order to identify the optimal
water network partitioning.

1 Introduction
Water Supply Networks (WSNs) are among the most important civil networks, because they deliver
drinking and industrial water to metropolitan areas.

From a topological perspective, a WSN can be considered as a planar weighted graph, with
n nodes and m links. A WSN with multiple interconnected elements may be represented as a
link-node planar spatially organized graph for which pipes (and valves) correspond to links, and
nodes/junctions (such as pipe intersections, water sources and nodal water demand) correspond to
graph nodes. It belongs to the class of networks with nodes occupying precise positions in two or
three-dimensional Euclidean space, edges being real physical connections, and strongly constrained
by their geographical embedding [3], like other spatially organized urban infrastructure systems
[4, 23].

In an abstract modeling context, a mathematical graph can be used to express the relationships
between groups of linked nodes. An important aspect of spatial networks is that node degrees are
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constrained, since the number of possible connections to a single node is limited by physical space.
Furthermore, in a spatial network, it is unlikely to find connections between very distant nodes, due
to the distance-dependent cost of the edges and to obvious physical constraints, which determine
important limitations to the small-world behavior of the networks [3]. In particular, little variability
is observed in the connectivity patterns of the nodes in WSN, no hubs (nodes with much more
connections than the others) are present, and most of the nodes have very low degree (two or three
and mostly less than five), so in general they present a homogeneous degree distribution [7]. Further,
such networks are also equally sensitive to random or malicious failures [2].

WSN can be considered as complex networks for many reasons [21]: they are often very large
(up to million nodes and links); they are buried underground, and thus are not easily accessible for
monitoring and maintenance; they are strongly looped; their modeling includes equations requiring
sophisticated numerical resolution methods; they often present severe water losses. Compared
to other civil networks (e.g. gas, electricity, transport, telephone, Internet), some of these WSN
characteristics are peculiar, and make their management arduous, with many operational problems
(such as water and energy losses).

The implementation of the paradigm of divide and conquer in a WSN [22] allows significantly
simplifying the management, defining a Water Network Partitioning that consists in defining
some District Meter Areas (DMAs) by inserting gate valves and flow meters along network pipes.
WNP represents an important innovation in the management of water supply systems, as it allows
improving water losses identification [20], controlling district pressure [1], and protecting users from
accidental and intentional contamination [9]. By dividing the water network in DMAs, implementing
innovative ICT remote-controlled devices and big data analysis, it is possible to change the traditional
approach to management of WSN, transforming the water systems into modern Smart Water
Network (SWAN) [11], considered as part of Smart Cities.

WNP has to be obtained in compliance with two major constraints: 1) network connectivity,
i.e. each demand node of the water network must be connected to at least one water source, and 2)
nodal minimum pressure, each node must have a pressure equal or higher than the minimum level
of service that allows satisfying water demand of the users. Therefore, the design of a WNP is a
complex challenge for operators, because the permanent partitioning changes the original topological
layout of water systems. Indeed, network partitioning, achieved by pipe closures, reduces the overall
pipe section availability, with the consequent decrease of network water pressure, especially during
peak hours, worsening the level of service offered to users.

In the last decade, different procedures have been proposed in the literature for finding an optimal
WNP layout (a review is given in [11, 24]). They are essentially arranged in two different phases: a)
clustering, aimed to define the shape and the dimension of the network subsets, based on graph theory
algorithms [5, 10, 11, 16, 28], spectral approach [18], multi-agent approach [8, 19], community
structure [7, 12]; and b) dividing, aimed to physical partitioning of the network, by selecting pipes
for the insertion of flow meters or gate valves, based on iterative [12, 14] or genetic algorithms
[11], with the objective to define the optimal layout that minimises the economic investment and the
hydraulic performance deterioration.

This paper aims to investigate the feasibility of adopting weighted spectral clustering to design
DMAs, comparing different weight combinations, in order to find the best one that allows minimizing
hydraulic performance deterioration.

2 Methodology
As described above for previous approaches, the proposed partitioning procedure consists of two
phases:

Phase 1, Water network clustering. As known, considering a simple graph G = (V,E), where V
is the set of n vertices vi (or nodes) and E is the set of m edges ei (or links), a k-way graph clustering
problem consists in partitioning V vertices of G into k subsets, P1,P2, . . .Pk such that:

⋃k
i Pi =V (the

union of all clusters Pi must contain all the vertices Vi), Pi∩Pj = /0 (each vertex can belong to only
one cluster Pi), ⊂ Pi⊂V (at least one vertex must belong to a cluster and no cluster can contain all
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vertices) and 1 < k < n (the number k of clusters must be different from one and from the number n
of vertices). Clustering is usually defined in terms of weighted, undirected graphs, where weights
correspond to either similarity scores or distances. So, vertices and edges have associated weights,
respectively indicated with w̄i > 0 with i ∈V , and εi j > 0 ∈ E and εi j = 0 if i j /∈ E.

The graph clustering can be achieved with many procedures finalized to define the optimal layout
of each cluster, finding community structures minimizing or maximizing an objective function
that emphasizes one of the clustering aims. In literature (a wide review is provided in [3]), several
procedures were proposed: k-means; Markov cluster algorithm; spectral methods (coupled with
cut-methods, such as min-cut, ratio-cut, normalized-cut); hierarchical clustering; modularity; multi-
level-recursive algorithm, and some other methods as, for example, relaxing normalized-cut.

In this paper, the clustering phase to define DMAs for WNP was achieved with a recursive
weighted spectral clustering technique, based on a generalized eigenvalue problem using the average
cut (Acut) and the normalized cut (Ncut) formulations [26]. In particular, different weights were
used for the pipes (namely, no-weights, pipe diameter and pipe length) to investigate which of them
provide best results.

As known, the list of eigenvalues (together with their multiplicities) is defined as the spectrum of
the adjacency n×n matrix AAAGGG = (ai j) of graph G = (V,E), where ai j = 1 if there is a link between
nodes i and j and ai j = 0 otherwise.

Other formulation computes the list of the eigenvalues of the Laplacian matrix (or Kirchhoff
matrix) defined as a n×n matrix ΞL = DDD−AAAggg where DDD = diag(di) ad di is the degree of a node
i. A particular Laplacian expression is the normalized Laplacian, defined as LLL = DDD−1/2LLLDDD−1/2 =
DDD−1/2(DDD−AAAGGG)DDD−1/2. As well known, the average cut criterion is based on the Laplacian spectrum,
while the normalized cut formulation is based on the normalized Laplacian [26, 30].

The authors propose an algorithm to define, comparing two spectral clustering criteria, the
district meter areas in a WSN, identifying in both cases which weight lead to the optimal DMA
design. In this regard, the adjacency matrix will be replaced by weight matrix WWW NW = AAAG (in the
case with No Weights), WWW D (with weights equal to pipe diameters) and WWW L (with weights equal to
pipe lengths) to calculate the corresponding Laplacian matrix and so the corresponding spectrum.

Specifically, the clustering phase for the proposed water network partitioning consists of the
following steps:

1. abstraction of the water supply network as a graph G = (V,E);
2. definition of adjacency matrix AAAG and pipes weight matrices WWW NW , WWW D, WWW L with three

different weight combinations (no-weight, pipes diameter and pipes length);
3. computation of the spectrum of Laplacian matrices LLLNW , LLLD and LLLL and normalized Laplacian

matrices LLLNNNNW , LLLNNND and LLLNNNL for all weight matrices WWW NW , WWW D, WWW L;
4. computation of the eigenvector vvv2 corresponding to the second smallest eigenvalue λ2 for each

spectrum and ;
5. ordering the vertices, in increasing order, according to their xv2 eigenvector vvv2 components

value and then dividing them into two groups by the sign of the component for the graph
bipartition [3, 15, 26];

6. check the continuity of the obtained clusters;
7. recursive bipartition of the current sub-graph when k > 2;
8. definition of the set of edge-cuts (or boundary pipes) Nec.

Phase 2, Water network dividing. Once obtained the set Nec of the edge-cut (or boundary pipes),
it is necessary to choose how many and which of these boundary pipes must be closed with Nbv gate
valves or, equally, must be used for installing N f m = (Nec−Nbv) flow meters. In other terms, once
found the possible positions ei j (boundary pipes between clusters) for flow meters and boundary
valves by spec-tral clustering (phase 1) and chosen the number of flow meters N f m to be inserted
in the network, the pipes, that must be closed, must be previously chosen among all the possible
combinations of WNP layouts NL expressed by binomial coefficient:

NL =

(
Nec

N f m

)
(1)
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NL can become, already with ordinary dimension of WNS, a huge number also for a small number
k of DMAs.

While the first phase (clustering) does not modify the water system because no devices (flow
meters or gate valves) are required, the second phase (dividing) can significantly change the network
layout reducing the topological and energy redundancy [11] and, consequently, worsening the
hydraulic performance.

Therefore, an optimization technique has been developed, in order to find, once fixed the number
of flow meters N f m, the best solution in the choice of the pipes in which to insert gate valves,
minimizing the alteration of hydraulic performance and the level of service for the users. This aim
was achieved by a heuristic procedure carried out with a Genetic Algorithm (GA) developed by the
authors [11], minimizing the following objective function:

min

(
γ

n

∑
i=1

(zi +hi)Qi

)
(2)

where γ is the specific weight of water, zi, hi and Qi are, respectively, the geodetic elevation, the
pressure and the water demand of the i-th node. The objective function corresponds to the total
nodal power of the network [5].

The GA parameters were the following: each individual of the population is composed by a
sequence of chromosomes corresponding to the number of pipes belonging to the set Nec. Each
chromosome assumes value 1 if a gate valve will be inserted in the j-th pipe otherwise value 0
if a flow meter will be inserted. GA was carried out with 100 generations and with a population
consisting of 500 individuals with a crossover percentage equal to Pcross = 0.8.

3 Case study
The city of Parete, with 10,800 inhabitants, is located in a densely populated area southern of Caserta
(Italy). The water network has two sources and its main topological and energy characteristics are
reported in Table 1 and Table 2, respectively. The hydraulic performance was evaluated using the
commercial software EPANET2 [25] that numerically solves the non-linear hydraulic equations of
the water system.

Table 1: Topological characteristics of Parete water distribution network

m n q k APL D λ2 ∆λ

[−] [−] [−] [−] [−] [−] [−] [−]

282 184 0.017 3.05 8.80 20 0.021 0.062

The network has m = 282 links and n = 184nodes and, from a topological point of view, in
agreement with most large-scale real networks nature, it is a sparse network, so it is not fully
connected and its number of edges m� n2, with a link density value q = 0.017. Since the number
of edges that can be connected to a single node is limited by the physical space in spatial networks
[3], average node degree k = 3.05 is small.

The case study shows a small average path length APL = 8.80, presenting itself as a cohesive
and robust network as well as the value of graph diameter D = 20 shows that the nodes are mutually
and easily reachable and that the network are ordered in a decentralized fashion [29], which is an
important aspect for an efficient communication (information flow) in a network. Concerning the
main spectral measurements, the spectral gap ∆γ is equal to 0.062 and the algebraic connectivity λ2
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Table 2: Energy characteristics of Parete water distribution network.

h∗ hmina hmean hmax Ir

[m] [m] [m] [m] [−]

25.00 21.36 31.05 50.47 0.351

is equal to 0.021, so they assume low values, showing that the graph arrangement can be decomposed
into isolated parts (clusters or districts) [13].

The hydraulic performance of Parete network, reported in the Table 2, is good in terms of
maximum and mean nodal pressure, with hmax and hmean higher than the design pressure h∗ = 25m
(the pressure required to satisfy water demand at all nodes), but is not good with reference to
minimum pressure hmin, that is significantly lower. Consequently, a low value of resilience index Ir
[27], a global performance index measuring the surplus of energy compared to the energy strictly
needed to satisfy nodal demand, results, indicating a low availability of the water system to be
partitioned or, in other terms, to change its original layout by the insertion of gate valves without a
decrease in hydraulic performance [17].

The first phase of proposed methodology generates a spectral clustering in k = 2 DMA (or
cluster), as highlighted in the Figure 1, in which the bipartition of the network nodes of the graph
according to the positive and negative components xv2 of the eigenvector vvv2 is illustrated, with
reference to diameter-weight with the Ncut criterion.

Fig. 1: Second smallest eigenvector vvv2, in increasing order vs nodes, separated in
negative and positive components xv2 by referring to the diameter-weight with the
Ncut criterion.

This solution is in compliance with the continuity of both clusters DMA1 and DMA2. The
bipartition of network nodes into two clusters is evident in Figure 1; indeed, the positive/negative
eigenvector components xv2 are aligned in two different ways.

The results in terms of topological metrics are reported, for each weight combinations, in the
Table 3 with reference to Acut and Ncut criteria, indicating: the number of districts k, the number
of node nk for each i-DMA, the number of edge cut Nec, the number of flow meters N f m and the
number of gate valves Nbv = Nec−N f m.
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In all cases, the two clusters are not perfectly balanced as number of nodes, highlighting an
inherent inhomogeneity of the network.

Table 3: Partitioning indices for k = 2 DMAs with Acut and Ncut criteria.

Clustering
method

Weight k nDMA1 nDMA2 Nec Nbw N f m

[−] [−] [−] [−] [−] [−] [−]
LLLNW 2 52 132 9 7 2

Acut LLLD 2 69 115 10 8 2

LLLL 2 60 124 13 11 2

LLLNNNNW 2 53 131 10 8 2

Ncut LLLNNND 2 55 129 9 7 2

LLLNNNL 2 60 124 12 10 2

Concerning the number of edge-cut Nec, the best solutions correspond to the no-weight and
diameter-weight both for LLLNW (Nec = 9 with Acut) and LLLNNNNW (Nec = 10 with Ncut) and for LLLD
(Nec = 10 with Acut) and LLLNNND (Nec = 9 with Ncut); while the worst ones correspond to the length-
weight LLLL (Nec = 13 with Acut) and LLLNNNL (Nec = 12 with Ncut). Clearly, a low value of Nec obtained
at the end of the clustering phase can help in the second phase, aimed to find the positions of
boundary valves and flow meters. Indeed a lower number of Nec eases a small alteration of hydraulic
performance of the network, because a smaller number of gate valves is then required. Further, a
lower value of Nec allows also an economic saving with fewer devices to be installed.

In Table 3, the number of flow meters is fixed for all combinations (N f m = 2); it is the minimum
possible number which guarantees the hydraulic performance of the network, at the same time
simplifying the identification of water losses [20]. Clearly, the number of gate valves is equal to the
difference Nbv = Nec−N f m.

After weighted spectral clustering, dividing phase was achieved, computing all the hydraulic
performance metrics reported in Table 4.

The best solution corresponds to diameter-weight; in particular to LLLNNND obtained with Ncut
criterion, with a deviation resilience index Ird [6], that measures the reduction of the resilience
index after WNP, equal to Ird = 5.13%, even with a slight increase of nodal minimum pressure
hmin = 22.44m compared to the network before partitioning (the increase of minimum pressure hmin
is balanced from a very slight reduction of hmean = 31.00m and hmax = 50.16).

The worst solution corresponds to length-weight with Ncut criterion LLLNNNL, which shows the
maximum loss of hydraulic performance, with a resilience deviation index Ird = 54.13%.

In general, worse solutions correspond to the layouts with a higher value of Nec; while in the case
of diameter-weight both Acut and Ncut found Nec = 9, although the second one was significantly
better in the second phase of network dividing. Anyway, although in the clustering phase with
LLLNNNNW and LLLNNND the number was the same (Nec = 9), in the second phase, water network dividing
was significantly better with LLLNNND, because the weight combination was crucial to define different
clusters with a different number of nodes and different boundary edges, that allow to find a better
solution with GA.

For the presented case study, it is clear that, from both topological and hydraulic point of view,
the best solutions come from the diameter-weight combinations, with a smaller deterioration of
hydraulic performance corresponding to Ncut criterion, which in fact leads to a balanced clustering
taking into account the weights of the pipes [26].
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Table 4: Energy Indices for k = 2 DMAs with Acut and Ncut criteria

Clustering method Weight Ir Ird hmin hmax hmean

[−] [−] [%] [m] [m] [m]

LLLNW 0.292 16.81 17.48 50.28 29.78

Acut LLLD 0.199 43.30 18.32 51.21 27.51

LLLL 0.217 38.18 17.46 50.28 28.04

LLLNNNNW 0.190 45.87 17.55 51.12 27.37

Ncut LLLNNND 0.333 5.13 22.44 50.16 31.00

LLLNNNL 0.161 54.13 17.62 50.34 26.85

The case study was further extended to the analysis of a water network partitioning with k = 4
districts, by using the recursive spectral clustering [26] starting from the previously obtained two
DMAs. In other words, each cluster DMA1 and DMA2 was again clustered into DMA11 and
DMA12 and DMA21 and DMA22, respectively.

In Figure 2, the bipartition with the positive and negative components of the second smallest
eigenvector of the network nodes of each previous cluster are illustrated, with reference to the
diameter-weight with the Ncut criterion. Also this solution is clearly in compliance with the
continuity of nodes of each cluster.

In the case of the second bipartition, the Figure 2 does not show the same behavior highlighted
in the Figure 1. In the case of DMA1 the difference between values of eigenvector components xv2
is evident while in the second case of DMA2 is very small. Further, in both cases of Figure 2, the
eigenvalue components do not show an evident slope variation as in the Figure 1.

Concerning the number of edge-cuts Nec, the best solution corresponds, also in this case with
k = 4, to the diameter-weight LLLD (Nec = 18), while the worst corresponds to the length LLLL and
diameter LLLNNND weight combinations (in both cases Nec = 23), as reported in the Table 5.

Fig. 2: Second smallest eigenvectors vvv2, in increasing order vs nodes, separated in
negative and positive components xv2 by referring to the diameter-weight with the
Ncut criterion for DMA1 and DMA2.
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Table 5: Partitioning indices for k = 2 DMAs with Acut and Ncut criteria.

Clustering
method

Weight k nDMA11nDMA12nDMA12nDMA12Nec Nbw N f m

[−] [−] [−] [−] [−] [−] [−] [−] [−]
LLLNW 4 27 25 63 69 21 15 6

Acut LLLD 4 24 45 53 62 18 12 6

LLLL 4 25 35 52 72 23 17 6

LLLNNNNW 4 23 30 62 69 21 15 6

Ncut LLLNNND 4 25 35 52 72 23 17 6

LLLNNNL 4 22 38 61 63 21 15 6

In Table 5, the number of flow meters is fixed for all combinations (N f m = 6) in compliance
with the hydraulic performance of the network.

For the dividing phase, all hydraulic performance metrics are reported in Table 6.
The best solution corresponds, also in this case, to diameter-weight LLLNNND with Ncut, with a

deviation resilience index equal to Ird = 2.28%, with a very slight decrease of nodal minimum
pressure hmin = 21.19m, nodal maximum pressure hmax = 50.53m and nodal mean pressure hmean =
30.69m compared with the original network before partitioning. The result for 4 DMAs, with
Ird = 2.28%, is better than previous result for 2 DMAs (Ird = 5.13%) because the number of flow
meters (corresponding to opened boundary pipes) is higher in the second case (N f m = 6 vs N f m = 2).

The worst solution corresponds again to length-weight combination LLLNNNL, which shows the
maximum performance deterioration, with a resilience deviation index Ird = 30.20%, with also the
lower value of the minimum pressure hmin = 17.90m. Generally, in terms of nodal pressure, the
results are however good, as hmean in each case is slightly lower than the original network value.
Also in this second phase, for k = 4 DMAs, it is clear that, from both topological and hydraulic point
of view, the best solution corresponds to the diameter-weight combinations with Ncut criterion.

Table 6: Energy Indices for k = 2 DMAs with Acut and Ncut criteria

Clustering method Weight Ir Ird hmin hmax hmean

[−] [−] [%] [m] [m] [m]

LLLNW 0.306 12.82 18.51 50.26 30.03

Acut LLLD 0.293 16.52 20.18 50.49 29.36

LLLL 0.300 14.53 20.23 50.38 29.79

LLLNNNNW 0.307 12.54 19.48 50.27 30.02

Ncut LLLNNND 0.343 2.28 21.19 50.53 30.69

LLLNNNL 0.245 30.20 17.90 50.43 28.41

Finally, Figure 3 shows the Parete WNP in the case of two and four DMAs, corresponding to
the best solutions LLLNNND in terms of minimum alteration of hydraulic performance (i.e. resilience
deviation index).
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Fig. 3: Parete WSN partitioning in 4 DMA: clustering phase (left side) and dividing
phase (right side).

In the left side of Figure 3, the first clustering phase is reported highlighting the edge-cuts
(dashed lines); while, in the right side, the second dividing phase is illustrated, highlighting the
positioning of optimal devices which ensures the minimum hydraulic performance deterioration.

4 Conclusion
The paper presents a preliminary application to a real water distribution network of weighted
spectral clustering methods for water network partitioning, that represents one of the most innovative
techniques to improve water supply network management.

Simulation results, obtained with different methods (Acut and Ncut) and pipe weights (no-weight,
diameter and length) and for a different number of DMAs (k = 2 and k = 4), confirm the effectiveness
of the procedure, highlighting that the best solution was diameter-weighted combination with Ncut
method and a recursive spectral clustering, obtained according to the sign of the components of the
eigenvector corresponding to the second smallest eigenvalue.

Further studies are in progress to improve the obtained results, integrating spectral methods
with other clustering and graph partitioning algorithms and testing the procedure on larger water
networks, also adopting other hydraulic and geometric information as weight combinations.
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Abstract In this paper we investigate a robust optimization framework for controlling energy storage
devices in power networks with high share of fluctuating renewable energy sources. Our approach
relies on the industry-standard DC power flow approximation, together with a multi-stage model
that incorporates renewable uncertainty and an approximation of battery dynamics. More precisely,
we consider storage device operation under linear control and taking into account power limits,
energy conversion efficiencies, and energy limits for the state of charge. The aim of the robust
optimization is to minimize costs for generating energy from conventional power generators while
relying on storage to compensate for renewable output forecast errors. In order to obtain a solution
we propose a cutting-plane procedure which can be used for investigating practical case studies.

Key words: robust optimization, power network control, fluctuating renewables, energy storage
devices

1 Introduction
The ongoing transition from conventional to renewable energy sources (RES) is causing a dramatic
impact on power generation. Since the late 19th century, power networks have been designed as
centralized networks, where large power plants rely on high-voltage power transmission lines so as
to transport energy from one region to another one [17]. Distributed substations transform voltage
to lower levels suitable for electricity distribution to consumers. The transition to RES implies
the (at least partial) substitution of large conventional power plants (e.g., coal and nuclear power
plants) by many but smaller generation units (e.g., wind and solar farms). These RES generation
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facilities are located at distributed sites according to the availability of resources and, hence, might
be in regions with weak grid infrastructures and far away from electricity consumers. In addition,
production from RES fluctuates in time. As a consequence, RES imply increased challenges for the
grid infrastructure and its design, operation, and control.

In principle, both peak loads of the grid and the temporal fluctuations of the availability of
resources can be reduced using storage devices [1, 21]. In this context, storage devices can reduce
the need for investments in grid infrastructure and / or alternative generation capacities. The amount,
location, and technology of storage devices required and their operation form a complex optimization
problem and several contributions deal with different aspects of related problems [13, 14, 16, 18,
26]. See e.g., [11, 27], for discussions on wind power forecast errors, and [24] for a long-term
model involving scenarios. Here, we aim to develop a model to study optimal control strategies
for storage devices used to partly compensate for deviations from predicted renewable power
production. For this purpose, we build on the well-known methodology of “robust optimization”
[2, 4]. We focus on the efficient solution of a robust model that accommodates nonconvexities
in the modeling of battery operation while yielding a convex approach (Section (3.7)). The
work isolates the interplay of uncertainty with battery operation, while not modeling several
realistic grid operation details.

In our contribution, we consider power networks with high share of RES, but still having
conventional power generators both used as a backbone and so as to provide real-time and secondary
frequency control. The objective of the optimization is minimizing generation costs of conventional
power generators (the standard OPF, or Optimal Power Flow setup) while operating the network
such that loads (i.e. demands) are all met and with high likelihood no line overloads occur and that
battery operation remains safe.

The rest of the paper is organized as follows. Section 2 gives a practical problem which motivates
our robust optimization framework while section 3 provides a detailed mathematical formulation
and we propose a cutting-plane procedure on how to solve the robust optimization problem. In
section 4 we show preliminary computational results and section 5 gives a conclusion and an outlook
of further investigations.

2 Motivation
Before describing the formulation of our robust optimization framework, first let us consider the
following simple example. The network shown in Figures 1 and 2 have the exact same network
components in those seven buses. The quantities shown are in units of power (e.g. MW). This
specific network contains one generator G that can produce 0−200 units, two buses L with 100
units of power load, one storage device B able to store 0−100 units of energy which starts at time
zero with zero storage, and three renewable energy sources RES that have fluctuating generation in
each time period.

Consider two periods. In the first period (Figure 1) we assume there is no uncertainty in the
renewable power generation and in the second period (Figure 2) we assume the renewables produce
between 0 and 20 units each, which expresses the uncertainty. A solution our framework would
provide is the following:

In the first period, the power generator G outputs 170 units from which 100 units flow into the
first bus L with power load 100 and 70 units are transmitted to the second bus L with power load
100. This power load bus obtains further 30 units from the renewables. Another 30 units from the
renewables are used to charge the storage device B.

In the second period, the power generator G outputs 170 units. Note that using this generation
levels, regardless of the renewable generation level, we can always respond to the power load using
the storage device B which has stored 30 units from the first period.

Furthermore, the location of the storage device as shown in this illustrative example is the only
logical one. The reader can check that all other locations of the storage device would result in an
infeasible problem.
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3 Robust optimization framework
A power transmission network is a graph where some nodes are sources of power flow (e.g., power
generator, renewable) and some nodes are sinks representing loads. In power engineering practice
nodes can hold both power sources and loads. Additionally, storage devices can be located at any
node and can act as a sink while charging or act as a power source while discharging. In the power
community nodes of the graph are called buses and the edges of the graph are called branches;
these are circuits transmitting electrical power between buses. For a thorough introduction to power
networks we refer the reader to textbooks (e.g., [6, 15, 25]), but a brief review of the heavily used
“DC-OPF” to power flows is appropriate. Each bus k has a state variable θk that represents the
voltage phase angle. In particular, given a branch between buses k and m, we have:

Pkm = ykm (θk − θm ), (1)

where the parameter ykm is the susceptance of branch km. For thermal protection reasons, the
absolute value of the flow on a branch is limited by a parameter known as the “limit”, or “rating” of
the branch:

| ykm (θk − θm ) | ≤ Lkm. (2)

A final set of equations enforce flow balance at each bus (Kirchhoff’s law): the net outflow (flow
leaving minus flow entering a bus) must equal to total generation minus total demand at that bus
[23]:

∑
j

Pk j −∑
j

Pjk = Pg
k − Pd

k . (3)

This review can be made more accurate so as to account for other electrical devices and phenomena,
such as transformers and line charging (shunts). Equation (4) (see [28, p. 27 in eq. (3.32)]) given
below summarizes the flow balance constraints. In this equation the matrix B is obtained by
substituting (1) into (3) at each bus k:

Bθ
t = Pg

t − Pd
t . (4)

Fig. 1 Period 1: No uncer-
tainty in the renewable power
forecast. In the optimal so-
lution G generates 170 units
and 30 units from renewables
are charged into the storage
device B. Flow capacities on
each branch are indicated by
purple colors.

Fig. 2 Period 2: Incorporates
uncertainty in renewable
power forecast. In the optimal
solution G generates 170 units
and 30 units are discharged
from the storage device B.
Flow capacities on each
branch are indicated by purple
colors.
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In this equation t specifies a time index, and Pg
t and Pd

t indicate, respectively, vectors of generation
and loads at time t. For brevity we omit background on the (approximate) validity of (4). One
obtains the following standard optimization problem, referred to as DC-OPF:

min ∑
k,t

ck,t (Pg
k,t ), (5)

where the functions ck,t are convex quadratics cost function of power generation.
The solution of the problem with objective (5) and constraints (4), (2) (plus additional constraints

on e.g. generation that are omitted here) provides phase angle variables θ , and through equations (1)
yields the power flows, which thus depend on both the power generated and the power consumed at
all buses and all times. A problem of this type is normally solved with some frequency, e.g. every
five minutes, using estimates of the loads in the next time window. Real-time deviations of the loads
from these forecasts, which are usually small, are handled through the mechanisms of primary and
secondary frequency control.

3.1 Basic control model
Our control scheme is given by the following modification of (4), where we ignore shunts and
transformers and leave out the time index t for simplicity:

Bθθθ = Pg − Pd −

(
∑

i
wwwi

)
λ + w̄ + www, (6)

In this equation, the term w̄+www corresponds to the power injected by the renewables; w̄ is the vector
of forecast renewable power generation and www is the vector of deviations from the forecast. The
term (∑i wwwi)λ corresponds to the power obtained from storage devices when using a linear control
responsive to renewable power deviations. Here, and in what follows, bold face is used to indicate
uncertain quantities (this includes θθθ , since in (6) the state variables of the voltage phase angles θθθ

are dependent of www). Note that for buses k without RES w̄k and wwwkkk are zero. In (6) λ is a vector
of decision variables, with entries λi for each bus i (both fixed at zero for buses without storage
device). Thus, with λ ≥ 0, (6) indicates that storage devices absorb renewable power excesses (over
the forecast) and balance out shortages.

1 In application of the control, the quantity ∑i wwwiii would be estimated from measurements at the
start of the given time period and that value would be used throughout the period. Thus, (6)
would not accommodate all real-time additional errors.

2 As stated the problem is (deliberately) unrealistic. For example, one should also account for
errors in estimating loads, and ramping constraints on generators, the use of generators to
counteract renewable variation, and the interaction of generators and storage. These omissions
are purposely made so as to isolate the interaction of uncertainty and storage operation.
However, note that implicitly our robust optimization problem will allow e.g. using generators
to charge storage.

In a robust setting, we will choose an uncertainty model – this model will specify which forecast
deviations www our approach will compensate for. When choosing a tuple (Pg,λ ) we must ensure that
(6) is a feasible system of equations for any allowable realization of www. In addition, it is explicitly
required that (6) remains feasible in the nominal case, (www = 0), i.e. the system of equations:

Bθ
nom = Pg − Pd + w̄, (7)

is feasible. Since the sum of rows of B is zero, in order for (6) to be feasible, the sum of right-hand
side values has to be zero, and likewise for (7). Applying this principle to (7) we obtain:
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∑
i
(Pg

i − Pd
i + w̄i ) = 0. (8)

Using (8) and applying the principle to (6), we obtain:

∑
i

λi = 1, (9)

which will be imposed as a constraint in the robust optimization problem. In addition, either (8) is
explicitly included as a constraint or (7) is included as a subsystem.

However, ensuring that (6) is feasible for all allowable realizations of the deviations www, is
certainly not enough to guarantee stability. Two issues are left outstanding: guaranteeing that storage
operation (across multiple time units) remains feasible, and guaranteeing that the thermal constraints
(2) also hold. We will return to these issues later. At this point it is worth pausing to discuss the
uncertainty model and its implications.

3.2 Storage device model
A storage device is a component in a power network which can be operated as energy source or
energy sink. For the conversion from electrical energy to a storage device specific energy form
(e.g., chemical energy) at bus k and time t, there are technology specific charging and discharging
efficiencies 0 < ηc

k,t ≤ 1 and 0 < ηd
k,t ≤ 1, respectively. As a consequence, a discharging storage

device with electrical power PB
k,t > 0 discharges with a (chemical) power of PB

k,t/ηd
k,t inside the

storage device. On the opposite, a charging storage device with electrical power PB
k,t < 0 charges

with a (chemical) power of −ηc
k,t PB

k,t . Further, the electrical charging and discharging power are

limited by PB,min
k,t ≤ PB

k,t ≤ PB,max
k,t . The modeling of charging and discharging efficiencies introduces

nonconvexities; in fact previous authors have resorted to the use of binary variables so as to
accommodate this feature. However we will show that our proposed cutting-plane algorithm
bypasses this complexity.

3.3 Uncertainty model
We denote by W the set of forecast errors which need to be considered, www = {wwwk,t}. In particular,
we will consider concentration models, where there are matrices C1, C2, both with non-negative
entries, a vector b, and values lk,t ≤ 0≤ uk,t ∀ t ∀k, such that W is the set of vectors satisfying:

C1w+ + C2w− ≤ b, (10a)

lk,t ≤ wwwk,t ≤ uk,t for all t and k, (10b)

where w+ and w− are, respectively, the vectors of component-wise values max{w j,0} and
max{−w j,0}.

An example, with T = 1 is where for values γk ≥ 0 (k = 1, . . . ,N) and Γ ≥ 0, W is the set of
vectors satisfying

|wwwk,1 | ≤ γk ∀k, ∑
k

|wwwk,1|
γk

≤ Γ .

Note that model (10) allows for constraints across time periods, and for non-symmetries (e.g.
lk,t 6=−uk,t for some t and k).



814 Matke, Bienstock, Muñoz, Yang, Kleinhans, Sager

In practice, good estimates for W can either be obtained from literature [12] or from direct
analysis of data on forecast and realized productions, which are available for several control zones.1

3.4 Optimization model
We can now outline our optimization model. The decision variables are the quantities Pg

k,t (for each
generator at bus k and time period t) and λi,t (for each storage device at bus i and time period t). It
may be stated as

min
Pg,λ

∑
t

∑
k

ck,t(P
g
k,t) (11a)

s.t. the following constraints being feasible at all times t, for all www ∈W:

Bθθθ
t = Pg

t + w̄t +wwwt −

(
∑

i
wwwi,t

)
λt − Pd

t (11b)

ykm|θθθ t
k − θθθ

t
m | ≤ Lkm for all km (line limits at time t) (11c)

battery operation constraints (11d)

We stress that the only decision variables in this problem are the Pg and λ . In sections below we
will deal with constraint (11d). Note that problem (11) is an extension of the standard DC-OPF so
as to incorporate the linear storage control model and the uncertainty in renewable output. As we
indicated above, the solution to problem (11) would not provide 100% protection against renewable
output uncertainty; however through judicious construction of the uncertainty model W it could
be used to account for most of the uncertainty, with smaller, leftover errors left to be handled by
standard primary and secondary control. See e.g. [7].

3.5 Algorithm
Problem (11) is a convex-objective problem but possibly including nonconvexities due to the
uncertainty model and the battery operation model. However, we will show that the problem
can in fact be very efficiently solved as a sequence of linearly constrained problems, thereby
avoiding nonconvexities. The algorithm relies on the extremely effective paradigm of cutting-plane
or Benders’ decomposition methods [3] (see [5, 7, 8, 9, 10]). In the context of power engineering,
works closely related to this paper are [19] and [20], discussed above.

The algorithm iterates by maintaining a linear relaxation of the constraints (11b)-(11d), that we
shall term the working formulation. At the start of the algorithm the working formulation consists
of constraints (8) and (9). Then, this formulation is iteratively enriched. Let us denote the working
formulation in iteration K as AKPg + BKλ ≥ bK for appropriate matrices AK , BK and vector bK .
At iteration K the algorithm proceeds as follows:

Step 1. Solve minPg,λ ∑t ∑k ck,t(P
g
k,t), subject to AKPg + BKλ ≥ bK .

Let P∗b , λ ∗ be an optimal solution (of this relaxation).

Step 2. Either show that P∗b , λ ∗ satisfies constraints (11b) - (11d) for all w ∈W,
or find an inequality

1 http://www.tennettso.de/site/de/Transparenz/veroeffentlichungen/netzkennzahlen/tatsaechliche-
und-prognostizierte-windenergieeinspeisung
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αPg + βλ ≥ α0 (12)

which is valid for problem (11) but violated by P∗b , λ ∗. In the latter case, add inequality (12) to the
working formulation.

Step 2 is the so-called “separation procedure”. If the “either” case holds we have computed an
optimal solution to problem (11). If the “or” holds the inequality we have added cuts-off the vector
P∗b , λ ∗ and so this vector will be excluded in all future iterations of the algorithm.

The separation procedure is thus at the heart of our algorithm. We have seen that imposing (8)
and (9) for each t guarantees that (11b) will always be satisfied by a pair P∗b , λ ∗. Hence whenever
the “or” case of Step 2 applies it must be the case that a constraint (11c) or (11d) is violated. In
the next sections we will outline how the separation procedure is to be implemented in the case of
these constraints. In both cases, the key step will be to compute, given a pair P∗b , λ ∗, a worst-case
vector www which is chosen so as to maximize the violation, by P∗b , λ ∗, of some constraint (11c) or
(11d). This is the so-called adversarial problem. Having solved the adversarial problem, the task
of constructing an appropriate violated cut (12) will also be shown to be straightforward. In Sections
3.6 and 3.7 we will indicate the specific form of the cuts that we use.

References [19] and [20] present related algorithms for problems involving storage. A primary
difference between those works and ours concerns the modeling of nonconvex battery operation,
which in particular we handle in an efficient manner as detailed in the next section.

3.6 Adversarial problem for storage device operation
As discussed above, for a storage device at bus k at time t we have:

∆t PB
k,t = ∆t PB

k,t(λ ,www) = −λk,t ∑
j

wwwt, j,

where ∆t is the length of period t. Then, the energy level at storage device k at time t, for a given www,
is:

Ek,t(www)
.
= Ek,0 +

t

∑
i=1

∆i

(
−(ηd

k,i)
−1[PB

k,i(λ ,www)]
+ + η

c
k,i [P

B
k,i(λ ,www)]

−
)
, (13)

where for a real x, we denote x+ = max{x,0} and x− = max{−x,0}. The logic for equation (13) is
simple. Suppose first that PB

k,i > 0. Then, the storage device is discharging at time i, moreover the
second term in the sum in (13) is zero. Similarly, when PB

k,i < 0. Continuing with (13), we have:

Ek,t(www) = Ek,0 +
t

∑
i=1

∆iλk,i


−(ηd

k,i)
−1


∑

j
www j,i



−

+ η
c
k,i


∑

j
www j,i



+

 . (14)

This is a nonconvex model. However, we can optimize over it efficiently. We need to ensure that
for all storage buses k, for all t, and for all www ∈W:

Emin
k,t ≤ Ek,0 +

t

∑
i=1

∆iλk,i


−(ηd

k,i)
−1


∑

j
www j,i



−

+ η
c
k,i


∑

j
www j,i



+

 ≤ Emax

k,t ,

or, in other words, for all k and t,
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max
www∈W





t

∑
i=1

∆iλk,i


−(ηd

k,i)
−1


∑

j
www j,i



−

+η
c
k,i


∑

j
www j,i



+






≤ Emax

k,t −Ek,0, (15)

and

min
www∈W





t

∑
i=1

∆iλk,i


−(ηd

k,i)
−1


∑

j
www j,i



−

+η
c
k,i


∑

j
www j,i



+






≤ Emin

k,t −Ek,0. (16)

To help with this task we have the following Lemma:

Lemma 3.1. Suppose w ∈W. Define the vectors ŵ and w̆ as follows:

ŵ j,i =

{
0, if ∑ j w j,i < 0 ,

w j,i, otherwise

w̆ j,i =

{
0, if ∑ j w j,i > 0 .

w j,i, otherwise

Then (a) w̆ ∈W and ŵ ∈W, and (b) for any k and t, Ek,t(w̆) ≤ Ek,t(w) ≤ Ek,t(ŵ).

Statement (a) follows from the assumptions about the disturbances W, and (b) rests on expression
(14).
Thus, consider expression (15). Using Lemma 3.1 this expression is equivalent to:

Emax
k,t −Ek,0 ≥ max

t

∑
i=1

∆iλk,i


η

c
k,i ∑

j
w j,i


 (17)

s.t. w ∈W

∑
j

w j,i ≥ 0, for i = 1,2, . . . , t

Given a choice of control parameters λ , this is an optimization problem that is readily solved for
most robust models e.g., the concentration model (10). Expression (16) is similarly handled. As a
consequence, suppose that λ ∗ is a particular control vector which fails to satisfy e.g (15). Using
(17) we can compute ŵ ∈W, with ŵ≥ 0, and such that





t

∑
i=1

∆iλ
∗
k,i


η

c
k,i


∑

j
ŵ j,i



+







> Emax
k,t −Ek,0.

But since ŵ is an allowable vector of deviations, we must have that any feasible λ , as just discussed,
satisfies





t

∑
i=1

∆iλk,i


η

c
k,i


∑

j
ŵ j,i



+






≤ Emax

k,t −Ek,0. (18)

In other words (18) is a valid inequality which the control λ ∗ satisfies. In summary, given λ the
solution of problem (17) will decide whether λ is feasible or not, and in the latter case we will also
obtain an inequality violated by λ .
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3.7 Adversarial problem for line limit constraints
In the adversarial problem, we assume that we have chosen specific values Pg∗ and λ ∗ for the
vectors Pg and λ , and we are trying to pick the vector w so that the flow in some line becomes too
large (larger than the flow capacity) in absolute value. Consider a line km, where for simplicity we
are assuming that k 6= ρ and m 6= ρ . The enumerateersarial goal is to pick www so to make |θθθ kkk−−−θθθ mmm|
large, i.e. larger than the Lkm/ykm (here Lkm is the flow capacity on branch km). Let us focus on
θk−θm for simplicity. Then the adversarial problem is as follows:

ADV1: max θθθ k−θθθ m

s.t. Bθθθ = Pg∗ − Pd −

(
∑

i
wwwi

)
λ
∗ + w̄ + www (19)

www ∈W

In this optimization problem, as in (17), the only variables are the www. Also notice that we are using
the power flow equations (under uncertainty) in the form (6).

We assume that our network is connected. Thus B has rank n−1 where n = number of buses,
and as a system of equations on θθθ , (6) has one degree of freedom. Using standard methods we
obtain an equivalent restatement of (19):

θθθ = V
(

Pg∗ − Pd + w̄
)
−

(
∑

i
wwwi

)
V λ
∗ + V www,

where V is an appropriate matrix (a pseudo-inverse of B). Denote by v j the jth row of V , for any j.
Then

θθθ k−θθθ m = (vk− vm)
(

Pg∗ − Pd + w̄
)
− (vk− vm)λ

∗

(
∑

i
wwwi

)
+ (vk− vm)www,

and so ADV1 can be equivalently rewritten as:

ADV2: max (vk− vm)
(

Pg∗ − Pd + w̄
)
− (vk− vm)λ

∗

(
∑

i
wwwi

)
+ (vk− vm)www

s.t. www ∈W

Formulation ADV2 can be used implicitly so as to generate cuts, as in Step 2 of the algorithm in
Section 3.5, as follows. Suppose that the value of ADV2 is too high, i.e. it is greater than Lkm/ykm.
Denote the optimal solution to ADV2 by wo; this is a function of (Pg∗,λ ∗). Then of course wo ∈W

and by definition:

(vk− vm)
(

Pg∗−Pd + w̄
)
− (vk− vm)λ

∗

(
∑

i
wo

i

)
+(vk− vm)wo > Lkm/ykm. (20)

From these observations we can derive a cut that separates (Pg∗,λ ∗) from the set of feasible
solutions to the robust problem: suppose Pg,λ is an arbitrary feasible solution to the robust problem.
It follows that, should the adversary use renewable power deviations wo, the adversary will fail, i.e.:

(vk− vm)
(

Pg−Pd + w̄
)
− (vk− vm)λ

(
∑

i
wo

i

)
+(vk− vm)wo ≤ Lkm/ykm. (21)
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In other words, (21) is an inequality that every feasible solution must satisfy. This inequality
(violated by (Pg∗,λ ∗) as per (20)) is added as cut to the working formulation and completes the
iteration.

4 Preliminary computational experiments
Here we outline ongoing experiments using the well-known “Polish grid 2003-2004 winter peak”
dataset available through MATPOWER [29]. This realistic and meshed transmission system has
2746 buses, 3514 branches, 388 generators, and a total load of approximately 25GW. To construct
instances of our problems on this data set, we placed wind farms and storage devices at the buses
holding the 50 largest generators. The rationale for this is that such buses are likely to be attached
to strong (i.e. large capacity) branches; in this way we avoid spurious infeasibility conditions.
The wind farms on average imply a (large) 38% renewable penetration, whereas the batteries at
their maximum energy level would account for 50% of all loads. (We note that such high battery
capacities are needed in order to match large forecast errors). We thus used a parameter, “w-scale”
to scale up or down all wind farms, and another parameter, “b-scale” to likewise scale batteries. The
following table outlines results for the single time period case of our model.

Table 1: One-period results

w-scale b-scale Γ Cost Iterations Time (s)

0.5 0.5 2 1238690.5 4 6.75
0.5 0.5 10 1242090.94 8 12.59
0.5 0.5 20 1243021.71 7 10.87
1.0 0.5 10 infeasible 1 1.97
1.0 0.1 32 infeasible 1 1.94

In Table 2 we outline results for a six-period problem using the same network, wind farm, and
battery setup as above. Loads grow at an approximate rate of 1% per period.

Table 2: Six-period results

penetration Γ Cost Iterations Time (m)

12 % 5 8145315 24 5
12 % 8 8165998 75 12
17 % 10 infeasible 64 10



Robust optimization of power network operation 819

5 Conclusions
In our contribution we considered power networks with high shares of RES integrated with a
reasonable amount conventional power generators, which can be operated in a flexible manner.
For these systems, we motivated and developed a new general approach, which optimizes the
commitment of power generators and storage devices taking into account both capacity limits in the
grid and the generators and deviations of the renewable power production from its prediction. Using
a methodology known as “robust optimization” we were able to suggest an optimization framework,
which guarantees the robustness of the operation strategy for generators and storage devices with
respect to forecast errors in the predicted renewable power generation. We showed that by means of
the cutting-plane method [3] an effective algorithm solves instances of our problems.

In future we aim to apply the approach to realistic grid infrastructures (e.g., from the SciGRID
project [22]) with the aim, to be able to quantify the technological feasibility of storage devices of
systems with high shares of RES.
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Abstract With the recent advances in complex networks, image segmentation becomes one of the
most appropriate application areas. In this context, we propose in this paper a new perspective of
image segmentation by applying two efficient community detection algorithms. By considering
regions as communities, these methods can give an over-segmented image that has many small
regions. So, the proposed algorithms are improved to automatically merge those neighboring re-
gions agglomerative to achieve the highest modularity/stability. To produce sizable regions and
detect homogeneous communities, we use the combination of a feature based on the Histogram
of Oriented Gradients of the image, and feature based on color to characterize the similarity of
two regions. By constructing the similarity matrix in an adaptive manner, we avoid the problem of
the over-segmentation. We evaluate the proposed algorithms for Berkeley Segmentation Dataset,
and we show that our experimental results can outperform other segmentation methods in terms of
accuracy and can achieve much better segmentation results.

Keywords: Image segmentation; complex networks; community detection; modularity

1 Introduction
Image segmentation is still a challenging issue in visual information processing. Its goal is to split
the image into homogeneous regions that represent similar features. It constitutes an essential issue
in pattern recognition due to its practical importance. For example image, segmentation procedures
in medical imaging can be used for diagnosis, allowing locating tumors and other pathologies [1].
Also, image segmentation techniques can be applied to machine vision, localization of objects in
satellite images, and traffic control systems [2]. In recent years, graphs have emerged as a represen-
tation for image analysis and processing. Many powerful algorithms in image processing have been

Youssef Mourchid (e-mail: youssefmour@gmail.com)� ·Mohammed El Hassouni (e-mail:
mohamed.elhassouni@gmail.com)�
LRIT, URAC No 29, Faculty of Sciences, Mohammed V University in Rabat, B.P.1014 RP, Rabat,
Morocco.

Mohammed El Hassouni
DESTEC, FLSHR, Mohammed V University in Rabat, Rabat, Morocco.

Hocine Cherifi (e-mail: hocine.cherifi@u-bourgogne.fr)
LE2I UMR 6306 CNRS, University of Burgundy, Dijon, France

An Image Segmentation Algorithm based on
Community Detection

Youssef Mourchid, Mohammed El Hassouni and Hocine Cherifi

© Springer International Publishing AG 2017
H. Cherifi et al. (eds.), Complex Networks & Their Applications V,
Studies in Computational Intelligence 693, 

821

DOI 10.1007/978-3-319-50901-3_65

youssefmour@gmail.com
mohamed.elhassouni@gmail.com
hocine.cherifi@u-bourgogne.fr


822 Youssef Mourchid, Mohammed El Hassouni and Hocine Cherifi

formulated on graphs, i.e., a pixel in an image is the vertex in the graph, and the edge is determined
by an adjacency relation among the image pixels. Using graphs in the image is not absolutely a new
idea and there are many published methods of graph similarity testing. The common idea of all
these methods is the construction of a weighted graph, where each vertex corresponds to an image
pixel or a region, and the weight of each edge connecting two vertices represents the similarity
that they belong to the same segment. Several key factors affect image segmentation, for example,
proximity, similarity, regularity, i.e., the repetitive patterns, relative size and etc. In this paper, we
will take into consideration all these factors. A lot of image segmentation algorithms have been
proposed in the literature: Region Based [3], Watershed [4]-[7], Feature based Clustering [8] and
Mean Shift algorithm [9].

Inspired by the application of community detection algorithms in large networks, we try to
view an image as a network or a graph. For a network, modularity [10] and stability [11] are
crucial quantities, which are used to evaluate the performance of community detection algorithms
when the underlying community structure is not known. Unlike the existing image segmentation
algorithms, the proposed approach identifies the differences between community detection and
image segmentation and, proposes a texture feature to count the occurrences of gradient orientation
in localized portions and encode it into a similarity matrix. The similarity among regions of pixels is
constructed in an adaptive manner for avoiding the over-segmentation. The proposed algorithms can
automatically detect the number of regions in an image compared with other existing segmentation
algorithms, it can also produce sizable regions and achieves much better semantic level segmentation
of the image. The proposed contributions of this paper are the following:

• Efficient community detection algorithms are used. They present a low time complexity as
well as comparable performance.

• A texture feature named Histogram of Oriented Gradients (HOG) [12] is used to detect regions
of interest in the image. The HOG feature, together with the color feature, encodes much better
similarity measure from the semantic point of view.

• Finally, the construction of an adaptive similarity matrix W is proposed to avoid the over-
segmentation. At each iteration, the similarity between two regions of the image is recalculated.
The goal is to avoid breaking visually coherent regions, which have smooth changes in color
or texture caused by shadow or perspectives.

The rest of the paper is organized as follows. In Section 2, we introduce briefly the concept
of community detection and modularity/stability. Then, we recall efficient community detection
algorithms. Section 3 explains how image segmentation and community detection can be related fol-
lowed by the description of the proposed contribution and the detailed technical points. Experiments
on the publicly Berkeley Segmentation Data Set (BSDS500) are reported in Section 4. Finally, in
Section 5, we present our conclusions.

2 Community Detection
Community Detection is a hot topic in network science during the past few years, and it’s a very
prolific subject in the complex network literature [13]. A community is a group of nodes which are
densely connected with each other and are sparsely connected with members of other communities.
The community detection is a fundamental problem, which objective is to find the best division
of the network into their constituent communities. Several algorithms have been developed so far
to deal with this issue. Numerous solutions to solve this problem, are linked to a measure called
modularity. Introduced by Newman [14], it measures the quality of a community structure and it is
defined as follow:

Q = Σ(eii−a2
i ) (1)
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Where eii denotes the fraction of network edges which are inserted into a community i, and
a2

i denotes the fraction considering that edges are inserted randomly. The modularity value Q is
between 0 and 1. A high value of the modularity indicates a strong community structure of the
network.

Another quality measure called stability Qs was introduced in [11] based on the clustered
auto-covariance of a dynamic Markov process. It measures the quality of a partition as a community
structure. Because the stability has an intrinsic dependence on time scales of the graph, it can allow
the comparison and the ranking of the partitions at each time and also establish the time spans
over which partitions are good and optimal. Thus, the Markov time acts effectively as an intrinsic
resolution parameter that establishes a hierarchy of increasingly coarser communities.

Several algorithms have been developed to find a partition of the network which is a good
approximation of maximum modularity or stability. In the following, we present two influential
algorithms that we propose to use.

2.1 Fast multi-scale detection of communities using stability
optimization

Modularity initially was introduced to evaluate the quality of partitions. Nevertheless, its use has
broadened from partition quality measure to optimization function and now modularity optimization
is a very common technique to detect communities. In this algorithm [16], the variation in modularity
∆QM to merge two communities i and j is computed as follows:

∆QMi j = 2(ei j−aia j) (2)

Where i and j denote the merged communities in the new candidate partition. When a better dQ
is found when moving a node, the algorithm checks that moving this node does not leave its initial
community disconnected. Otherwise, some communities may end up being in several components
that should not be grouped together as one. Note that this implementation uses two distinct lists
of neighbors. The first lists the actual neighbors in the initial network and the second stores the
neighbors in the current matrix for the given parameter. This is necessary in order to only consider
actual neighbors when selecting the candidate neighbor nodes and communities. The computation
of the matrices for each parameter value is optimized by keeping in memory the recent matrices
and corresponding exponents. For each new exponent, the optimization attempts to exploit the
previously computed matrices to speed up the matrix power computation.

2.2 Modularity optimization based on Danon greedy agglomerative
method

It’s a greedy community detection agglomerative method which has been introduced by Danon [17].
The algorithm process is a simple modification of the algorithm proposed by Newman for detecting
communities. The greedy method of Newman is an agglomerative hierarchical clustering method,
where groups of nodes are successively joined to form large communities such that the value of
modularity increases after this merging. This greedy optimization of modularity tends to form faster
large communities at the expenses of small ones, which often yields poor values of the maximum
value of modularity. Danon suggested a normalization of the modularity variation produced by
merging two communities by the fraction of edges incident to one of the two communities, in order
to avoid having small communities. This trick leads to better modularity value as compared to the
original recipe of Newman, especially when communities have different sizes
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3 Segmentation algorithms
Due to the inherent properties of images, there is a difference between the segmentation and
community detection problems, and applying directly community detection algorithms to image
segmentation [18], by considering the pixels as nodes of the network, lead to low performance.
The following aspect reveals the difference between image segmentation and community detection.
First, pixels in segmentation possibly have completely different properties, like the color but in
community detection, they share similar properties. Second, a single pixel cannot capture regularities
and information in each visually homogeneous segment of the image. Third, images share some
information compared with communities, for example, adjacent regions are more likely to belong to
the same segment.

So, to solve the mentioned problems, we propose an approach which takes advantage of the
efficient optimization in modularity/stability using community detection algorithms and also the
inherent properties of the image. The proposed algorithms start by an initial segmentation which
split the image into homogeneous regions, possibly small regions which are used in the next steps.
The proposed segmentation approach is explained in Algorithm.1 and the detail of some technical
points are defined below.

Algorithm 17
Input: Given a color image I and its over-segmented initialization with a set of
super-pixels R = {R1, ...,Rn} where n is the number of super-pixels
Output: The set of image segments Ci = {Ci1, ...,Cic} with c≤ n

1: while community structure still change (Ci 6=Ci−1) do
2: Construct the neighborhood system for each region Ri;
3: Compute the Histogram of Oriented Gradients texture feature and estimate

the distribution of the color feature for each region Ri;
4: Adaptively update the similarity matrix W according to Equation (5), wi j 6= 0

only if Ri and R j are adjacent regions in I
5: while modularity/stability increases by merging any two adjacent regions do
6: Compute the community structure using a community detection algo-

rithm Ci = {Ci1, ...,Cim} where m is the current number of communities
7: end while
8: end while

3.1 Super-pixels
In this paper, the super-pixels are chosen as an initial segmentation because we want to avoid
the over-segmentation issue. It is characterized by the splitting of the same perceptual region in a
multitude of smaller regions. Furthermore, super-pixels can well preserve the object boundaries.
The proposed community detection algorithms start the process of aggregation by treating each
single pixel as a community which will take more time and also there is no reason to treat a
single pixel because it contains no information about texture. For these reasons, we start with an
initial segmentation by super-pixels which are a set of very small regions of pixels. Using this
pre-segmentation can greatly reduce the complexity without affecting the segmentation performance.
In this paper, we use a publicly available code [25] to get the initial segmentation. As shown in
Figure 1, the initial segmentation by the super-pixel generation step gives more than 200 over
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segmented regions which can greatly reduce the complexity by considering only 200 nodes instead
of a large number of nodes in the first iteration for the proposed algorithms.

3.2 Construction of the similarity matrix
Images have self-contained spatial a priori information which is used to construct different neigh-
borhood system. For more specification, we consider the possibility of merging neighboring regions
in the image by considering the adjacent regions of each region in the image to be its neighbors and
store its neighboring regions using an adjacent list which contains the regions that share at least one
pixel with the current region.

3.2.1 Features to compute the similarity
The most straightforward and important feature for segmentation is color. Various color spaces
are proposed in the literature to capture different aspects of the color, such as L*a*b, HSV, YUV,
and RGB. The choice of an appropriate color space is a very important step for achieving a good
segmentation performance. We choose the L*a*b color space because it’s known to be in accordance
with the human visual system and perceptually uniform. It is a 3-axis color system with dimension
L for lightness and a and b for the color dimensions.

We use the pixel value in the L*a*b color space as a feature to compute the similarity between
regions. Nevertheless, using this feature only cannot achieve good segmentation performance,
because in some homogeneous object using just the color feature will break down image regularities
into different segments. To solve this problem, we propose to use a texture feature called Histogram
of Oriented Gradients (HOG). HOG is a feature descriptor used in computer vision and image
processing to detect objects. This technique counts occurrences of gradient orientation in localized
portions of an image detection window, or region of interest. We construct the Histogram of Oriented
Gradients as follows:

• We divide the image into small connected regions (cells). For each cell, we compute a histogram
of gradient directions or edge orientations for the pixels within the cell.

• We discretize each cell into angular bins according to the gradient orientation.
• Each cell’s pixel contributes weighted gradient to its corresponding angular bin.
• Groups of adjacent cells are considered as spatial regions called blocks. The grouping of cells

into a block is the basis for grouping and normalization of histograms.
• Normalized group of histograms represents the block histogram. The set of these block

histograms represents the descriptor.

3.2.2 Similarity measure
Different similarity measures are used for the two features. For the color feature, a three-dimensional
vector in the L*a*b color space represents each pixel in the image. For measuring the similarity
between two regions in the image, the pixel value in the same region is represented by a three-
dimensional Gaussian distribution. Several distance measures for distributions are studied in the
literature like Kullback-Leibler (KL) Divergence, Mean Distance, and Earth Mover’s Distance. In
the proposed algorithms, to compute the distance between the two color feature distributions for two
regions of pixels, we use the Mean Distance (MD). We use a Gaussian type radius basis function
for transforming the above distribution distance into similarity measure defined by:

ci j(color) = exp{
−dist(Ri,R j)

2σ
} (3)

Where dist(Ri,R j) denotes the distance between the pixel value distributions for region Ri and
R j .
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Fig. 1: a) Original image; b) Super-pixels image; c) Fast multi-scale using stability
optimization; d) Modularity optimization based on Danon;

For the proposed Histogram of Oriented Gradients (HOG), we use the cosine similarity to
measure the similarity between the regions where each region is represented by a 256 dimensional
vector and for two regions Ri and R j . The HOG feature vector is hi, h j ∈ R256 as indicated by:

ti j(texture) = cos(hi,h j) =
hT

i h j

‖hi‖.‖h j‖
(4)

3.2.3 Construction of the adaptive similarity matrix
The process of constructing the similarity matrix W is adaptive. During each iteration, we maintain
an adaptive similarity matrix by recomputing the similarity between each two regions again in
accordance with the equation (3) and (4). The reason for using this process is because, during the
aggregation process of the community detection algorithms, regions keep expanding. The similarity
measure resulting from the previous iteration might not suitable for the current iteration. So, using
an adaptive similarity matrix reevaluate the similarity between current regions. It avoids over-
segmentation and finally overcomes the problem of splitting the non-uniformly distributed color or
texture, which should be grouped into the same community in the image from the perspective of the
human visual system. To construct the adaptive similarity matrix W during each iteration, we use a
hybrid model to combine the color feature and the HOG texture feature as defined below:

W = wi j = a×
√

ti j(texture)× ci j(color)+(1−a)× ci j(color); (i, j) = 1, ..,n (5)

Where n is the number of regions and a denotes a balancing parameter. If the texture information
is not taken into consideration, i.e., a = 0, the more we increase the value of a, the more stripe
patterns are encoded into the similarity, thus better preserves the regularities and information in
the image. Nevertheless, if a is too large, some distinct objects in the image are merged into one
segment. In our experiments, we give higher priority to the color feature.

4 Experiments and results
This section provides experiments that were conducted to assess the performance of the proposed
approach qualitatively as well as quantitatively. The proposed algorithms are tested on the publicly
available Berkeley Segmentation Data Set 500 (BSDS500) [19]. BSDS500 contains 100 validation
images of size 321×481 pixels that are randomly chosen from the Corel database. These images
are manually segmented by humans in a natural way. In the qualitative evaluations experiment,
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Fig. 2: a) Original image; b) LC; c) JSEG; d) EDISON; e) Fast multi-scale using
stability optimization; f) Modularity optimization based on Danon;

figure 1 shows the results of the proposed algorithms with the adaptive similarity matrix for image
segmentation. So, we can see that the proposed algorithms give much better results and produce
sizable regions for all selected images. Even if some pixel in the image have different values inside
the same regions, the adaptive similarity matrix of HOG texture feature can successfully preserve
the regularities and classifies those pixels into the same segment.

We have performed a qualitative and quantitative comparisons of the proposed algorithms based
on the adaptive similarity matrix with some existing state of the art segmentation methods: Lossy
Compression (LC) [20], EDISON [21] and JSEG [22]. As shown in figure 2, LC, EDISON, and
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JSEG show the different extent of over-segmentation and break the regularities in some homogeneous
regions of the image compared to the proposed approach which preserves the regularities and
produces sizable homogeneous regions.

For the quantitative evaluation, we evaluate the segmentation performance of the proposed
algorithms with the three segmentation techniques. We investigate for the quantitative evaluation
the Probabilistic Rand Index [23] which is a classical evaluation criteria for clustering. It measures
the probability that the pair of samples has consistent labels in the two segmentations. A larger
value indicates a greater similarity between two segmentations. The range of PRI is [0,1]. Table1
presents the average values of the PRI, which were applied to all of the 100 images in the Berkeley
segmentation dataset. Again, it has been observed that the proposed algorithms work better for the
image segmentation task among all the popular segmentation algorithms LC, EDISON and JSEG in
term of PRI and have a close performance to human perception.

Algorithms PRI
Humain 0.870
Fast multi-scale 0.811
Modularity optimization based on Danon 0.803
EDISON 0.786
JSEG 0.760
LC 0.778

Table 1: Quantitative comparison of different algorithms on Berkeley dataset

5 Conclusion
This paper proposed an efficient image segmentation algorithm taking advantages of the optimization
of modularity/stability and the inherent properties of images. To optimize modularity/stability, we
used the efficient community detection algorithms, Fast multi-scale using stability optimization and
Modularity optimization based on Danon which can automatically detect the number of segments in
the image. By employing the color feature and the Histogram of Oriented Gradients (HOG) texture
feature, we constructed the similarity matrix adaptively among different regions by optimizing the
modularity/stability and aggregated the neighboring regions iteratively. When no modularity/stability
increase occurs by aggregating any neighboring regions, the optimal segmentation is achieved.
Results of our experiments have proved that the proposed algorithms give an impressive qualitative
segmentation result as shown in the figures and achieve the best performance quantitatively among
all the experimented popular methods in terms of PRI. Since, using two efficient community
detection algorithms, the proposed approach avoid the over-segmentation problem and preserve the
regularities in the object.
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